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Peritrichous bacteria such as Escherichia coli swim in
viscous fluids by forming a helical bundle of flagellar
filaments. The filaments are spatially distributed
around the cell body to which they are connected via
a flexible hook. To understand how the swimming
direction of the cell is determined, we theoretically
investigate the elastohydrodynamic motility problem
of a multi-flagellated bacterium. Specifically, we
consider a spherical cell body with a number N of
flagella which are initially symmetrically arranged
in a plane in order to provide an equilibrium state.
We solve the linear stability problem analytically and
find that at most six modes can be unstable and
that these correspond to the degrees of freedom for
the rigid-body motion of the cell body. Although
there exists a rotation-dominated mode that generates
negligible locomotion, we show that for the typical
morphological parameters of bacteria the most
unstable mode results in linear swimming in one
direction accompanied by rotation around the same
axis, as observed experimentally.

1. Introduction
Bacteria, which constitute the largest domain of
prokaryotic microorganisms, have survived for billions
of years due to their sophisticated structures [1–3]. Many
bacteria are motile and various forms of bacterial motility
have been discovered, including gliding, twitching and
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swarming [4–7]. Above all, the most common form is swimming and both its hydrodynamics
basis and the chemotactic behaviour of cells have been investigated for many decades [8–12].

Bacterial swimming is achieved using propulsion from helical appendages, called flagellar
filaments, attached to the cell body (typical diameter ≈1–2 µm). A flagellar filament is a slender
polymer, made of a single protein called flagellin, which takes the form of a rigid helix (typical
length ≈10 µm and diameter ≈40 nm), driven in rotation by a bacterial rotary motor located at
the base end of the filament. The numbers and positions of the flagellar filaments can vary greatly
from cell to cell, but so-called peritrichous bacteria possess multiple flagella effectively randomly
distributed on the cell surface. This group of bacteria includes well-studied organisms such as
Bacillus subtilis, Salmonella enterica and the most popular model bacterium, Escherchia coli [9,10,13].

The behaviour of a rotary motor is regulated by inter-cellular signalling proteins. When a
peritrichous bacterium is swimming (so-called ‘run’), the distributed flagellar filaments rotate
in the same direction and gather together in a helical bundle, generating essentially linear
propulsion. When at least one of the rotary motors counter-rotates, the bundle of flagellar
filaments comes apart and the cell changes its orientation [14] (‘tumble’). The resulting well-
studied run-and-tumble mechanism allows peritrichous bacteria to explore chemically their
environment.

Owing to the small size of bacterial cells, the typical Reynolds number around a swimming
bacterium is Re ≈ 10−4 and, as a result, the fluid flow obeys the incompressible Stokes equations,
which are time-reversible. The ability of bacteria to reorient requires them to break the time-
reversibility constraint (i.e. the scallop theorem [11]), which is enabled by a short flexible
hook (≈60 nm in length) that connects the rotary motor to the semi-rigid flagellar filament.
The motor/hook/filament complex is known as a flagellum. The flexibility of the hook allows
it to behave as a universal joint [15] and is essential for flagellar bundle [16]. During the
swimming motion, the flexible hook can buckle, providing a rich spectrum of swimming
behaviours [17–21].

These mechanical structures together with the randomly distributed rotary motors of a
peritrichous bacterium raise a fundamental question: In which direction does the cell move for
a given motor configuration? The dynamics of a cell resulting from the rotating propulsion of
multiple rotating objects (the flagellar filaments) could be referred to as N-flagella problem in
reference to the classical N-vortex problem on the dynamics of point vortices [22]. The flagellar
morphologies, including pitch size and the radius of the helical filament, fall onto one of a small
number of polymorphic shapes, which have been characterized experimentally [23] while the
flagellar length can vary greatly within species and cell populations. Despite these variations, a
coherent flagellar bundle is expected to be maintained generically by long-range hydrodynamic
interactions [24,25].

Recently, Riley et al. [26] demonstrated theoretically that the swimming of peritrichous bacteria
is enabled by an elastohydrodynamic instability. Modelling a bacterium as propelled by multiple
rigid helical filaments spatially distributed around the cell body and connected to it by linear
torque springs, they showed that the coupling between the flagellar propulsive force pushing
the cell body and the hydrodynamic forces resulting from the swimming motion could result
in an elastohydrodynamic instability of the hook and lead to bacterial swimming towards a
preferred direction. This motility transition, demonstrated numerically, was also explained by
a theoretical model of a bacterium propelled by two rod-like flagella connected to the spherical
cell body from opposite sides [26]. The critical value predicted by the linear stability analysis
was in good agreement with the full computational simulations, suggesting that the swimming
direction of peritrichous bacteria might be set by the stability of an equilibrium distribution of
flagellar filaments.

The aim of the current paper is to formalize this physical result mathematically and to derive
rigorously the elastohydrodynamic motility transition theory for a cell with an arbitrary number
of flagella of arbitrary shape using linear stability analysis. In the theoretical model of [26], the
rod-like flagella only generate forces, which the issue of torque generation was not considered.
Since flagellar propulsion is generated by the rotation of helical filaments, a generation of torque



3

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A475:20180690

...........................................................

is inevitable and we include it in this paper. The number of flagella is set to any integer N greater
than 1 and we will consider equilibria and stability for the spatial distribution of the flagella.

The paper is organized as follows. Section 2 is devoted to the theoretical formulation of the
problem. In §2a, we formulate the bacterial motility problem for a cell with N flagella, considering
both force and torque balance for the cell and each flagellum. In §2b, we proceed to simplify
the problem by focusing on the case of identical flagellar filaments generating axisymmetric
propulsion. The latter property holds for a helical filament assuming that the time scale of the
bending and rotation of the flagella are well separated, which is verified in practice. The typical
flagellar rotation frequencies are ≈100 Hz and sufficiently faster than the typical frequency of
cell rotation, ≈10 Hz, that we may approximate the flagellar propulsion by its time-average. We
then consider the case where the N flagella are symmetrically distributed in a plane around
the cell body and we focus on its linear stability from the equilibrium configuration, which is
presented in §2c. The following sections are devoted to discussions of the results of the linear
stability analysis. We first neglect small chirality effects in order to simplify the system, and in
§3 we start our analysis with the case of N = 2 flagella, which is found to be different from the
general case with N > 2 due to the symmetry of the flagellar distribution. The general case is then
discussed in §4, where we start with the examples of N = 3 and N = 4 before deriving rigorously
the general stability results. Finally, we reincorporate the effects of chirality in §5 where solve the
full problem.

2. Mathematical model of peritrichous bacterium

(a) Equations of motion
In this first section, we describe the force and torque balance equations, together with the torque
balance of each elastic spring and hydrodynamic drag on each flagellar filament, in order to
formulate a linear problem of 2N + 6 dimensions for bacterial motility propelled by rotating
flagella.

We consider a swimming bacterium located in a Newtonian fluid of constant dynamic
viscosity μ. The cell body is assumed to be a sphere of radius R. We denote the centre of the sphere
by X and its orientation by a unit vector e. The bacterium is assumed to possess N rigid flagellar
filaments connected to the cell body at their base. The direction for the axis of each filament is
measured by the unit vectors e(i) for ith flagellum (i = 1, 2, . . . , N), as schematically illustrated
in figure 1. We label each flagellar filament using the arc length, s ∈ [0, L(i)], measured from the
flagellum–cell body connection (i.e. the location of the motor), where L(i) is the length of the ith
flagellum, whose shape is determined by its tangent vector t(i)(s).

(i) Force balance for a whole cell

We first consider the force balance equations for the entire cell, which, in the absence of inertia,
state that the sum of the hydrodynamic forces on the cell body and all flagella must add
up to zero.

Let U and Ω be the linear and angular velocities of the cell, respectively. Neglecting
hydrodynamic interactions between the cell body and the flagellar filaments, the hydrodynamic
drag on the cell body, Fbody, is simply given from the Stokes Law, by Fbody = CDU, where
CD = −6πμR and hereafter we non-dimensionalize the length scale using R = 1.

The hydrodynamic force on the ith flagellum, F(i), is obtained from the resistive-force theory
of slender filaments, which predicts that the hydrodynamic force on a small segment of the
flagellum, dF, is linearly related to its local velocity relative to the background fluid, u(i), as

dF(i)(s) =
[
Ctt(i)t(i) + Cn(1 − t(i)t(i))

]
· u(i)(s) ds, (2.1)
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Figure 1. Schematic of the model multi-flagellated bacterium considered in this paper (see text for details).

where Ct and Cn are the negative drag coefficient constants whose values depend on the flagellar
slenderness parameter [27,28]. Here, the local velocity u(i) is the sum of the velocities of the cell
body and the flagella. Introducing the angular velocity of each flagellum as ω(i) (figure 1), we have

u(i) = U + Ω × (x(i) + ξ (i)) + ω(i) × ξ (i), (2.2)

where

ξ (i)(s) =
∫ s

0
t(i)(s′) ds′ (2.3)

is the position along the flagellar segment at arc length s. From (2.2), integrating over the entire
flagellar filament leads to the hydrodynamic force on the ith flagellum, with denoting the drag
coefficient tensor in (2.1) by Ci, given by

F(i) =
[∫L(i)

0
Ci ds

]
· U +

[∫L(i)

0
Ci · Ai ds

]
· Ω +

[∫L(i)

0
Ci · Ãi ds

]
· ω(i). (2.4)

Here, we have introduced skew-symmetric matrices Ai and Ãi whose components are given,
respectively, by

[Ai]pq = εpqr(x
(i)
r + ξ

(i)
r ) and

[
Ãi

]
pq

= εpqrξ
(i)
r , (2.5)

where εpqr is the Levi–Civita symbol and the Einstein summation convention is used over the
repeated indices (p, q, r = 1, 2, 3). The final force balance equations obtained by summing up the
forces as

Fbody +
N∑

i=1

F(i) = 0. (2.6)

(ii) Torque balance for a whole cell

Similar to the above arguments, we now derive the expressions for the torque balance for an entire
cell at the centre of the cell body. We again neglect hydrodynamic interactions between the cell
and flagella and model hydrodynamic drag on each flagellar filament at the level of resistive force
theory (RFT).

