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Dielectric particles suspended in a weakly conducting fluid are known to spontaneously start rotating
under the action of a sufficiently strong uniform dc electric field due to the Quincke rotation instability. This
rotation can be converted into translation when the particles are placed near a surface providing useful
model systems for active matter. Using a combination of numerical simulations and theoretical modeling,
we demonstrate that it is possible to convert this spontaneous Quincke rotation into spontaneous translation
in a plane perpendicular to the electric field in the absence of surfaces by relying on geometrical asymmetry
instead.
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How are groups of living organisms such as flocks of
birds, schools of fish and bacterial colonies able to self-
organize and display collective motion [1]? This question
has fascinated scientists for decades and has given rise to
the new field of “active matter” [2,3]. One of the key
features of active matter is that it is composed of self-
propelled units that move by consuming energy from their
surrounding with a direction of self-propulsion typically set
by their own anisotropy, either in shape or functionaliza-
tion, rather than by an external field.
The origin of macroscopic ordered motion in active

systems is due to microscopic interactions occurring at an
individual level. Ideally, one would like to develop a
coarse-grained description of active systems from these
microscopic interactions but these are difficult to measure
or quantify, forcing scientists to develop phenomenological
models [4,5]. “Nonliving” active systems offer a simplified
and more controlled setting compared to “living” active
systems, and there have been multiple attempts to design
self-propelled synthetic particles in the laboratory [6].
Examples include bimetallic Janus particles powered by
catalytic reactions [7,8], electric [9,10] and magnetic field
driven colloids [11], light activated colloidal surfers [12],
water droplets driven by Marangoni stress [13], and self-
propelled squirming droplets [14].
In recent active matter experiments, it has been possible

to measure and quantify these microscopic interactions
[9,10]. These experiments consisted of spherical colloids
able to roll along surfaces by exploiting the so-called
Quincke rotation, discovered more than a century ago [15].
The Quincke phenomenon involves the application of a
uniform electric field that gives rise to the spontaneous
rotation of dielectric solid particles or deformable drops
suspended in a slightly conducting fluid medium [16–18].
Quincke rotation is best explained using the much cel-
ebrated Melcher-Taylor leaky dielectric model [19] that

proposes the formation of a surface charge on the particle-
liquid interface. Rotation occurs due to the symmetry
breaking of the charge distribution that gives rise to a
net torque leading to steady rotation of the particle.
There are two conditions for Quincke rotation to occur.

First, the charge relaxation time of the particle, τ−, must
exceed that of the surrounding fluid, τþ, where τ� ¼
ϵ�=σ� with ϵ� and σ� being the permittivity and conduc-
tivity, respectively (superscript − representing particle and
þ representing fluid). This implies that the particle must be
less conducting than the surrounding fluid, giving rise to a
dipole moment, P, which is antiparallel to the applied
electric field, E0. This configuration is unstable and the
electric torque, TE ∝ P × E0, tends to rotate the particle
away from its original orientation. The second condition
requires that the magnitude of the electric field exceeds a
critical value, EC, for sustained rotation of the particle,
E0 > EC, such that the electric torque balances the viscous
torque.
In an infinite fluid medium, a symmetric particle such as

a sphere under Quincke rotation will steadily rotate without
translating as no net external force acts on it. This
spontaneous rotation can be converted into spontaneous
translation when the particle is placed near a wall. Such
“Quincke rollers” were demonstrated experimentally to
perform collective motion due to electrohydrodynamic
interactions with each other and with the nearby sur-
face [9,10].
In this Letter, we show that it is possible to convert

spontaneous Quincke rotation into spontaneous translation
in the absence of surfaces. Specifically, asymmetrically
shaped dielectric particles placed in the bulk of a slightly
conducting fluid will spontaneously acquire both rotation
and translation under the action of a sufficiently strong
uniform dc electric field in a plane perpendicular to the
field. We demonstrate this phenomenon by focusing on the
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electrohydrodynamics of a helix—an archetypal chiral
particle—first computationally, using the boundary
element method, and then by developing an analytical
theory in quantitative agreement with the simulations.
Consider an uncharged neutrally buoyant solid particle

of volume, V−, surface, S, and outward unit normal vector,
n, suspended in an infinite fluid medium of volume, Vþ
(see Fig. 1). The dynamic viscosity of the fluid is denoted
by μ. The particle gets polarized due to the application of a
uniform dc electric field, E0 ¼ E0ẑ. We define two dimen-
sionless numbers R ¼ σþ=σ− and Q ¼ ε−=εþ such that
RQ ¼ τ−=τþ > 1 is the necessary condition for Quincke
rotation to take place. In the Melcher-Taylor leaky dielec-
tric model, all charges are concentrated on the particle
surface, so that the electric potential in each domain
satisfies Laplace’s equation ∇2φ� ¼ 0 [19]. All the physi-
cal quantities are implicitly assumed to be a function of
time. On the particle surface, the electric potential and the
tangential component of the local electric field are con-
tinuous ⟦φðxÞ⟧ ¼ 0 and ⟦EtðxÞ⟧ ¼ 0 for x ∈ S, where
E�
t ¼ ðI − nnÞ·E�, E� ¼ −∇φ� and ⟦fðxÞ⟧≡ fþðxÞ −

