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In the cellular phenomena of cytoplasmic streaming, molecular motors carrying cargo along a network
of microtubules entrain the surrounding fluid. The piconewton forces produced by individual motors are
sufficient to deform long microtubules, as are the collective fluid flows generated by many moving motors.
Studies of streaming during oocyte development in the fruit fly Drosophila melanogaster have shown a
transition from a spatially disordered cytoskeleton, supporting flows with only short-ranged correlations, to
an ordered state with a cell-spanning vortical flow. To test the hypothesis that this transition is driven by
fluid-structure interactions, we study a discrete-filament model and a coarse-grained continuum theory for
motors moving on a deformable cytoskeleton, both of which are shown to exhibit a swirling instability to
spontaneous large-scale rotational motion, as observed.
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A striking example of fluid-structure interactions within
cells [1] occurs in oocytes of the fruit fly Drosophila
melanogaster [2]. These develop over a week from a single
cell through repeated rounds of cell division, differentiation,
and growth, ultimately reaching hundreds of microns
across. This pathway has been divided into 14 stages,
and it is in stages 9–11, at days 6.5–7 [3], that fluid motion
is most noticeable. In stage 9 (Fig. 1), microtubules (MTs)
reach inward from the periphery, forming a dense assembly
along which molecular motors (kinesins) move at tens of
nm/sec, carrying messenger ribonucleic acids and other
nanometric particles. This motion entrains the surrounding
fluid, producing cytoplasmic streaming [4,5] that can be
visualized several ways: in bright field by the motion of
endogenous particles [6–8], via their autofluorescence
[9,10], and through a combination of particle image
velocimetry and fluorescently labeled microtubules
[11–13]. Previous work [7,11] revealed that these initial
flows exhibit transient, recurring vortices and jets whose
correlation length is a fraction of the cell scale, with no long-
range order. But by stage 11, a dramatic reconfiguration of
the cytoskeleton occurs, coincident with the appearance of a
cell-spanning vortex [6,7,10,14].
Kinesins move from minus ends of microtubules

(attached to the oocyte periphery) to plus ends (free in

the interior). Transport of cargo through the network
depends on motor-microtubule binding [16,17] and the
mesh architecture [18,19]. As a motor pulls cargo toward
the plus end, the filament experiences a localized minus-
end-directed compressive force, as in Euler buckling. For a
filament of length L and bending modulus A [20], the
buckling force is π2A=4L2 ∼ 50 pN=L2, where L is
measured in microns. Thus, a kinesin’s force of several
pN [21] can buckle MTs 10–40 μm long.
The coupled filament-motor problem is richer than Euler

buckling because a motor exerts a “follower force” [22] that

FIG. 1. Cytoplasmic streaming in the Drosophila oocyte. The
three-dimensional oocyte shape is approximately given by rotat-
ing the cross section about its anterior-posterior axis. (a) Exper-
imental flow field [15] and schematic of the disordered swirling
flows and microtubule organization in early stages of develop-
ment. (b) Later flows organize into a single vortex as MTs lie
parallel to the cell periphery.
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is aligned with the filament. This feature breaks the
variational structure of the problem and induces a filament
pinned at its minus end to oscillate at zero Reynolds
number [23–25]. By exerting a force on the fluid,
a motor induces long-range flows which can further deform
filaments [26,27].
It has been hypothesized [10,14] that the transition from

disordered flows to a single vortex in stage 11 is a
consequence of fluid-structure interactions, facilitated by
a decrease in cytoplasmic viscosity that accompanies the
disappearance of a coexisting network of the biopolymer
f-actin. Here, through a combination of direct computations
on the coupled filament-flow problem [24] and studies of a
continuum theory for dense filament suspensions [28], we
confirm this hypothesis by showing the existence of a
swirling instability of the cytoskeleton.
Swirling can be understood in a simplified model of the

oocyte: a rigid sphere of radius R containing a fluid of
viscosity μ, with N elastic filaments reaching inward from
clamped attachment points equally spaced around the
equator. A slice in the filament plane [Fig. 2(a)] appears
like the confocal slice in Fig. 1. The filaments have a radius
r, a constant length L, bending modulus A, and a uniform
line density f of follower forces [Fig. 2(b)].
Some comments are in order. Although free MTs have a