The torque acting on the spherical cell body is given by Mbody = CRΩ , where the resistance
coefficient is CR = −8πμR3. The hydrodynamic torque on a segment of a flagellum is given by
dM(i) = (x(i) + ξ (i)) × dF(i), which yields the total torque expression after an integration over the
flagellum as

M(i) =
[∫L(i)

0
AT

i · Ci ds

]
· U +

[∫L(i)

0
AT

i · Ci · Ai ds

]
· Ω +

[∫L(i)

0
AT

i · Ci · Ãi ds

]
· ω(i), (2.7)

where the superscript, T, indicates the transpose of a matrix. Note that in order to obtain that
expression, we neglected the torque arising from local rotation of the flagellar filaments around
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their centreline, which is typically orders of magnitude smaller than (2.7) in the experimental limit
where the radius of the helical centreline is much larger than the thickness of the filament.

The overall torque balance equation for the whole cell is then written as

Mbody +
N∑

i=1

M(i) = 0. (2.8)

(iii) Torque balance for each flagellum

We proceed to consider the torque balance relation for each flagellum, which experiences both
hydrodynamic torque and an elastic spring restoring torque at the flagellum–cell body junction
[26,29]. The hydrodynamic torque follows from the discussion above and we now consider
the torque balance at the flagellum–cell body junction point. The torque acting on a segment
of a flagellum is then given by dM̃ = ξ (i) × dF(i) and integrating over the flagellum yields the
hydrodynamic torque

M̃
(i) =

[∫L(i)

0
ÃT

i · Ci ds

]
· U +

[∫L(i)

0
ÃT

i · Ci · Ai ds

]
· Ω +

[∫L(i)

0
ÃT

i · Ci · Ãi ds

]
· ω(i). (2.9)

As a model for the elastic hook, a linear spring torque is assumed to be present at the junction
point. Let κ (i) > 0 be the spring constant and let the relative angle difference from the initial
orientation be denoted by θ (i). The elastic torque on each flagellum can be then written as

M(i)
elast = −κ (i)θ (i)e(i)

⊥ , (2.10)

where e(i)
⊥ is the unit vector perpendicular both to the initial and current flagellar orientation

vectors. In the later part of this manuscript, we will assume that the flagellar orientations initially
coincide with the outward normal n(i) (figure 1), but the formulation here does not necessarily
assume this initial condition.

Hereafter, we assume that each flagellum is rotated at a fixed rate and thus the torque balance
equation for each flagellum is obtained as the instantaneous balance

Pi · M̃
(i) + M(i)

elast = 0, (2.11)

where we note that only the torque balance perpendicular to the vector e(i) is considered, where
Pi = (1 − e(i)e(i)) is the projection onto the plane perpendicular to e(i).

Note that if, alternatively, one was to model swimming as induced by motors rotating at fixed
torque [20,24], we would need an additional term in the torque balance equation, which would

take the form M̃
(i) + M(i)

elast + M(i)
motor = 0, where now it is the moment M(i)

motor which has a fixed
value. In what follows, we focus on the rotation-given problem, aiming to generalize the results
predicted by the previous theoretical model [26]. The theoretical extension to the torque-given
problem with N = 2 flagella is presented in appendix B where we highlight the similarities and
differences between the two models.

(b) Identical and axisymmetric flagellar propulsion
From (2.4), (2.7) and (2.9), we obtain the governing equations in a matrix form

A

⎛
⎜⎝ U

Ω

ω(i)

⎞
⎟⎠=

⎛
⎜⎝ 0

0

−M(i)
elast

⎞
⎟⎠ , (2.12)
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where A is a square matrix of order 2N + 6, given by

A=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

CD1 +
N∑

i=1

∫L(i)

0
Ci ds

N∑
i=1

∫L(i)

0
Ci · Ai ds

∫L(i)

0
Ci · Ãi ds

N∑
i=1

∫L(i)

0
AT

i · Ci ds CR1 +
N∑

i=1

∫L(i)

0
AT

i · Ci · Ai ds
∫L(i)

0
AT

i · Ci · Ãi ds

Pi ·
∫L(i)

0
ÃT

i · Ci ds Pi ·
∫L(i)

0
ÃT

i · Ci · Ai ds Pi ·
∫L(i)

0
ÃT

i · Ci · Ãi ds

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.13)

We next decompose the flagellar rotation velocity vector into the components due to the
flagellar rotation and that due to the flagellar bending, ω(i) = ω

(i)
t + ω

(i)
n , with ω

(i)
t = (ω(i) · e(i)) e(i).

In the rotation-given problem, ω(i)
t = ω(i) · e(i) is a fixed value. For more convenience, we introduce

3 × 3 matrices to simplify the linear equations (2.12) as

⎛
⎜⎜⎝

KTT KTR K(i)
TF

KRT KRR K(i)
RF

Pi · K(i)
FT Pi · K(i)

FR Pi · K(i)
FF

⎞
⎟⎟⎠
⎛
⎜⎝ U

Ω

ω
(i)
n

⎞
⎟⎠=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
N∑

i=1

K(i)
TF · ω

(i)
t

−
N∑

i=1

K(i)
RF · ω

(i)
t

−M(i)
elast − Pi · K(i)

FF · ω
(i)
t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.14)

In order to proceed, we assume that all N flagella are identical and that they generate
axisymmetric propulsion around their long axes. This assumption is obviously satisfied for
axisymmetric flagellar shapes such as rods, but is also valid for asymmetric shapes, including
helices, provided that the time scale of flagellar rotation is much smaller than that of elastic
bending (i.e. |ωt| � |ωn|). In practice, this assumption of axisymmetric propulsion is satisfied for
swimming bacteria [30]. Indeed, the typical flagellar rotation frequency of flagellar filaments for
E. coli is ≈100 Hz, which is faster than the typical frequency of cell rotation, ≈10 Hz. We can
therefore approximate the propulsion by a rotating helical flagellar filament by its time-averaged
contribution, which is axisymmetric along the helix axis.

We introduce a reference frame, flagellum-fixed frames and the rotation matrix, mapping
the laboratory reference frame, {ex, ey, ez}, onto the flagellum-fixed coordinates, {e(i)

x , e(i)
y , e(i)

z } and
denoted by Ri, as schematically shown in figure 1. The axisymmetric conditions are satisfied
if the quantity is unchanged under rotation around e(i)

z , where we choose the flagellum-fixed
coordinates such that the z-axis (e(i)

z ) coincides with e(i) (see also figure 1).
For any second-rank tensor written in the reference-frame as K, its expression in the body-fixed

frame, Ki, is given by

K= Ri · Ki · R−1
i . (2.15)

We next assume that the tensor is axisymmetric around the vector e(i) = e(i)
z . This can be expressed

by requiring invariance under rotation by any angle α ∈ [0, 2π ) around the axis, i.e.

K= R
(
−α; e(i)

)
· K · R

(
α; e(i)

)
, (2.16)

where R(α; e(i)) denotes the rotation matrix of angle α around e(i). If the tensor Ki is represented as
a matrix, the axisymmetric property leads to the matrix form

Ki =

⎛
⎜⎝K11 K12 0

K21 K22 0
0 0 K33

⎞
⎟⎠ , (2.17)
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and the four upper-left entries can be decomposed into the symmetric and skew-symmetric parts(
K11 K12
K21 K22

)
=
(

Ks 0
0 Ks

)
+
(

0 Kss

−Kss 0

)
, (2.18)

where Ks and Kss are constants. From the matrix form in (2.17), note that we readily obtain the
commutation relation

Pi · K= K · Pi. (2.19)

The tensors Ãi and Ci depend only on the flagellar shape and if the flagellum shape
is axisymmetric, these tensors are also axisymmetric. As a result, the tensor K(i)

FF = ∫
ÃT

i · Ci ·
Ãi ds is found to be axisymmetric, since K(i)

FF = ∫
R(−α; e(i)) · ÃT

i · Ci · Ãi · R(α; e(i)) ds = R(−α; e(i)) · K(i)
FF ·

R(α; e(i)). If instead the flagellar filaments are not rigorously axisymmetric, notably if they are
helical, then as long as the rotation velocity around their long axis is sufficiently large compared
with the velocity scale during bending, we can approximately replace the second-rank tensors by
their time-averages, and the same arguments thus follow.