f−ðxÞ denotes the jump for any field variable fðxÞ defined
on both sides of the particle surface. The normal compo-
nent of the electric field E�

n ¼ n·E� undergoes a jump due
to the mismatch in electrical properties between the two
media [20], resulting in a surface charge distribution given
by Gauss’s law, qðxÞ ¼ ⟦εEnðxÞ⟧ for x ∈ S. The surface
charge distribution evolves due to two distinct mechanisms,
namely, Ohmic currents from the bulk, ⟦σEn⟧, and advec-
tion by the particle surface velocity, vðxÞ. Accordingly, the
conservation equation for the surface charge is

∂tqþ ⟦σEn⟧þ ∇s·ðqvÞ ¼ 0 for x ∈ S; ð1Þ

where ∇s ≡ ðI − nnÞ·∇ is the surface gradient operator.
The fluid velocity field, vðxÞ, and dynamic pressure, pðxÞ,
satisfy the Stokes equations in the suspending fluid,
−μ∇2vþ ∇p ¼ 0 and ∇·v ¼ 0. No slip at the solid-fluid
interface leads to kinematic boundary conditions for the

fluid velocity, vðxÞ ¼ U þΩ × ðx − xcÞ for x ∈ S, where
U, Ω, and xc are the translational velocity, rotational
velocity, and centroid of the particle. In the absence of
inertia, the dynamic balance of electric and hydrodynamic
forces and torques on the solid particle requires FE þ FH ¼
0 and TE þ TH ¼ 0, respectively. The forces and torques
are found by integrating the surface tractions f

FE;H ¼
I
S
fE;HdSðxÞ; ð2Þ

TE;H ¼
I
S
ðx − xcÞ × fE;HdSðxÞ: ð3Þ

The electric and hydrodynamic tractions are expressed in
terms of the Maxwell stress tensor, T E, and hydrodynamic
stress tensor, TH, respectively as

fE ¼ n·T E ¼ n·

�
ε

�
EE −

1

2
E2I

��
; ð4Þ

fH ¼ n·TH ¼ n·½−pI þ μð∇vþ ∇vTÞ�: ð5Þ

To demonstrate that it is possible to convert Quincke
rotation into spontaneous translation without the need for
any surfaces, we consider a dielectric filament of helical
shape in an infinite fluid. Helices are prototypical chiral
particles used to create synthetic swimmers [21,22], and
their propulsive abilities at low Reynolds number flows
have been well characterized in the context of bacterial
locomotion [23]. The centerline of the helix is specified
as rðξÞ ¼ ξx̂þ Rh cos ð2πχξ=λÞŷþ Rh sin ð2πχξ=λÞẑ using
parameter ξ ∈ ½−Lλ; Lλ�, where Lλ ¼ Nλ is the axial length,
λ is the helical pitch, N is the number of turns, and Rh is the
helical radius. The arc and contour length of the helix are
s ¼ ξ= cos α and L ¼ Lλ= cos α, respectively, where α ¼
arctanð2πRh=λÞ is the pitch angle. The cross section of the
helical filament is denoted as a. Here, χ ¼ �1 determines
the chirality of the helix and we focus on right-handed
helices, χ ¼ 1, without any loss of generality.
We use the boundary element method to solve the

electrohydrodynamics of a cylindrical and helical particle
[24,25] (see the Supplemental Material [26] for details). We
show in Figs. 2(a)–2(d) snapshots of a cylinder and a helix
having identical aspect ratio (i.e., the cylinder can be
obtained by simply uncoiling the helix) moving under the
action of an external uniform DC electric field. We specify
the dimensionless electric field strength, E� ¼ E0=EC;cl,
where the critical electric field for Quincke rotation of a
cylinder is EC;cl ¼ ½2μ=εþτMW;clðε̄cl − σ̄clÞ�1=2 with ε̄cl ¼
ðε− − εþÞ=ðε− þ εþÞ and σ̄cl ¼ ðσ− − σþÞ=ðσ− þ σþÞ [32].
Time is nondimensionalized with the characteristic
Maxwell-Wagner timescale for polarization of a cylindrical
particle upon the application of an electric field,
τMW;cl ¼ ðε− þ εþÞ=ðσ− þ σþÞ. The axes of both rigid