complex dynamics of growth and decay, recent evidence
[29] for “superstable” cortically bound MTs in stages
displaying unidirectional streaming justifies the constant-
length approximation. As the exact nature of cortical MT
binding is unclear, we make the simplest assumption of
orthogonal clamping to a rigid cortex. Finally, the model is
agnostic regarding the transported cargo, provided the
resultant forces on the fluid and fiber are equal and
opposite, and aligned with the fiber [29].
Microtubules are the quintessential slender bodies [30]

of biophysics, with aspect ratios ε ¼ r=L of Oð10−3Þ. As
their self-interactions are weak, we use local slender-body
theory [31,32] to obtain the dynamics. In an arclength
parametrization s, the jth filament rjðs; tÞ evolves as

ηðrjt − UjÞ ¼ ðI þ rjsr
j
sÞ½−Arj4s þ ðΛjrjsÞs − frjs�; ð1Þ

where rjs is the unit tangent, η¼8πμ=c, with c¼jlnðeε2Þj,
and the Lagrange multiplier Λj enforcing inextensibility
obeys a second-order partial differential equation [33].
In the background flow Uj ¼ uj þ ui→j þ vi→j, uj is
that produced by the motors on j, ui→j is due to the motors
on i ≠ j, and vi→j is due to motion of filaments i ≠ j. For
example, the flow induced at x by motors dragging cargo
along the jth fiber is

R
L
0 dsfrjsðsÞ ·G½x − rjðsÞ� (see the

Supplemental Material [34,35]), withG the Green’s function
for the interior of a no-slip sphere [36]. Filament clamping at
the sphere implies that rjð0; tÞ remains fixed and rjsð0; tÞ is
the local inward sphere normal. The free end is torque and
force free: rjssðL; tÞ ¼ rjsssðL; tÞ ¼ ΛðL; tÞ ¼ 0.
A single fiber clamped at a flat wall displays a super-

critical Hopf bifurcation which, expressed in terms of
the dimensionless motor force σ ≡ fL3=A, occurs at
σ� ≃ 124.2, beyond which the filament exhibits steady
oscillations with amplitude ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ − σ�

p
[24]. When several

filaments interact within the sphere (2c), they also oscillate,
but with their motions synchronized in phase like eukary-
otic flagella [37]. The dynamical model (1) contains two
ingredients often found necessary for such synchronization
[38,39]: hydrodynamic interactions and the ability of a
filament to change shape and thereby adjust its phase in
response to those flows.
As the filament density and motor strength are increased,

we find the swirling instability: transition to a steady state of
bent filaments whose free ends are nearly parallel to thewall
[Fig. 2(d)]. This bending is maintained by motor-induced
azimuthal flows that generate drag along the distal ends of
filaments and thus a torque countering bending torques
nearer the base. As with any such spontaneous symmetry
breaking, initial conditions dictate the choice between
equivalent left- and right-handed configurations. This tran-
sition is reminiscent of self-organized rotation of cytoplas-
mic droplets extracted from plants [40] and the spiral vortex
state of confined bacterial suspensions [41], bothmodeled as
force dipole suspensions [42–44]. A “locked-curvature”
regime of free, axially driven filaments, reminiscent of the
bent MTs in the swirling state, has also been observed [45].
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FIG. 2. Discrete-filament computations. (a) N equally spaced filaments clamped at their attachment points, reach inward from a no-
slip spherical shell. Each has a continuous distribution of tangential point forces (green) that (b) exert a force Γ on the fluid and an equal
and opposite compressive force on the filament. Synchronous oscillations (N ¼ 7, σ ¼ 1700), (d) steady, bent configuration (N ¼ 11,
σ ¼ 1100) and swirling flow field.
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While direct computations on denser arrays of discrete
filaments are possible [46], cortically bound oocyte MTs
are so tightly packed, with an interfiber spacing δ ≪ L
[10–13], that a continuum approach is justified. The
description we use [28], in which microtubules form an
anisotropic porous medium, is based on the mapX ¼ rðαÞ,
where the Lagrangian coordinate α ¼ ðα; sÞ encodes the
location α of the minus ends of the microtubules and
arclength s. In a system of units made dimensionless by L
and elastic relaxation time ηL4=A, we obtain a continuum
version of (1),

rt − ujrðαÞ ¼ ðI þ rsrsÞ · ½−rssss þ ðΛrsÞs − σrs�: ð2Þ

The fluid velocity u arises from the force distribution along
the filaments and is evaluated at the Eulerian position x
according to an inhomogeneous Stokes equation,