Using the relation (2.19), equation (2.14) can be simplified to

⎛
⎜⎜⎝

KTT KTR K(i)
TF

KRT KRR K(i)
RF

Pi · K(i)
FT Pi · K(i)

FR K(i)
FF

⎞
⎟⎟⎠
⎛
⎜⎝ U

Ω

ω
(i)
n

⎞
⎟⎠=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
N∑

i=1

K(i)
TF · ω

(i)
t

−
N∑

i=1

K(i)
RF · ω

(i)
t

−M(i)
elast

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.20)

Similar arguments for K(i)
FF enable us to show that the symmetric tensors K(i)

TF = K(i)T
FT are

also axisymmetric around the axis e(i). However, the tensors K(i)
RF = K(i)T

FR are not necessarily
axisymmetric, since Ai are not axisymmetric except when each e(i) is parallel to x(i). We then
decompose Ai = A′i + Ãi. Noting that A′i is independent of the flagellar shape, we rewrite as K(i)

RF =
A′Ti · K(i)

TF + K(i)
FF so that the tensors Ãi, K(i)

TF and K(i)
FF are axisymmetric around the vector e(i). For

convenience, we write A′Ti · K(i)
TF = K′(i)RF.

We next employ the assumption that all flagellar filaments have identical propulsion, which
guarantees that the axisymmetric tensor, K, can be expressed as K= Ri · K(0) · R−1

i , where the tensor
K(0) is common to all filaments. We also write the rotation of the flagellar angular velocity in the
flagellum-fixed frame as ω

(i)
t = Ri · ω̃

(i)
t ; here ω̃

(i)
t is parallel to ez and we can thus write ω̃

(i)
t = ω̃

(i)
t ez,

where the value of ω̃
(i)
t is prescribed. Similarly, the elastic torque in the flagellum-fixed frame is

written as M(i)
elast = Ri · M̃

(i)
elast. Since both K(i)

TF and K(i)
FF are axisymmetric, we can rewrite the linear

equations (2.20) as

⎛
⎜⎜⎝

KTT KTR Ri · K(0)
TF

KRT KRR K(i)
RF · Ri

Ri · P0 · K(0)
FT · R−1

i Pi · K(i)
FR Ri · K(0)

FF

⎞
⎟⎟⎠
⎛
⎜⎝ U

Ω

ω̃
(i)
n

⎞
⎟⎠=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−
N∑

i=1

Ri · K(0)
TF · ω̃

(i)
t

−
N∑

i=1

(
K′(i)RF · Ri + Ri · K(0)

FF

)
· ω̃

(i)
t

−Ri · M̃
(i)
elast

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (2.21)

where P0 is the projection onto the x–y plane, defined as Pi = Ri · P0 · R−1
i . With additional rotational

matrix in the bottom N rows, this can be simplified to⎛
⎜⎜⎝

KTT KTR Ri · K(0)
TF

KRT KRR K(i)
RF · Ri

P0 · K(0)
FT · R−1

i P0 · R−1
i · K(i)

FR K(0)
FF

⎞
⎟⎟⎠
⎛
⎜⎝ U

Ω

ω̃
(i)
n

⎞
⎟⎠=

⎛
⎜⎜⎝

−Fprop

−Mprop

−M̃
(i)
elast

⎞
⎟⎟⎠ . (2.22)
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Here, we have used the fact that P0 commutes with K(0)
FT and K̃(0)

FR and that P0 · ω̃
(i)
n = ω̃

(i)
n . The first

and second entries of the right-hand side of (2.22) give the effective force and torque for the entire
body, corresponding to propulsive force and torques

Fprop =
( N∑

i=1

ω̃
(i)
t Ri

)
· K(0)

TF · ez (2.23)

and

Mprop =
N∑

i=1

K′(i)RF · ω
(i)
t +

( N∑
i=1

ω̃
(i)
t Ri

)
· K(0)

FF · ez. (2.24)

For a symmetric configuration such that (
∑N

i=1 ω̃
(i)
t Ri) · ez = 0, only the first term of Mprop

contributes to the motion of the cell. If we further assume that the reference flagellar orientation

is normal to the sphere surface, i.e. e(i)
z (t = 0) = n(i), we readily obtain M̃

(i)
elast = 0 and Mprop = 0.

Therefore, we have stationary solutions satisfying U = Ω = ω̃
(i)
n = 0 for the symmetric-filament

configurations.
From the axisymmetric propulsion of the flagellar filaments and using (2.17)–(2.18), we may

obtain the general form of the tensors

K(0)
C =

⎛
⎜⎝kC 0 0

0 kC 0
0 0 KC

⎞
⎟⎠ , K(0)

TF =

⎛
⎜⎝ kD kT 0

−kT kD 0
0 0 KT

⎞
⎟⎠ , K(0)

FF =

⎛
⎜⎝kF 0 0

0 kF 0
0 0 KF

⎞
⎟⎠ , (2.25)

where the constants, kC, KC, kT, kF, are all negative due to the negative definiteness of the Stokes
resistance tensors and KT and KF are taken to be negative so that a positive value of ω̃t generates
flagellar force towards the cell body (as is the case for the majority of flagellated bacteria).
From the definitions of K(0)

C and K(0)
FF , these matrices are symmetric, thus the expressions in (2.25)

follow. The expression for K(0)
TF reflects the skew-symmetric property of Ãi, and thus the diagonal

component, kD, is typically very small for swimming bacteria. The diagonal component of the
matrix can be either positive or negative depending on the chirality of flagellar filaments. Using
the appendix in [30], kD can be estimated for a helical flagellum as kD ∼ CNbLε with b is the
diameter of the helix and ε = 2πb/λ, where λ is the pitch of the helix. The ratio of diagonal to
off-diagonal component is thus given by kD/kT ∼ ε(b/L) ∼ 10−2, always a small number for a
bacterium such as E. coli [30]. Note that kD is identically zero for rod-like flagella.

We now proceed with the linear stability problem neglecting chirality effects (i.e. setting kD =
0) and will then incorporate chirality back in §5.

(c) Linear stability
In this section, we assume the in-plane flagellar configuration is that of a regular polygon, and
then formulate the linear stability problem around the equilibrium. The example case of N = 6
is schematically shown in figure 2a with notation. As shown above, with a symmetric flagellar
configuration we obtain stationary solutions for the motion of a bacterium with N(≥2) identical
axisymmetric flagella. We assume that the angular rotations of each flagellum, ω

(i)
t , are identical

and that each flagellar filament is connected perpendicularly to the cell body surface and located
in one plane that we define as x–y plane (figure 2a). When the flagellar configuration forms an
N-sided regular polygon, the bacterial motion is found to be stationary.

We now consider the linear stability around this equilibrium, where the orientation of ith
flagellum is given by rotation of angle Θi from the +x-axis in the x–y plane where Θi = 2π (i − 1)/N
(figure 2b). The disturbance from the equilibrium is denoted by two angles for each flagellum. We
introduce the in-plane and out-of-plane angular displacements for the ith flagellum as θi and φi,
as shown in figure 2a,b. In the linear stability regime, both angles are assumed to be sufficiently
small, i.e. |θi|, |φi| 	 1. We write the flagellar bending rotation as ω̃

(i)
n = (dθi/dt) e(i)

x + (dφi/dt) e(i)
y ,
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Figure 2. (a) Schematic of a model bacterium with N identical flagella symmetrically attached in the x–y plane. (b) Angles
specifying the orientation of a flagellum. The equilibrium orientation of ith flagellum is given by the rotation of angleΘi from
the+x-axis. Small deformations from the equilibrium are measured by the two angles, θi and φi , which correspond to the
in-plane and out-of-plane angles, respectively.

assume a constant flagellar rotation around the axisymmetric axis, ω̃
(i)
t = ω0, and also assume that

the torque spring constants are identical for all flagella, i.e. κ (i) = κ .
We then proceed to obtain the expressions for the cell dynamics around the equilibrium

configuration. The rotation matrix, Ri is obtained by combining the two rotations

Ri = R(φi; ey) · R(Θi + θi; ex) ·

⎛
⎜⎝0 0 1

0 −1 0
1 0 0

⎞
⎟⎠




⎛
⎜⎝0 sin Θi cos Θi

0 − cos Θi sin Θi
1 0 0

⎞
⎟⎠+ θi

⎛
⎜⎝0 cos Θi − sin Θi

0 sin Θi cos Θi
0 0 0

⎞
⎟⎠+ φi

⎛
⎜⎝− cos Θi 0 0

− sin Θi 0 0
0 0 1

⎞
⎟⎠ , (2.26)

where R(φi; ey) denotes the rotation matrix with angle φi around the orientation ey. Using the
expressions (2.25), we directly obtain the effective force

Fprop =
( N∑

i=1

ω0Ri

)
· K(0)

TF · ez = ω0KT

(
−

N∑
i=1

θi sin Θiex +
N∑

i=1

θi cos Θiey +
N∑

i=1

φiez

)
, (2.27)

and similarly the effective torque

Mprop = ω0KT

( N∑
i=1

φi sin Θiex −
N∑

i=1

φi cos Θiey +
N∑

i=1

θiez

)

+ ω0KF

(
−

N∑
i=1

θi sin Θiex +
N∑

i=1

θi cos Θiey +
N∑

i=1

φiez

)
. (2.28)

We then proceed to compute the force and torque generated by the in-plane flagellar
bending, ω̃

(i)
n = (dθi/dt)ex. The force generated by each flagellar filament is Ri · K(0)

TF · ω̃
(i)
n 


kT(dθi/dt)(− sin Θiex + cos Θiey). Similarly, the torque generated can also be computed, using the

decomposition K(i)
RF · Ri · ω̃

(i)
n = (A′Ti · Ri · K(0)

TF + Ri · K(0)
FF) · ω̃

(i)
n = (kT + kF)(dθi/dt)ez.