FIG. 1. Schematic representation of the problem considered in
this Letter. A solid particle of volume V−, surface S, and outward
unit normal vector n is suspended in an infinite fluid of volume
Vþ and subject to a uniform dc electric field, E0 ¼ E0ẑ. The
electric permittivities and conductivities of the suspending fluid
and particle are denoted as εþ; σþ and ε−; σ−, respectively, and
the dynamic viscosity of the fluid is μ. The translational and
angular velocity of the particle are U and Ω, respectively.
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particles are initially tilted at an angle of 0.1π with respect to
the x axis in the x − z plane. Because the applied electric
field, E�

0 ¼ E�
0ẑ, is higher than the critical field for both

particles, they spontaneously start rotating. The directions of
rotation for both particles are always perpendicular to the
electric field, i.e., Ω·E0 ¼ 0 [26], and thus both align their
axes in a direction perpendicular to the electric field in the
steady state. As predicted by theory, the cylinder undergoes
pure rotationwith no translation. In contrast, the asymmetric
shape of the helix allows it to undergo both rotation and
translation. Furthermore, we plot the net displacement of the
cylinder (cl) and helix (hl) in three dimensions in time; see
Fig. 3. Note that the particlesmove out of the x − z plane due
to their initially tilted configuration.
In contrast to Quincke rollers, the helical particle in

Fig. 2 undergoes spontaneous translation in the absence of
surfaces, and thus represents a new type of active self-
propelling particle in bulk fluids. In order to further probe

its ability to swim, we investigate in Fig. 4 how its steady
swimming speed, U, depends on various geometrical
parameters (numerical data are shown in symbols while
the lines represent the theory developed below). First, we
show in Fig. 4(a) how the magnitude of the critical electric
field depends on the pitch angle, α, for various cross-
sectional radii, a=λ, with fixed number of turns. The critical
field required to generate rotation of the helix is seen to
systematically increase above its value for a cylinder as the
amplitude of the helix grows and as the filament becomes
more slender.
Next we plot in Fig. 4(b), the value of the steady

swimming speed, U, as a function of the helix pitch angle,
α, for two different electric field strengths while keeping
the cross-sectional radius fixed. The swimming speed is
zero for a straight rod (α ¼ 0) and a torus (α ¼ π=2) and
thus is maximal when the pitch angle takes an intermediate
value, α ≈ 0.2π (simulations) and 0.215π (theory) for
E� ¼ 2.5 and α ≈ 0.25π (simulations and theory) for
E� ¼ 5.5. Finally, the effect of the aspect ratio of the
helix, a=L, on the swimming speed, U, is shown in
Fig. 4(c) keeping other geometrical quantities fixed. The
swimming speed undergoes a supercritical pitchfork bifur-
cation so that swimming does not occur for a=L below a
critical value (i.e., for particles that are too slender).
The computational results obtained above can be ration-

alized using theoretical arguments. The hydrodynamic
forces and torques acting on a helix are linearly related
to its translation and angular velocities through the 6 × 6
resistance matrix R as

�
FH

TH

�
¼ −R·

�
U

Ω

�
: ð6Þ

FIG. 2. (a)–(c) Snapshots of a cylinder and a helix having an aspect ratio of a=L ¼ 0.0167 under Quincke rotation due to an applied
electric field E�

0 ¼ 2.5ẑ with R ¼ Q ¼ 2. The helix has N ¼ 3 turns, pitch angle α ¼ 0.2π, and pitch λ=L ¼ 0.236. The particles are
slightly tilted with respect to the x axis at an angle 0.1π at time t� ¼ 0. The cylinder performs pure rotation while the helix undergoes
rotation as well as translation perpendicular to the z axis. (d) Rotated view of snapshot (c) showing the positively charged side of the
particles. The particles move out of the x − z plane due to their initially titled configuration. The colorbar indicates surface charge
distribution. Associated movies are available in the Supplemental Material [26].

FIG. 3. Three-dimensional trajectories of the centroid of the
cylinder (cl) and the helix (hl).
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The hydrodynamics of a helix can be described using the
framework of resistive-force theory, which is valid for
slender filaments moving in viscous fluids in the absence of
inertia [33]. Assuming that the helix axis remains aligned
with the x direction, the components of the resistance
matrix relevant for the analysis below are R44 ¼
LR2

hðζ⊥cos2αþ ζksin2αÞ, R11 ¼ Lðζkcos2αþ ζ⊥sin2αÞ,
R14 ¼ χLR2

h sin α cos αðζk − ζ⊥Þ, and R13 ¼ R34 ¼ 0.
All other elements of the resistance matrix are provided
in the Supplemental Material [26]. Here, ζk and ζ⊥ are
the drag coefficients for local motion of the helix along
the directions parallel and perpendicular to its tangent
[26,34]. For the electric problem, we assume that the
helix is identical to a cylinder of the same contour
length, a reasonable approximation if the helix has a
small pitch angle (i.e., small amplitude). The resulting
electric and viscous torque acting on the helix are then
given by