−∇2uþ∇p ¼ χmtρ½J −1½−rssss þ ðΛrsÞs��jr−1ðxÞ; ð3Þ

subject to the incompressibility constraint ∇ · u ¼ 0. The
indicator function χmt is supported where the MT array is
present [Fig. 3(a)]. Here, ρ ¼ 8πρ0L2=c is the rescaled
areal number density of microtubules, expressible as
ρ ¼ ϕðL=δÞ2, where the constant ϕ depends only on the
MT slenderness and packing geometry at the wall; ϕ ≈ 4
when c ≈ 10 and the MTs are hexagonally packed. The
quantity J ¼ det½∂r=∂α� measures the change in micro-
tubule density due to deformations of the array; J −1

increases as fibers move closer together.
The simplest geometry is an infinite planar array

of MTs with the same boundary conditions as in the
discrete model [Fig. 3(a)], and with no-penetration and
zero-tangential stress conditions on the fluid a distance H
above the wall. For dynamics homogeneous along x, the
fluid flow is unidirectional and constant above the MTs, so
H plays no role. Nonlinear computations [47] reveal both
oscillatory dynamics and the emergence of steady stream-
ing. Figure 3(b) shows the dynamics when ρ ¼ 4.65 and
σ ¼ 70: self-sustaining oscillations of the MT array are
observed, similar to those in Fig. 2(c). Note that while
Fig. 3(b) shows only a single filament, it represents the
common dynamics of all of the collectively beating
filaments in the array. When σ is decreased to ≈ 39, the
MT array deforms and stabilizes into a steady bent state
[Fig. 3(c)]. This is the continuum version of the swirling
transition, with dynamics similar to the discrete case.
An equilibrium of the system occurs when filaments are

aligned straight along z, with u ¼ 0 and Λ ¼ −σð1 − zÞ.
For σ > 0, the motor force is compressive and buckling
may occur. A small transverse perturbation in fiber shape of
the form rs ¼ ẑþ ϵgðzÞx̂ (ϵ ≪ 1) evolves as

gt ¼ −gzzzz − σ½ð1 − zÞgz�z þ ρ½σð1 − zÞgþ gzz�: ð4Þ

The first two terms are like those of an elastic filament
under an aligned gravitational field, with a linearly varying
tension [48,49]. The third is fiber forces filtered through the
nonlocal Stokes operator, capturing hydrodynamic inter-
actions within the fiber array (hence the ρ prefactor). Here,
the simplicity of the flow is such that inverting the Stokes
equations does not lead to the typical global coupling. The
term ρgzz captures the additional resistance to bending from
flow: if a MT bends, it moves the nearby fluid, bending
other MTs; the term ρσð1 − zÞg is destabilizing: if a MT
remains straight, it must resist fluid motions generated by
surrounding MTs.
The coarse-grained model in planar geometry reproduces

the behavior of the discrete-filament model. To capture
features of the oocyte geometry—its convex shape and
confined hydrodynamic interactions—we extend the analy-
sis to a cylindrical domain, where the no-flow steady state
is an array of MTs pointing straight inward. Figure 4 shows
the results of a linear stability analysis for an experimen-
tally relevant ratio of cylinder diameter to MT length of
10∶1. For ρ ≪ 1, the continuum model behaves like
isolated fibers with negligible collective fluid entrainment.
For small σ, straight fiber arrays are stable (regions I and II,
with region II having oscillatory decay to equilibrium), but
with increasing σ there is a Hopf bifurcation to a state that
nonlinear simulations show has oscillations [cf. Fig. 3(b)].
For ρ≳ 2.8 (δ≲ 1.2L), a new region of instability (IV)
appears, with real, positive eigenvalues; nonlinear simu-
lations show this leads to collective MT bending and
swirling flows [cf. Fig. 3(c)]. The structure of these
transitions is independent of the degree of confine-
ment [34].
Figure 4(b) shows a nonlinear computation of the