The force generated by the out-of-plane flagellar bending, ω̃
(i)
n = (dφi/dt)ey, is also

computed as Ri · K(0)
TF · (dφi/dt)ey = kT(dφi/dt)Ri · ex 
 kT(dφi/dt)ez. Similarly, we obtain the torque

generated by the bending, (dφi/dt)ey, as K(i)
RF · Ri · (dφi/dt)ey = (dφi/dt)(A′Ti · Ri · K(0)

TF + Ri · K(0)
FF) · ey =

(dφi/dt)(kTA′Ti · Ri · ex + kFRi · ey) = (dφi/dt)(kT + kF)(sin Θiex − cos Θiey).
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A lengthy but straightforward calculation then leads to the matrix expression for the motion
around the equilibrium, captured by a 2N + 6-dimensional linear problem

AΦ = b, (2.29)

where Φ = (Ux, Uy, Uz, Ωx, Ωy, Ωz, θ̇1, . . . , θ̇N , φ̇1, . . . , φ̇N)T and

b = (−FT
prop, −MT

prop, κθ1, . . . , κθN , κφ1, . . . , κφN)T. (2.30)

The detailed derivations leading to the expressions for the square matrix A can be found in
appendix A and the results are

A=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

CD1 0 0 0 0 0 CT
TF1 0

0 CD2 0 0 0 0 CT
TF2 0

0 0 CD3 0 0 0 0 CT
TF3

0 0 0 CR1 0 0 0 CT
RF1

0 0 0 0 CR2 0 0 CT
RF2

0 0 0 0 0 CR3 CT
RF3 0

CTF1 CTF2 0 0 0 CRF3 kF1N 0N

0 0 CTF3 CRF1 CRF2 0 0N kF1N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2.31)

where the constants in the matrix are

CD1 = CD +
N∑

i=1

(
KC cos2 Θi + kC sin2 Θi

)
, (2.32)

CD2 = CD +
N∑

i=1

(
KC sin2 Θi + kC cos2 Θi

)
, (2.33)

CD3 = CD + NkC, (2.34)

CR1 = CR +
N∑

i=1

(
(kC + 2kT + kF) sin2 Θi + KF cos2 Θi

)
, (2.35)

CR2 = CR +
N∑

i=1

(
(kC + 2kT + kF) cos2 Θi + KF sin2 Θi

)
(2.36)

and CR3 = CR + N(kC + 2kT + kF), (2.37)

and the N-dimensional vectors are given by

CTF1 = −kT(sin Θ1, . . . , − sin ΘN)T, CRF1 = (kT + kF)(sin Θ1, . . . , sin ΘN)T, (2.38)

CTF2 = kT(cos Θ1, . . . , cos ΘN)T, CRF2 = −(kT + kF)(cos Θ1, . . . , cos ΘN)T (2.39)

and CTF3 = (kT, . . . , kT)T, CRF3 = (kT + kF, . . . , kT + kF)T, (2.40)

and we used 1N and 0N to denote the identity and zero matrices of order N. In the following
sections, we will consider the stability of this linear system.

3. Instability of bacteria with N = 2 flagella
We start with analysing the N = 2 case. Substituting N = 2 in the expressions (2.29)–(2.31), we
obtain a 10-dimensional linear system (figure 3). With the geometric symmetry of the system,
we readily find that the x-component of the effective force and torque vanish and thus Ux =
Ωx = 0 follow. The system is then reduced to an eight-dimensional linear system. Introducing
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Figure 3. Schematic pictures of the two modes of flagellar configuration for the N = 2 case. (a) Translation mode when
the two flagella are in a mirror-symmetric configuration. (b) Rotation mode when the two flagella are in a point-symmetric
configuration.

the variables θ+ = θ1 + θ2, θ− = θ1 − θ2, φ+ = φ1 + φ2 and φ− = φ1 − φ2, we can rewrite the linear
system (2.29) into four blocks of 2×2 matrices as(

C′
D kT

2kT kF

)(
Uy

θ̇−

)
=
(

−ω0KTθ−
κθ−

)
, (3.1)

(
C′

D kT

2kT kF

)(
Uz

φ̇+

)
=
(

−ω0KTφ+
κφ+

)
, (3.2)

(
C′

R −(kT + kF)
−2(kT + kF) kF

)(
Ωy

φ̇−

)
=
(

ω0KTφ− − ω0KFθ−
κφ−

)
(3.3)

and

(
C′

R kT + kF

2(kT + kF) kF

)(
Ωz

θ̇+

)
=
(

−ω0KTθ+ − ω0KFφ+
κθ+

)
, (3.4)

where we have defined C′
D = CD + 2kC and C′

R = CR + 2kC + 4kT + 2kF and where the dot symbol
indicates the time derivative of the angle variable.

Solving each two-dimensional problem yields ordinary differential equations with respect to
the four angle variables as

d
dt

⎛
⎜⎜⎜⎝

θ+
φ+
φ−
θ−

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎝

AR ART 0 0
0 AT 0 0
0 0 AR −ART

0 0 0 AT

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

θ+
φ+
φ−
θ−

⎞
⎟⎟⎟⎠ , (3.5)

where the expressions for AT, AR, ART are given by

AT = �−1
D (2ω0|KTkT| − κ|C′

D|), (3.6)

AR = �−1
R (2ω0|KT(kT + kF) − κ|C′

R|) (3.7)

and ART = �−1
R (2ω0|KF(kT + kF)|, (3.8)

and where the two determinants, �D = C′
DkF − 2k2

F and �R = C′
RkF − 2(kT + kF)2, are positive as

a result of the negative-definiteness of the Stokes resistance matrices.
We first consider the simple case with KF = 0 where the flagellar filaments produce propulsion

but no torque. This assumption follows for a rod-like active filament as in [26]. Under this
assumption, the matrix (3.5) is diagonal, since ART = 0 and with eigenvalues AT and AR. The
angles θ− and φ+ correspond to the translation modes in the y- and z-directions, respectively
(figure 3a). The critical flagellar angular velocity, ω0T, above which the translation mode becomes
unstable is given by

ω0T = |CD + 2kC|
2|KTkT| κ , (3.9)

which is positive. When ω0 > 0, the flagellar filaments exert propulsive forces pushing on the cell
body, whereas they pull on the organism when ω0 < 0. We therefore obtain that the translation
instability only occurs for flagellar filaments in the pushing mode and with sufficiently large
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propulsive magnitude (or, for a fixed propulsion, with a sufficiently flexible hook). This can
be compared to the arguments put forward in [26], where the force by a rod-like flagellum
corresponds to the product ω0KT. Note that here the translation can occur towards an arbitrary
direction in the y–z-plane.

The eigenvectors corresponding to the eigenvalue AR are linear combinations of the angles θ+
and φ− and characterize a rotation mode around z- and y-axes, respectively (figure 3b). Although
the rotation mode has not been examined in [26] (that study assumed mirror-image symmetry
in their theoretical description), the rotation instability can occur above a second critical flagellar
angular velocity, ω0R, given by

ω0R = |CR + 2kC + 4kT + 2kF|
2|KT(kT + kF)| κ . (3.10)

Note that this critical value is positive and therefore the rotation instability also occurs only for
flagellar filaments in the pushing mode.

In the case where KF �= 0, each flagellar filament generates both torque and force. Again, we
obtain the same eigenvalues of the matrix, AR, AT, as in the problem of the flagella without
torque generation. Moreover, the eigenvectors associated with the eigenvalue AR are the same
as above (pure rotation move). As a difference, however, the eigenvectors for the eigenvalue AT

are combinations of the four angles and the induced motion is found to be a translation in y–z-
plane combined with a rotation around the translation direction. This unstable mode corresponds
to the case of bacterial flagellar bundling via the elastohydrodynamic instability as observed
experimentally and reproduced using numerical simulations in [26].

(a) Most unstable mode
When the angular velocity of each flagellar filament is positive, the two modes can become
unstable. However, only the most unstable mode from the linear stability theory is likely to be
observed in practice and we now consider which one of the two modes becomes unstable first.

Let us denote the length of the identical flagella by L. Using dimensional analysis allows to
obtain order-of-magnitude estimates for the dependence with L of the constants from the flagellar
shape, namely kC = O(L), kT = O(L2) and kF = O(L3). Noting that CD = −6π and CR = −8π , we
can then estimate the size of the ratio r between the two critical angular velocities, r ≡ ω0T/ω0R,
as r ∼ CD/CR = 3/4 when L 	 1 and r = O(L−1) when L � 1. In both limits, we see that the critical
value for the translation instability is smaller, and thus it is the one which would be observed.

For further discussions in the intermediate region of L, we consider rod-like flagellar filaments
of radius d and length L. We introduce a positive constant c such that Cn = −4πμc is the
normal drag coefficient, c is given by c = (log(2L/d) + 0.5)−1 [28]. Within resistive force theory,
the coefficients are given by kC = CnL, kT = (Cn/2)L2 and kF = (Cn/3)L3 and we can compute
numerically the ratio r for different flagellar parameters, c and L, or d and L, with results plotted
in figure 4.

