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Purcell’s scallop theorem defines the type of motions of a solid body—reciprocal motions—which
cannot propel the body in a viscous fluid with zero Reynolds number. For example, the flapping of
a wing is reciprocal and, as was recently shown, can lead to directed motion only if its frequency
Reynolds number, Ref, is above a critical value of order one. Using elementary examples, we show
the existence of oscillatory reciprocal motions which are effective for all arbitrarily small values of
the frequency Reynolds number and induce net velocities scaling as Ref

� ���0�. This demonstrates
a continuous breakdown of the scallop theorem with inertia. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2738609�

A large variety of biological movements occur in a fluid
environment, from swimming bacteria to whales. In many
cases, the study of fluid forces is crucial to the understanding
of animal locomotion.1–6 Because of the large range of rel-
evant length scales in biological motility–eight orders of
magnitude in size, from less than a hundred nanometers to
tens of meters–fluid mechanics occurs in distinct regimes
with important mechanical consequences. On small length
scales, the relevant Reynolds number is usually very small
�Re�10−4 for swimming E. coli� and viscous forces are
dominant. This is the Stokesian realm of swimming micro-
organisms such as bacteria, spermatozoa, and ciliated cells.
At the opposite end of the range of length scales, the Rey-
nolds numbers are typically very large �Re�107 for a swim-
ming tuna� and inertial forces are dominant. This is the Eu-
lerian realm of flying birds and swimming fishes. In this
Letter, we address the transition from the Stokesian to the
Eulerian realm, and show that, in some situations, this tran-
sition can take place continuously with an increase of the
relevant Reynolds number.

In his 1977 lecture, “Life at low Reynolds numbers,”
Edward Purcell introduced the “scallop theorem.”2 He ob-
served that the Stokes equations, which govern fluid flows at
zero Reynolds numbers and are both linear and independent
of time, are identical under time reversal. Consequently,
there exists a certain geometrical class of motion �or, more
generally, actuation of a solid body� termed “reciprocal mo-
tion,” which cannot lead to any locomotion in this limit. A
reciprocal motion �or actuation� is a motion in which the
geometrical paths followed by various material points on the
body are identical when viewed under time reversal. By
symmetry, such motion can only lead to a net movement
equal to minus itself, and therefore, no net movement at all
�see also Refs. 5 and 7�. The simplest example of a recipro-
cal motion is a periodic motion composed of two distinct
parts. In the first part, the body moves in a certain prescribed
way, and in the second part, the body moves in a manner
which is identical to the first part as seen under time reversal.

A scallop opening and closing belongs to this subclass of
reciprocal motion and, independently of the rate of opening
and closing, the scallop cannot move.

Another example of reciprocal motion—or, in this case,
reciprocal actuation—is a flapping body. Consider a solid
body oscillated up and down in translation in a prescribed
manner by an external means. Since the motion going up is
the time-reversal symmetry of the motion going down, the
flapping body does not move on average in the limit of zero
Reynolds numbers. However, large animals such as birds use
flapping wings for locomotion, and so clearly a thin flapping
body must be effective in the Eulerian realm. The question
then arises: When does a flapping body, or more generally, a
reciprocal motion, become effective? How much inertial
force is necessary to break the constraints of the scallop theo-
rem?

This question was first formulated and studied by
Childress and Dudley.7 The mollusc Clione antarctica was
observed to possess two modes of locomotion. The first is
nonreciprocal and uses cilia distributed along the body of the
mollusc. The second is reciprocal and consists of two flap-
ping wings. The flapping-wing mode was observed to be
predominant for the large swimming velocities. Using both
experimental observations and fluid mechanics models, the
authors postulated that reciprocal motions are ineffective in
producing any net motion unless the relevant frequency, or
“flapping”, Reynolds number, Ref, is sufficiently large �order
unity�. In other words, the transition from no motion to mo-
tion occurs at a finite value of Ref and the breakdown of the
scallop theorem is discontinuous. This idea was subsequently
studied in laboratory experiments8,9 and numerical
simulations10,11 of flapping symmetric bodies, both of which
confirmed the transition to directed motion as a symmetry-
breaking instability occurring at a finite value of the fre-
quency Reynolds number, as well as the robustness of this
transition to a change in a variety of geometrical and me-
chanical parameters.

In this Letter, we consider a series of elementary oscil-
latory reciprocal motions of a solid body with broken spatial
symmetries and show that they become effective in produc-a�Electronic mail: lauga@mit.edu
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ing a net translation of the body for arbitrarily small values
of the frequency Reynolds number, with induced velocities
scaling as Ref

� ���0, inertial creep16�. This demonstrates a
continuous breakdown of the scallop theorem with inertia.