TE ¼ 2πεþa2LE2
0ðP × E0Þ; ð7Þ

TH ¼ −ð4πa2LΩ1 þR44Ω1 þR14U1Þx̂; ð8Þ

where P is the effective dipole moment of the helix.
Because there is no electric force acting on the particle,
we have FE ¼ −FH ¼ 0, leading to a relation between
translational and angular velocity

U1 ¼ −Ω1ðR14=R11Þ: ð9Þ
Balancing electric and viscous torques on the helix,
TE þ TH ¼ 0, leads to a relation between P2 and Ω1

E�2P2=ðε̄cl − σ̄clÞ − ð1þGÞΩ1 ¼ 0; ð10Þ
where G ¼ ðR44 −R2

14=R11Þ=ð4πμa2LÞ is a helical shape
factor that only depends on geometry. The relaxation

equation of the effective dipole moment of the helix derived
from the charge conservation equation, Eq. (1), provides
another relation between P2 and Ω1 [26]

P2 ¼ ðε̄cl − σ̄clÞΩ1=ð1þ Ω2
1Þ: ð11Þ

Eliminating P2 from Eqs. (10) and (11), we obtain two
solutions for the angular velocity of a helix under Quincke
rotation: (i) the trivial solution, Ω1 ¼ 0 and (ii) the steady-
state rotation solution

Ω1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�2=ð1þ GÞ − 1

q
: ð12Þ

The critical electric field for Quincke rotation of a helix is
then given as EC;hl ¼ EC;cl

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ G

p
while the predicted

swimming speed is given by Eq. (9).
The predictions from this theoretical approach are

compared with the computational results in Fig. 4. The
theory is able to reproduce all features of the computational
study, including the supercritical pitchfork bifurcation (at a
fixed field strength) showing nonexistence of swimming
states for filaments that are too slender. This is because
while the electric torque on the particle scales as a2, the
viscous torque scales as a2 þ R2

h; see Eqs. (7) and (8). The
breakdown of the theory for large values of a=L is expected
since the hydrodynamics based on resistive-force theory is
accurate only in the asymptotic limit of slender fila-
ments, a=L → 0.
In summary, we have shown in this Letter that the

classical Quincke rotational instability of dielectric par-
ticles under dc electric fields can lead to spontaneous self-
propulsion in a bulk fluid when combined with geometrical
asymmetry. The phenomenon occurs in the absence of any
nearby surfaces, in stark contrast to Quincke rollers which
require the presence of walls to break symmetries and

FIG. 4. (a) Critical electric field of a helix with three different cross-sectional radii but fixed number of turns, N ¼ 1, plotted against
the pitch angle. Red, blue, and green indicate a=λ ¼ 0.10, 0.05, 0.02, respectively. Open and filled symbols indicate no swimming and
swimming, respectively, computed using numerical simulations based on boundary element method while solid and dashed lines
represent E�=

ffiffiffiffiffiffiffiffiffiffiffiffi
1þG

p
. (b) Swimming speed versus pitch angle for a helix with aspect ratio a=L ¼ 0.0167 for two different electric field

strengths, E� ¼ 2.5 (red circle and solid line indicate theory and simulations, respectively) and E� ¼ 5.5 (blue square and dashed line
indicate theory and simulations, respectively). (c) Swimming speed versus cross-sectional radius of a helix keeping the electric field
E� ¼ 2.5, number of turns N ¼ 3, pitch angle α ¼ 0.2π, and pitch λ=L ¼ 0.27 fixed (red circle and solid line indicate theory and
simulations, respectively). Movies associated with (c) are available in the Supplemental Material [26].
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swim. While a single particle rotates and translates in a
plane perpendicular to the electric field, suspensions of
such particles are expected to display out-of-plane swim-
ming resulting from three-dimensional electrohydrody-
namic interactions. As a practical example, we consider
a helical particle made of Polymethyl methacrylate sus-
pended in various classical dielectric fluids and predict
swimming speeds of tens of microns per second (see the
Supplemental Material [26]). The physical mechanism of
this new form of self-propulsion was demonstrated using
numerical computations for the full system in the case of a
helical filament and confirmed analytically by a theoretical
approach in the slender-helix limit. Though we have
focused on the special case of helical particles, self-
propulsion is expected to occur for any kind of asymmetric
particles whose resistance matrix, R , contains a nonzero
off-diagonal term enabling coupling of an imposed rotation
to translation. Suspensions of randomly shaped particles
under Quincke rotation interacting electrohydrodynami-
cally are thus expected to perform collective motion by
exploring the full three-dimensional space, thereby opening
doors to a potentially new type of active matter.
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