In figure 4a, iso-values of the frequency ratio r is first shown for different values c and L and we
find that in the intermediate region L ∼ 1 the rotation mode can be more unstable, although the
translational mode is always more unstable above a critical value of c ≈ 0.4. The same plot is then
shown with the flagellar radius d in the horizontal axis of figure 4b, indicating that the rotation
instability would occur first in a robust range of flagellar radius if L ∼ 1.

Typical sizes of the cell body and the flagellar filaments of E. coli are ≈1 µm and ≈10 µm
[28], leading to a large non-dimensional flagellar length, L ≈ 10, and thus the translation mode is
predicted to be the experimentally observable one. Similarly, the typical size of the dimensionless
flagellar radius and the RFT coefficient prefactor are given by d ≈ 0.02 and c ≈ 0.13, respectively,
and a cell equipped with short flagellar filaments could therefore, in theory, undergo the rotational
instability without net locomotion.

We next consider a helical flagellum whose shape is characterized by the helix angle Ψ between
the local flagellar tangent vector, t(i) and the axis of the helix, e(i)

z . The tangent vector can be
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Figure 4. Ratio between the two values of angular velocities for the translation and rotation modes, r = ω0T/ω0R, as a
function of flagellar parameters. (a) Iso-values of r as a function of the RFT coefficient prefactor c and the flagellar length L.
(b) Iso-values of r as a function of flagellar radius d and the flagellar length L. (Online version in colour.)

expressed by t(i) = cos Ψ e(i)
z + sin Ψ (− sin βe(i)

x + cos βe(i)
y ) with the angle β in the range β ∈ [0, 2π ).

For the flagellar filament moved along the e(i)
x -axis with velocity u, direct computations from (2.1)

gives the local drag force

dF · e(i)
x = Cn

[
1 − (1 − γ ) sin2 Ψ sin2 β

]
u, (3.11)

where γ = Ct/Cn is the ratio of the tangential and normal coefficients from resistive force theory.
If the time scale of flagellar rotation is sufficiently faster than that of bending, we can approximate
the local force by its time-averaged value, which is obtained averaging over the angle parameter
β. We thus obtain dF · e(i)

x = C′
nu, with the effective normal drag coefficient C′

n = −4πμc′ as

C′
n =

[
1 − 1

2 (1 − γ ) sin2 Ψ
]

Cn, (3.12)

enabling us to follow the same arguments for the rod-like flagella by simply replacing Cn by C′
n,

or c by c′. Typical values of γ and Ψ for E. coli are γ ≈ 0.7 [31] and Ψ ≈ 30◦ [23], resulting in
the effective drag coefficient, and thus the effective value of c, to be similar to the case of a rod
(c′ ≈ 0.13). As before, the translation mode is therefore more unstable for a bacterium with typical
experimental sizes, though there is a region where the rotation mode can be more unstable when
L ∼ 1. Note however that this assumes that the helical structure of the filament is neglected, a
modelling assumption which is corrected in §5.

4. Instability of bacteria with N ≥ 3 flagella
We now proceed to study the linear stability problem in the general case of N flagellar filaments.
When N ≥ 3, the drag coefficients (2.32)–(2.37) can be simplified to

CD1 = CD2 = CD +
(

N
2

)
(KC + kC) , CD3 = CD + NkC, (4.1)

and

CR1 = CR2 = CR +
(

N
2

)
(kC + 2kT + kF + KF) , CR3 = CR + N(kC + 2kT + kF), (4.2)

where we have used the equalities

N∑
i=1

cos2
(

2π (i − 1)
N

)
=

N∑
i=1

sin2
(

2π (i − 1)
N

)
= N

2
, (4.3)
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which are satisfied when N ≥ 3. We first address the N = 3 and N = 4 cases to allow for intuition
on the mathematical structure of the solution, before proceeding to the general N case.

(a) Cell with N = 3 flagella
When N = 3, the number of the angular variables is 6, which is equal to the number of degrees of
freedom for the rigid motion of the whole cell. As in the previous section, we partially diagonalize
the matrix (2.31) by introducing the angle variables, θ̃1 = θ2 − θ3, θ̃2 = 2θ1 − θ2 − θ3 and θ̃3 = θ1 +
θ2 + θ3 for the in-plane angles and φ̃1 = φ2 − φ3, φ̃2 = 2φ1 − φ2 − φ3 and φ̃3 = φ1 + φ2 + φ3 for the
out-of-plane angles.

We then obtain a linear system decomposed into 6 two-by-two block matrices in which one
degree of freedom for rigid motion is paired with an angle variable. For the translation and
rotation in x-direction, the matrices are given by⎛

⎝ CD1 −
√

3
2

kT

−√
3kT kF

⎞
⎠(Ux

˙̃
θ1

)
=
⎛
⎝

√
3

2
ω0KT θ̃1

κθ̃1

⎞
⎠ (4.4)

and ⎛
⎝ CR1 −

√
3

2
(kT + kF)

−√
3(kT + kF) kF

⎞
⎠(Ωx

˙̃
φ1

)
=
⎛
⎝

√
3

2
ω0(KFθ̃1 − KTφ̃1)

κφ̃1

⎞
⎠ , (4.5)

from which we obtain the ordinary differential equations for the linear stability in the form

d
dt

(
θ̃1
φ̃1

)
=
(

AT 0
ATR3 AR3

)(
θ̃1
φ̃1

)
, (4.6)

where AT = �−1
T ((3/2)|KTkT|ω0 − |CD1|κ), AR3 = �−1

R3 ((3/2)|KT(kT + kF)|ω0 − |CR1|κ) and ATR3 =
(3/2)�−1

R3 |KF(kT + kF)|ω0, with the determinants �T = CD1kF − (3/2)k2
T and �R3 = CR1kF −

(3/2)(kT + kF)2. From (4.6), we can read off directly the eigenvalues for the linear stability with the
rigid motion in x-direction as AT and AR3. The eigenvectors are pure rotation around the x-axis
(AR3 eigenvalue) and translation along the x-axis accompanied by rotation around the x-axis (AT).

In a similar manner, we can derive the eigenvalues for linear stability associated with the rigid
motion in the y-direction. Noting that CD1 = CD2 and CR1 = CR2, we obtain an equation similar
to (4.6)

d
dt

(
θ̃2
φ̃2

)
=
(

AT 0
ATR3 AR3

)(
θ̃2
φ̃2

)
, (4.7)

which yields the same eigenvalues AT and AR3 as in the linear stability in x-direction.
For the translation and rotation in the z-direction, the matrices are now given by(

CD3 −kT

−kT kF

)(
Uz
˙̃
φ3

)
=
(

−ω0KTφ̃3
κφ̃3

)
(4.8)

and (
CR3 kT + kF

3(kT + kF) kF

)(
Ωz
˙̃
θ3

)
=
(

−ω0(KFφ̃3 − KT θ̃3)
κθ̃3

)
, (4.9)

yielding the equation for the linear stability,

d
dt

(
φ̃3
θ̃3

)
=
(

AT3 0
−ART3 AR

)(
φ̃3
θ̃3

)
, (4.10)

where AT3 = �−1
T3 (3|KTkT|ω0 − |CD3|κ), AR3 = �−1

R (3|KT(kT + kF)|ω0 − |CR1|κ) and ATR3 =
3�−1

R |KF(kT + kF)|ω0, with the determinants �T3 = CD3kF − 3k2
T and �R = CR3kF − 3(kT + kF)2.

The system in (4.10) provides the eigenvalues of the linear stability associated with the rigid
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motion in z-direction as AR and AT3, with corresponding eigenvectors of pure rotation around
the z-axis and combined translation and rotation along the z-axis, respectively.

In summary, we obtain six eigenvalues, AT, AT, AT3, AR, AR3, AR3, each of which is
accompanied by a rigid-motion mode for the whole cell.

(b) Cell with N = 4 flagella
In the case of a cell equipped with N = 4 flagella, the number of angle variables exceeds the
numbers of degrees of freedom for a rigid-body motion of the cell body. We again introduce
new angle variables to decompose the square matrix of order 2N + 6 into smaller size systems as
θ̃1 = θ2 − θ4, θ̃2 = θ1 − θ3, θ̃3 = θ1 + θ2 + θ3 and θ̃4 = θ1 − θ2 + θ3 − θ4, with similar combinations
for the out-of-plane angle variables. From these changes of variables, we obtain the six matrices
associated with the rigid motion and the angle variables, θ̃i and φ̃i for i = 1, 2, 3. In turn, we obtain
the same form of the linear ordinary differential equations for the linear stability as of (4.6), (4.7)
and (4.10), for the x-, y- and z-directions, respectively. However, the values of the matrix entries are
now given by AT = �−1

T (2|KTkT|ω0 − |CD1|κ), AR3 = �−1
R3 (2|KT(kT + kF)|ω0 − |CR1|κ) and ATR3 =

(2�−1
R3 |KF(kT + kF)|ω0, with the determinants �T = CD1kF − 2k2

T and �R3 = CR1kF − 2(kT + kF)2 for
the instabilities in x- and y-directions and AT3 = �−1

T3 (4|KTkT|ω0 − |CD3|κ), AR3 = �−1
R (4|KT(kT +

kF)|ω0 − |CR1|κ) and ATR3 = 4�−1
R |KF(kT + kF)|ω0, with the determinants �T3 = CD3kF − 4k2

T and
�R = CR3kF − 4(kT + kF)2 for the instability in the z-direction.