The examples we propose rely on classical results of lift
forces for the motion of spherical particles at small Reynolds
number.12–15 We consider a solid spherical particle �density
�p, radius a� oscillating with frequency � and amplitude d in
a fluid of density �, and shear viscosity �. The three different
setups we propose are described below, and we start by some
general remarks. In the case of purely translational motion,
including the effect of inertia on the particle motion can be
done in a number of limits, as there are in general three
relevant Reynolds numbers. Firstly, the unsteady term in the
Navier-Stokes equations scales as ��U0 �where U0=d� is
the typical speed of translation�, and is smaller than the typi-
cal viscous term, of order �U0 /a2, by a factor of Re�

=a2� /�, where �=� /� is the kinematic viscosity. Secondly,
the nonlinear advective term in the Navier-Stokes equations
scales with �U0

2 /a, and is smaller than the viscous term by a
factor of Ref =aU0 /�=ad� /�, which is the flapping �or “fre-
quency”� Reynolds number.8–10 Thirdly, the particle inertia is
quantified by a particle Reynolds number, Rep=�pa2� /�, the
ratio of the typical rate of change of the particle momentum,
�pa3U0�, to the typical viscous forces on the particle, �aU0.

In this Letter, we will consider the asymptotic limit where

�Rep,Re�� � Ref � 1, �1�

so that the motion of the flapper is quasistatic and the
leading-order departure of the fluid forces from the Stokes
laws is due to the nonlinear advective term in the Navier-
Stokes equations.28 The limit described by Eq. �1� is equiva-
lent to that of small frequency Reynolds number �Ref �1�
and large flapping amplitude �a /d�1 and a /d�� /�p�. Note
that this is a different limit from the work in Refs. 8–11,
where body inertia likely played an important role. We con-
sider below three examples of such large-amplitude, low-Ref

reciprocal flapping, which leads to directed motion for arbi-
trarily small values of Ref.

The first example is that of a flapper near a wall. Spe-
cifically, we consider the reciprocal oscillation in vertical
position of the solid sphere with velocity U�t�=U�t�ex paral-
lel to a stationary solid surface and free to move in the y and
z directions �see notations in Fig. 1�a��. In the Stokes flow
limit �Ref =0�, the sphere experiences no lift force and re-
mains at a constant distance, h, to the solid surface. The first
effect of inertia on this problem, in the limit set by Eq. �1�, is
the appearance of a lift force, directed away from the solid
surface, and independent of the sign of U�t� �Refs. 13, 17,
and 18�. Such a limit is captured when the Oseen length

FIG. 1. Three examples of reciprocal forcing leading to translation of a solid body �sphere of radius a� for arbitrarily small values of the frequency Reynolds
number. In each example, the reciprocal motion is composed of the periodic repetition of two distinct parts, with the second part �bottom� being identical to
the first part �top� as seen under time reversal: �a� Oscillation in vertical position of a sphere parallel to a solid surface leads to motion perpendicular to the
surface. �b� In-phase oscillations in translation and rotation of a sphere lead to motion perpendicular to both the directions of translation and rotation. �c�
Oscillation in vertical position of a sphere in an oscillating shear flow �in phase� leads to motion perpendicular to the direction of translation. In all cases, V�

denotes the �small� sphere velocity induced by inertial forces. In case �a�, the distance to the solid surface is denoted h.
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scale � /U0, the distance away from the sphere where inertial
forces become important, is much larger than all relevant
length scales of the problem, i.e., the sphere radius, a, and its
distance to the surface, h. In the simple case where a�h
�� /U0, the lift force leads to a low-Reynolds number lift
velocity for the particle13,17,18

V��t� = V��t�ey, V��t� =
3

32

aU�t�2

�
, �2�

always directed away from the surface. For an oscillatory
motion, U�t�=U0 cos �t, the lift velocity away from the sur-
face averages over one period to

�V�	
U0

=
3

64
Ref . �3�

A flapper near a wall performing a reciprocal translational
motion is therefore able to move forward �away from the
wall� for arbitrarily small values of the frequency Reynolds
number. This inertial migration decreases to zero with the
first power of the Reynolds number ��=1�, and the Stokes
limit is recovered when we formally set Ref =0 in Eq. �3�.

Our second example is that of a rotating flapper. We
consider the case where the solid sphere is oscillating both in
translation and rotation, with velocity and rotation rates
given by U�t�=U�t�ex and ��t�=��t�ez, and is free to move
in the y and z directions �see Fig. 1�b��. If the two oscilla-
tions are in phase, the actuation of the sphere is reciprocal,
which we will assume here, and no average motion is ob-
tained in the Stokes limit. If �0 is the typical magnitude of
��t�, the rotation Reynolds number Re�=a2�0 /� measures
the importance of inertial forces due to the rotational motion.
In the asymptotic limit set by Eq. �1�, and for Re�
Ref, the
first effect of inertia is the appearance of a lift force perpen-
dicular to both the directions of translation and rotation13,19,20

and given by FL=	a3��
U. This results in a low-
Reynolds number lift velocity

V��t� = V��t�ey, V��t� =
a2U�t���t�

6�
. �4�

When U�t�=a��t�=U0 cos �t, we obtain an average transla-
tional velocity, along the y direction, given by

�V�	
U0

=
Ref

12
. �5�

Here again, the reciprocal translational and rotational motion
of the solid sphere leads to a directed motion for arbitrarily
small values of the Reynolds number. The magnitude of this
directed motion also decreases to zero with the first power of
Ref ��=1�.