The remaining two angular degrees of freedom are diagonalized as(
kF 0
0 kF

)( ˙̃
θ4
˙̃
φ4

)
=
(

κθ̃4
κφ̃4

)
, (4.11)

which leads to two negative eigenvalues for the linear stability, κ/kF < 0. This, in turn, indicates
that the instability can occur only if accompanied by the rigid-body motion of the cell. Here we
note that the angle variables, θ̃4 and φ̃4, do not generate any forces and torque. Inspecting the
definition of θ̃4, we see that the force from the angles θ1 − θ2 is cancelled by that generated by
θ3 − θ4 and the torque from the part θ1 + θ3 cancels that from θ2 + θ4.

(c) General N case
The two simple examples above enable us to now characterize the instabilities in the general N
case. Specifically, we expect that the instabilities are associated with the rigid-body translation
and rotation of the cell body even when N ≥ 5. We introduce the new angle variables as found in
the expressions of Fprop (2.27) and Mprop (2.28)

θ̃1 =
N∑

i=1

θi sin Θi, θ̃2 =
N∑

i=1

θi cos Θi, θ̃3 =
N∑

i=1

θi (4.12)

and

φ̃1 =
N∑

i=1

φi sin Θi, φ̃2 =
N∑

i=1

φi cos Θi, φ̃3 =
N∑

i=1

φi. (4.13)

We first consider the mode associated with the translation and rotation along the x-axis. The
resulting 2 × 2 matrices are ⎛

⎝ CD1 −kT

−N
2

kT kF

⎞
⎠
(

Ux
˙̃
θ1

)
=
(

ω0KT θ̃1
κθ̃1

)
(4.14)

and ⎛
⎝ CR1 (kT + kF)

N
2

(kT + kF) kF

⎞
⎠
(

Ωx
˙̃
φ1

)
=
(

ω0(KFθ̃1 − KTφ̃1)
κφ̃1

)
, (4.15)



16

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A475:20180690

...........................................................

from which we obtain two eigenvalues

AT = �−1
T

(
N
2

|KTkT|ω0 − |CD1|κ
)

(4.16)

and

AR3 = �−1
R3

(
N
2

|KT(kT + kF)|ω0 − |CR1|κ
)

, (4.17)

where we have introduced the determinants �T = CD1kF − (N/2)k2
T and �R3 = CR1kF − (N/2)

(kT + kF)2 which are positive due to the negative-definiteness of the resistance matrices.
Expressions (4.16) and (4.17) are similar to the results obtained for N = 3 and N = 4, respectively.

As expected by symmetry, the modes associated with the translation and rotation along y are
similar and the eigenvalues are the same as in the x-direction, i.e. AT and AR3.

We then proceed to investigating the modes along the z-axis and obtain the 2 × 2 matrices(
CD3 −kT

−NkT kF

)(
Uz
˙̃
φ3

)
=
(

ω0KTφ̃3
κφ̃3

)
(4.18)

and (
CR3 (kT + kF)

N(kT + kF) kF

)(
Ωz
˙̃
θ3

)
=
(

ω0(KFφ̃3 − KT θ̃3)
κθ̃3

)
. (4.19)

This system has eigenvalues

AT3 = �−1
T3 (N|KTkT|ω0 − |CD3|κ) (4.20)

and

AR = �−1
R (N|KT(kT + kF)|ω0 − |CR3|κ), (4.21)

with determinants �T = CD1kF − Nk2
T and �R3 = CR1kF − N(kT + kF)2 The eigenvalues, (4.20) and

(4.21), again reproduce the results of N = 3 and N = 4.
The eigenvectors obtained so far are associated with three pure rotational modes and three

combined translation/rotation modes along the same axis. The remaining degrees of freedom
associated with the other 2N − 6 angular variables do not affect the stability of the cell, which can
be summarized to the following statement.

Theorem 4.1. The linear system (2.12) includes the six modes associated with a rigid-body motion, with
eigenvalues AT, AT, AT3, AR, AR3, AR3. The remaining 2N − 6 degrees of freedom all generate identical
negative eigenvalues, κ/kF < 0.

In order to complete the proof of the above statement, we need to rearrange the angle
variables so as to diagonalize the remaining 2N − 6 degrees of freedom. We first prepare linearly
independent N in-plane angle variables, θ̃i, for i = 1, . . . , N, in which the angle variables θ̃1, θ̃2, θ̃3
defined in (4.12) are included. When N ≥ 4, the diagonalization can then be achieved if we pick
the remaining angle variables so that they do not generate any effective force and torque. This
is possible for an arbitrary θ̃i for i ≥ 4, since we can add θ̃1, θ̃2, θ̃3 without disobeying the linear
independence property for the set of angle variables. This argument can also be applied to the
out-of-plane variables and the remaining 2N − 6 eigenvalues are found to be all identical and
negative, κ/kF < 0.

(d) Most unstable mode
We obtain 2N eigenvalues for the linear system, six of which can be positive. In this section, we
examine the nature of the most unstable mode, which is the one expected to be relevant in an
experiment. From equations (4.16), (4.17), (4.20) and (4.21), we obtain critical angular velocities,
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above which the system becomes linearly unstable, as

ω0T = 2|CD1|
N|KTkT|κ , ω0T3 = |CD3|

N|KTkT|κ (4.22)

and

ω0R = |CR3|
N|KT(kT + kF)|κ , ω0R3 = 2|CR1|

N|KT(kT + kF)|κ . (4.23)

These values are all positive, indicating that the system is stable in the case where the flagellar
filaments pull on the cell body and that the instability can occur only when flagella push. From
equations (4.1) and (4.2), we readily obtain the comparison between the critical values for the
in-plane and out-of-plane instabilities as

ω0T3 < ω0T and ω0R < ω0R3, (4.24)

respectively, which indicate that the most unstable mode is either the translation towards the
z-axis (with combined rotation around the same direction) or pure rotation around the z-axis.

Notably, the expressions of the critical values include those of the N = 2 case, (3.9) and (3.10).
However, due to the symmetry of the system, the eigenvalues are degenerated and the relation
(4.24) becomes equalities, ω0T3 = ω0T and ω0R = ω0R3. Nonetheless, the expressions of ω0T3 and
ω0R in (4.22) and (4.23) can be obtained when we substitute the constants kC �→ (N/2)kC, kT �→
(N/2)kT and kF �→ (N/2)kF in (3.9) and (3.10). Thus, the rod-like flagellar model examined for N = 2
can also be applied in the general N case, and replacing c �→ (N/2)c we obtain the same plots for
the ratio of the two critical values, r, as in figure 4a. This indicates that the increase in the value
of N can remove the possibility of r > 1, and therefore the translation instability would always be
the most unstable mode for pushing flagella.

We note that simulation results with N = 4, which corresponds to a typical number of flagella
for E. coli [8], showed translation in one direction along with rotation around the same axis [26], a
result consistent with our stability analysis. We also note that the critical values (4.22) and (4.23)
do not depend on the value of the torque generated by the flagellar rotation, KF, but they only
depend on the force generated by each rotating flagellum. By contrast, the value of KF appears in
the eigenvector of the translation mode and cells with large KF undergo rapid rotation.

5. Small chirality effects
The analysis in the previous sections neglected the diagonal components of the matrix K(0)

TF. In this
section, we reincorporate the diagonal terms kD and solve the resulting linear stability problem.
Since the diagonal components are small compared to the off-diagonal terms, we may treat the
full problem as a perturbation from the results obtained in the previous sections.

As in the previous sections, the linear stability problem is written AΦ = b where
straightforward calculations now lead the matrix (see also appendix A)

A=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

CD1 0 0 CC1 0 0 CT
TF1 DT

TF1

0 CD2 0 0 CC2 0 CT
TF2 DT

TF2

0 0 CD3 0 0 CC3 DT
TF3 CT

TF3

CC1 0 0 CR1 0 0 DT
TR1 CT

TR1

0 CC2 0 0 CR2 0 DT
TR2 CT

TR2

0 0 CC3 0 0 CR3 CT
TR3 DT

TR3

CTF1 CTF2 DTF3 DTR1 DTR2 CTR3 kF1N 0N

DTF1 DTF2 CTF3 CTR1 CTR2 DTR3 0N kF1N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5.1)
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with new components arising from the chirality given by

CC1 =
N∑

i=1

(
KT cos2 Θi + kD sin2 Θi

)
, (5.2)

CC2 =
N∑

i=1

(
KT sin2 Θi + kD cos2 Θi

)
(5.3)

and CC3 = NkD, (5.4)

and new N-dimensional vectors

DTF1 = DRF1 = (kD sin Θ1, . . . , kD sin ΘN)T, (5.5)

DTF2 = DRF2 = (−kD cos Θ1, . . . , −kD cos ΘN)T (5.6)

and DTF3 = −DRF3 = (kD, . . . , kD)T. (5.7)

With the use of the new angle variables (4.12) and (4.13), we may again reduce the linear
problem into 4 × 4 blocks associated with the jth (j = 1, 2, 3) component of the force and torque,
while the remaining degrees of freedom yield only negative eigenvalues for the stability problem.
The explicit form along the x-direction can be computed as

⎛
⎜⎜⎜⎝

CD1 CC1 CTF1 DTF1
CC1 CR1 DTR1 CTR1
CTF1 DTR1 kF 0
DTF1 CTR1 0 kF

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

U1
Ω1
˙̃
θ1
˙̃
φ1

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎝

ω0KT θ̃1
ω0(KFθ̃1 − KTφ̃1)

κθ̃1
κφ̃1

⎞
⎟⎟⎟⎠ . (5.8)

Inverting the matrix on the left-hand side in the previous equation leads to the following linear
ordinary differential equations

d
dt

(
θ̃1
φ̃1

)
=
(

ÃT ÃR3T

ÃTR3 ÃR3

)(
θ̃1
φ̃1

)
, (5.9)

for which we can characterize the linear stability as in the previous sections. Using the small
parameter δ to measure the relative magnitude of the chirality effects in the resistance matrix,
δ ∼ kD/kF ∼ 10−2 for the typical parameters of E. coli bacteria, we may expand the matrix in
equation (5.9) at first order in δ as ÃT = AT + δA′

T, ÃR3T = δA′
R3T, ÃTR3 = ATR3 + δA′

TR3, ÃR3 =
AR3 + δA′

R3. This results in similar eigenvalues and eigenvectors for the system with changes of
magnitude of order δ. However, as a result of the coupling term ÃR3T, the pure rotation modes no
longer exist and all eigenmodes are now associated with translation in x-direction (note that since
the changes due to chirality are small, former rotation modes are still dominated by rotation and
generate small net locomotion).

The analysis along the y- and z-directions are similar and we obtain perturbed eigenvectors
and eigenvectors from those obtained in the previous sections. Except for the six angle variables,
all other modes continue to have stable eigenvalues κ/kF(<0) as shown in the previous section,
which can be summarized into the following statement.

Theorem 5.1. The linear stability problem characterized by matrix (5.1) includes six modes associated
with rigid-body motion, and the remaining 2N − 6 degrees of freedom all generate identical negative
eigenvalues, κ/kF < 0.

The elastohydrodynamic instability can occur if the flagellar filaments push the cell body,
accompanied by the rigid motion of the whole cell, with critical angular velocities perturbed
from those obtained in the previous section, ω0T, ω0T3, ω0R, ω0R3, since δ is small. All unstable
modes now lead to translation in one direction accompanied by rotation along the same direction.
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However, there are two types of modes for each direction, translation-dominated and rotation-
dominated modes, the latter of which becomes pure-rotation modes when chirality effects are
neglected.

6. Discussion
In this paper, we investigated theoretically the elastohydrodynamic stability problem of a model
bacterium with multiple flagellar filaments rotated with prescribed frequencies. We assumed that
the cell was equipped with N identical flagella connected to a spherical body by a flexible elastic
torque spring and that the flagella are initially arranged in a plane with equal angle intervals as
to form a regular N-polygon. We first formulated the equations of motions of this system and
showed that this configuration provides an equilibrium state where the cell body does not move.

We then proceeded to consider the linear stability problem in the case of negligible chirality
in the flagellar filaments (active rods). When N = 2, two modes are obtained (translation and
rotation) which can be unstable when the flagella push on the cell body provided the magnitude
of this pushing force exceeds a critical value (or, for a fixed propulsion magnitude, provided the
hook is sufficiently flexible). The translation mode is the more unstable for the typical parameters
of real bacteria and corresponds to the translation in one direction with rotating around the same
axis. However, when the flagellar lengths are of the same order as the cell radius, L ∼ R, the most
unstable mode could be switched to the second mode where the cells rotate in place in the plane
of the initial flagellar configuration with no associated translation.

We then extended our results to the general case of N flagellar filaments, and we found
that there are always only six modes which can be unstable, all of which are associated with
rigid-body motion of the cell. The most unstable mode induces translation towards the direction
perpendicular to the plane in which the N flagella are initially arranged and is accompanied by
rotation around the same axis. This analytical result is in agreement with numerical simulation
with N = 4 helical flagella [26].

We finally reincorporated the chirality of the flagellar filaments which had been neglected in
the previous sections. Chirality leads to small perturbations of the eigenvalues and eigenvectors
for the linear stability, and there are still only six possible unstable modes for cells with pusher
flagella associated with rigid motion of the whole cell. The rotation modes are now accompanied
by a small translation of the cell due to chirality-induced coupling.

The theoretical results in this paper and the presence of rotation-dominated modes imply
that multi-flagellated peritrichous bacteria with shorter flagella could fail to swim efficiently.
By contrast, for cells with typical flagellar length L ∼ 10, flagella produce a sufficient amount of
propulsive thrust to lead to an instability to translation. A similar analysis could also be applied to
synthetic particles propelled by bacterial flagella [32,33] and to the dynamics of an ovum pushed
by multiple spermatozoa [29]. Note that the linear stability analysis performed in this paper
can obviously not fully predict the nonlinear dynamics after the initial stages of the instability.
Furthermore, as shown in appendix B, if one considers instead the case of flagella rotated by a
constant torque applied in the direction normal to the cell surface, all the possible unstable modes
are accompanied by cell translation and pure-rotation modes disappear. This is in contrast to
the case where the constant torque is applied along the long axis of the flagellar filament, for
which the stability analysis coincides with the fixed-rotation case (see appendix B). These results
emphasize the complexity of the multi-flagellated swimming dynamics.

Using typical parameter values for E. coli (R = 1 µm, L = 10 µm, N = 4) and the value of the
viscosity for water (μ = 10−3 Pa s), we can estimate the critical flagellar rotation rate provided by
our theory. The strength of the torque spring for an E. coli hook has been estimated to be in the
range κ ≈ 2.9–8.7 × 10−21 Nm using measured values for the hook bending stiffness and length
[21,26], and we use the value κ = 5 × 10−21 Nm for the following discussions. From the flagellar
propulsion force used by Riley et al. [26], we have KT ≈ 7.0 × 10−16 N s. The drag coefficients are
estimated as in §3a with c′ ≈ 0.13 and can be used to obtain an estimation of the critical rotation
frequencies for a E. coli cell with N = 4 flagellar filaments. The critical values for the translation
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modes are predicted to be ν0T ≈ 0.36 Hz and ν0T3 ≈ 0.29 Hz, which are small compared with those
for the pure rotation mode, ν0R ≈ 1.33 Hz and ν0R3 ≈ 1.34 Hz. Since the flagellar filaments of real
cells rotate much faster (ν ≈ 100 Hz), the elastohydroynamic instability obtained in this paper is
likely to be relevant to the locomotion of bacteria.

The model in our paper could be readily extended to the case of a spheroidal cell body if the
case where the flagella are all initially arranged in the equatorial plane of the spheroid, and one
would simply need to change the values of the drag coefficient CD. When the cell body takes the
shape of a prolate spheroid such as of E. coli, CD1/CD3 > 2 still holds and we obtain the same
relation as (4.24). Other straightforward extensions include the situation in which the cell body is
located near a planar infinite wall, a situation relevant to a sperm–egg cluster that tends to rotate
without translation [29]. The predominance of rotation could be rationalized in that case using
lubrication theory [30], which shows that drag coefficients CD1 and CD3 diverge as the spherical
cell body approaches the wall, while the value of the rotation drag coefficient CR3 remains very
close to that in the bulk. As a result, the rotation mode would become in that case more unstable
than the translation mode. Further theoretical work would be required to extend to more general
situations such as for example a non-spherical cell body, non-symmetric flagellar configurations
or non-identical flagella, emphasizing the rich diversity of the N-flagella problem.
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Appendix A. Derivations of matrices (2.31) and (5.1)
In this appendix, we provide detailed derivations of the matrices (2.31) and (5.1) for the motion
of the bacterium with N flagella arranged in a regular polygonal manner.

The N identical in-plane flagella with orientations e(i) = R(Θi; ez) · ex provide a stationary
configuration. Considering small disturbances around the equilibrium, with angles |θi|, |φi| 	 1,
we directly compute the matrix entries noting that one only needs the leading-order contributions
for the linear stability.

We first consider K(i)
C , which is computed from (2.25),

K(i)
C = Ri · K(0)

C · R−1
i 


⎛
⎜⎝KC cos2 Θi + kC sin2 Θi (KC − kC) sin Θi cos Θi 0

(KC − kC) sin Θi cos Θi KC sin2 Θi + kC cos2 Θi 0
0 0 kC

⎞
⎟⎠ , (A 1)

where the symbol 
 is used here to mean the leading-order contribution. The expression for KTT

is given by summation of this matrix over the indices i.
For the off-diagonal part, we need

∑N
i=1(K(i)

C · A′i + K(i)
TF). From expression (A 1), we have

K(i)
C · A′i 


⎛
⎜⎝ 0 0 −kC sin Θi

0 0 kC cos Θi
kC sin Θi −kC cos Θi 0

⎞
⎟⎠ , (A 2)

and using (2.25) we obtain

K(i)
TF 


⎛
⎜⎝KT cos2 Θi + kD sin2 Θi (KT − kD) sin Θi cos Θi −kT sin Θi

(KT − kD) cos Θi sin Θi KT sin2 Θi + kD cos2 Θi kT cos Θi
kT sin Θi −kT cos Θi kD

⎞
⎟⎠. (A 3)
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The summations in (A 2) and (A 3) give the expression for KTR and its transpose just follows for
KRT. The contributions of the KT terms can be neglected following the approximation showing that
kD is negligible. For a helical filament, KF scales as KF ∼ CNb2L, and comparing it with the leading-
order term we have the relative magnitude as KF/kF ∼ (b/L)2 ∼ 10−3 using typical numbers for
E. coli cells. Thus in the matrix (2.31), the KF term can be neglected if we neglect kD.