As a final example, we show that these results are also
valid when the fluid in the far field is not quiescent by con-
sidering a flapper in a shear flow. Specifically, as shown in
Fig. 1�c�, we consider the case when the solid sphere is os-
cillating in vertical position with a prescribed velocity, U�t�
=U�t�ex, in a shear flow described by the far-field undis-
turbed flow field u�=−�̇�t�yex �the center of the sphere is
located at y=0� and is free to move in the y and z directions.
If the two oscillations are in phase, the motion of the sphere

is reciprocal, which we assume here, and no average motion
is obtained in the limit of zero Reynolds number. We also
assume that the sphere is far away from the surfaces respon-
sible for the creation of the shear flow and therefore ignore
wall effects.13,21,22 If �̇0 denotes the typical magnitude of
�̇�t�, an additional Reynolds number, Re�̇=a2�̇0 /�, needs to
be introduced. Here, the first effect of inertia is the appear-
ance of a lift force directed across the undisturbed
streamlines.13,23,24 The original study, due to Saffman,23,24

calculated this lift force in the limit where Ref �Re�̇
1/2�1,

and in this case the lift force is moving the sphere in the
direction opposite to its translational velocity. We consider
here the same asymptotic limit, together with the limit as-
sumed in Eq. �1�. In this case, and if U�t� · �̇�t��0, the
sphere experiences a low-Reynolds number lift velocity
given by

V��t� = V��t�ey, V��t� = c1�U�t���a2��̇�t��
�

1/2

, �6�

where c1�0.343 is a numerical coefficient. For an oscilla-
tory motion U�t�=U0 cos �t, and with �̇�t�=U�t� /a to satisfy
Saffman’s asymptotic limit, we get an average velocity,
along the y direction, given by

�V�	
U0

= c2 Ref
1/2, �7�

where c2=2c1�0
	/2�cos t�3/2dt /	�0.191. As in the previous

cases, the actuation of the sphere is reciprocal and yet it leads
to a directed motion for arbitrarily small values of the fre-
quency Reynolds number Ref. Here, however, the magnitude
of the induced velocity decreases to zero with the square root
of the Reynolds number ��=1/2�. Also, in this case, the
motion will continue until the point along the y axis where
the local velocity from the shear flow cancels out the trans-
lational velocity of the sphere.

As a summary, we have presented elementary examples
of oscillatory reciprocal forcing of a solid body leading to
net translational motion of the body for arbitrarily small val-
ues of the frequency Reynolds number, Ref. When the fre-
quency Reynolds number is formally set to zero, the effect
disappears as dictated by the scallop theorem, but it remains
nonzero for all nonzero values of Ref. The induced average
velocities scale as Ref

� ���0�, corresponding to the limit of
asymptotically large Strouhal number, St=�d / �V�	
Ref

−�.
This demonstrates that the breakdown of Purcell’s scallop
theorem with inertia can take place in a continuous way
without a finite onset of translational motion.

As our examples show, a directed motion on the order of
the flapping velocity will take place when Ref 
1. Moreover,
the mechanical efficiencies of the examples above, the ratio
of the useful work to the total work done by the flapper, scale
as Ref

2� so that order one efficiencies should also be expected
for order one Reynolds numbers. From a biological perspec-
tive, both these observations suggest that reciprocal gaits are
very inefficient for small Reynolds number and become ad-
vantageous only when Ref 
1. Consequently, and even in
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the absence of a mathematical bifurcation, the onset of an
appropriately defined “efficient flapping flight” is expected to
occur at a finite value of Ref.

7

Furthermore, it is important to note that all of our ex-
amples display some spatial broken symmetries which gov-
ern the direction of the net motion of the solid body: �a� the
location of the wall, �b� the direction of the rotation rate, and
�c� the direction of the shear flow. This is somewhat different
from the “flapping wing” setup studied experimentally in
Refs. 8 and 9 and numerically in Refs. 10 and 11, where both
the shape and the actuation of the wing are symmetric and
where locomotion is a result of a hydrodynamic instability.29

Finally, we have considered examples leading to net
translational motion, but similar examples exploiting lift
forces and torques on asymmetric particles20,25–27 could be
devised leading to a net rotation, or combined translation and
rotation, of the solid body.30
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