For the expression of KRR, we need to calculate

KRR = CR1 +
N∑

i=1

(
A′Ti · K(i)

C · A′i + A′Ti · K(i)
TF + K(i)

FT · A′i + K(i)
FF

)
, (A 4)

which is obtained by straightforward calculations as

A′Ti · K(i)
C · A(i)

i 


⎛
⎜⎝ kC sin2 Θi −kC sin Θi cos Θi 0

−kC sin Θi cos Θi kC cos2 Θi 0
0 0 kC

⎞
⎟⎠ , (A 5)

A′Ti · K(i)
TF 


⎛
⎜⎝ kT sin2 Θi −kT sin Θi cos Θi kD sin Θi

−kT sin Θi cos Θi kT cos2 Θi −kD sin Θi
−kD sin Θi kD sin Θi kT

⎞
⎟⎠ (A 6)

and K(i)
FF 


⎛
⎜⎝KF cos2 Θi + kF sin2 Θi (KF − kF) sin Θi cos Θi 0

(KF − kF) sin Θi cos Θi KF sin2 Θi + kF cos2 Θi 0
0 0 kF

⎞
⎟⎠ . (A 7)

Using the equalities,

N∑
i=1

sin Θi =
N∑

i=1

cos Θi =
N∑

i=1

sin Θi cos Θi = 0, (A 8)

and summing over the index i completes the computations for the matrix entries.

Appendix B. Torque-driven motility of N = 2 flagella
In this appendix, we briefly consider the bacterial model with N = 2 flagella in case where the
torque, instead of the rotation, is prescribed for each flagellar filament. This will allow us to
highlight the difference of the dynamics from the rotation-given problem. As in the main text,
we assume identical flagella and axisymmetric propulsion. Using the same matrix form as (2.14),
the torque-driven motility dynamics can be expressed as⎛

⎜⎜⎝
KTT KTR K(i)

TF

KRT KRR K(i)
RF

K(i)
FT K(i)

RT K(i)
FF

⎞
⎟⎟⎠
⎛
⎜⎝ U

Ω

ω(i)

⎞
⎟⎠=

⎛
⎜⎝ 0

0

−M(i)
elast − M(i)

motor

⎞
⎟⎠ . (B 1)

We use the decomposition of the flagellar rotation velocity vector, ω(i) = ω
(i)
t + ω

(i)
n , and the

commutative relations (2.19), to obtain the same form of the force and torque balance equations
as (2.20), namely

(
KTT KTR K(i)

TF

KRT KRR K(i)
RF

)⎛⎜⎝ U
Ω

ω
(i)
n

⎞
⎟⎠=

⎛
⎜⎜⎜⎜⎜⎝

−
N∑

i=1

K(i)
TF · ω

(i)
t

−
N∑

i=1

K(i)
RF · ω

(i)
t

⎞
⎟⎟⎟⎟⎟⎠ . (B 2)

The torque balance equation for each flagellum is

K(i)
FT · U + K(i)

FR · Ω + K(i)
FF · (ω(i)

t + ω
(i)
n ) = −M(i)

elast − M(i)
motor, (B 3)
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which can be rewritten, using the variables in the flagellum-fixed frame, as

K(0)
FT · R−1

i · U + R−1
i · K(i)

FR · Ω + K(0)
FF · (ω̃(i)

t + ω̃
(i)
n ) = −M̃

(i)
elast − M̃

(i)
motor. (B 4)

We next introduce the projection on to z-axis as Q0 = 1 − P0, and apply P0 and Q0 from the left
side of equation (B 4). From the projection onto the x–y-plane, we obtain a similar torque balance
equation as in the bottom row of the equation (2.20), namely

P0 · K(0)
FT · R−1

i · U + P0 · R−1
i · K(i)

FR · Ω + K(0)
FF · ω̃

(i)
n = −M̃

(i)
elast − P0 · M̃

(i)
motor, (B 5)

noting that the last term of the right-hand side is the only correction from the rotation-given
problem.

The projection using Q0 provides the equations for the tangential flagellar rotation velocity

Q0 · K(0)
FT · R−1

i · U + Q0 · R−1
i · K(i)

FR · Ω + K(0)
FF · ω̃

(i)
t = −Q0 · M̃

(i)
motor, (B 6)

and we proceed to calculate the detailed expressions for the linear stability analysis around the
equilibrium configuration with N = 2.

We need to assume the exact form of the function M̃
(i)
motor, and here we consider two different

possibles for the constant torque: (i) constant torque applied along the flagellar orientation
(M(i)

motor = M0e(i)) and (ii) constant torque applied along the normal to the cell surface (M(i)
motor =

M0n(i)).
When |θi|, |φi| 	 1, the leading-order value of the right-hand side of (B 6) is given by −M0ez in

both torque models. The third term on the left-hand side of (B 6) is simply K(0)
FF · ω̃

(i)
t = KFω0ez, and

thus we can neglect O(|θi|, |φi|) contribution in the first two terms of (B 6) in order to determine
the leading-order term of ω0. With calculations similar to those in appendix A, we obtain the O(1)
contribution from the first term as Q0 · K(0)

FT · R−1
i · U 
 KF(cos ΘiUx + sin ΘiUy)ez, which is however

zero as a consequence of the fact that Ux = sin Θi = 0 for the linear stability problem with N = 2.
The second term is calculated as Q0 · R−1

i · K(i)
FR · Ω 
 KF(Ωx cos Θi + Ωy sin Θi)ez and this is again

found to be zero since Ωx and sin Θi are zero for the linear stability problem with N = 2.
In summary, we obtain the expression for the flagellar rotation rate, ω0,

ω0 = M0

|KF| , (B 7)

and ω0 becomes positive when M0 > 0. Equations (B 2) and (B 5) provide therefore a set of
equations similar to (2.20) for the rotation-given problem. We note the presence of the additional

term P0 · M̃
(i)
motor in equation (B 5). This correction term, however, vanishes for the torque model

(i), and thus this torque-driven motility problem coincidences with the rotation-given motility
when N = 2.

We then consider the torque model (ii) where the constant torque is applied along the normal
to the cell surface. In that case, the correction term contributes an external bending torque, since

P0 · M̃
(i)
motor 
 M0(θiey − φiex). Proceeding with the linear stability analysis, as in equations (3.1)–

(3.4), we obtain four blocks of 2 × 2 matrices, using the angle variables θ+ = θ1 + θ2, θ− = θ1 − θ2,
φ+ = φ1 + φ2 and φ− = φ1 − φ2,

(
C′

D kT

2kT kF

)(
Uz

φ̇+

)
=
(

−ω0KTφ+
κφ+ + M0θ+

)
, (B 8)

(
C′

R kT + kF

2(kT + kF) kF

)(
Ωz

θ̇+

)
=
(

−ω0KTφ+ − ω0KFθ+
κθ+ − M0φ+

)
, (B 9)
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...........................................................
(

C′
D kT

2kT kF

)(
Uy

θ̇−

)
=
(

−ω0KTθ−
κθ− − M0φ−

)
(B 10)

and

(
C′

R −(kT + kF)
−2(kT + kF) kF

)(
Ωy

φ̇−

)
=
(

ω0KTφ− − ω0KFθ−
κφ− + M0θ−

)
. (B 11)

Solving equations (B 8) and (B 9) with respect to θ+ and φ+, we obtain the linear ordinary
differential equations

d
dt

(
θ+
φ+

)
=
(

AR ART

ATR AT

)(
θ+
φ+

)
. (B 12)

The diagonal components are

AT = �−1
D (2ω0|KTkT| − κ|C′

D|) (B 13)

and
AR = �−1

R (2ω0|KT(kT + kF)| − κ|C′
R|) (B 14)

are the same as in the rotation-given problem (3.6) and (3.7). By contrast, the off-diagonal
components includes the corrections

ART = �−1
R (2ω0|KT(kT + kF)| + M0|C′

D|) (B 15)

and
ATR = �−1

D (−M0|C′
D|), (B 16)

and therefore the stability characteristics could be different from the rotation-given problem.
When M0 < 0, the flagellar filaments pull on the cell-body into fluid and we find that the

eigenvalues are all negative since AT, ART, AR < 0 and ATR > 0. Hence the dynamics is always
linearly stable. By contrast, when M0 > 0, the eigenvalues are still both negative for small values
of M0, but become positive when M0 becomes sufficiently large, and there are two critical values
of M0 above which instability can occur. Both unstable modes, however, combine translation
with rotation and the pure rotation modes disappear (in contrast to the rotation-given motility
problem). The critical flagellar rotation velocities ω∗

0 in this case lie between the critical values of
the rotation-given problem (3.9) and (3.10)

min {ω0T, ω0R} ≤ ω∗
0 ≤ max {ω0T, ω0R} . (B 17)

Note that, by symmetry, the same eigenvalues follow for the linear ordinal differential
equations obeyed by the variables θ− and φi derived from equations (B 10) and (B 11).
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