transition to swirling in region IV. The upper inset shows
the development of the instability, with successive MTs
bending over to form a dense canopy above their highly
curved bases. Once steady, the concentrated motor forces
within the canopy are azimuthally aligned, almost a
δ-function a distance ∼L=4 above the wall, and drive the
large-scale streaming flow. The ooplasmic flow beneath the
MT canopy is nearly a linear shear flow, transitioning above
to solid body rotation, the solution to Stokes flow forced at a
cylindrical boundary.

(a) (b) (c)

FIG. 3. Continuum model in planar geometry. (a) Bi-infinite
array of MTs, clamped vertically at a no-slip boundary. Results of
computations at ρ ¼ 4.65: (b) σ ¼ 70 and (c) σ ¼ 39. Colors
denote time, from cyan (early) to pink (late).
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We now estimate ranges of density and force that
are consistent with observed streaming speeds u ≈
100–400 nm=s (Fig. 1 and [14,29]). Taking L ¼ 20 μm,
μ ¼ 1 Pa s [11], and A ¼ 20 pN μm2, we obtain a
velocity scale A=ηL3 ≈ 1 nm=s and a force-density scale
A=L3 ≈ 2.5 fN=μm. Figure 4(c) shows the speeds com-
puted in region IV. Those with maximum speeds falling in
the experimental range lie in the hatched area. Increasing ρ
only marginally increases streaming speeds, and so to
increase flow speed while remaining in region IV requires
increasing both ρ and σ. The minimum value of ρ ≈ 20 that
is consistent with observed streaming velocities corre-
sponds to δ≲ 0.4L, a more stringent constraint than that
required for the streaming transition. The force densities
consistent with streaming speeds are f ∼ 0.1–0.6 pN=μm.
Speeds on the higher end of the range approach the ≈
700 nm=s of kinesin-1 under negligible load [21], while
cargo speeds on oocyte MTs are 200–500 nm=s [14,29,50].
Assuming a linear force-velocity relation and a stall
force of 6 pN [21] give a single motor force of ≈ 2 pN;
approximately 1–6 kinesins are needed per 20 μm MT to
generate these force densities.
A heuristic argument for the weak dependence of flow

speeds on ρ views the cytoskeleton as a porous medium of
permeability k ∼ δ2, in which speed u ∼ ðk=μÞ∇p, where
the pressure gradient (force/volume) from motors is f=δ2,
yielding u ∼ f=μ ∼ ðA=ηL3Þð8π=cÞσ, independent of ρ.
This relationship is surprisingly accurate [34].
When the density ρ is sufficiently high, the swirling

instability first appears for force densities σ substantially
smaller than those that induce oscillatory instabilities in a
single filament; this transition is driven by additional
hydrodynamic destabilization imparted by neighboring
fibers [in planar geometry, the term ρσð1 − zÞg in
Eq. (4)]. This observation motivates a heuristic argument
for the instability, in which a filament is bent by the flow
produced by its upstream neighbor, whose distal half is
nearly parallel to the wall. Seen from a distance, that

bent portion acts on the fluid like a point force [51]
F ∼ ðfL=2ÞrsðLÞ oriented along its tangent vector
(Fig. 5), displaced a distance h∼L=2 from the surface.
Near a no-slip wall, the far-field flow along x due to a force
Fkx̂ a distance δ upstream is simple shear [52,53],

Uðx; zÞ ¼ _γzêx; ð5Þ

where _γ ¼ 3hF=2πμδ3. Self-consistency requires the
magnitude of the force driving the shear be given by the
projection of F along x, so _γ → _γ sin½θðLÞ�.
The simplest model to illustrate the self-consistency

condition is a rigid MT with a torsional spring at its base
that provides a restoring torque−kθ [Fig. 5(i)]. With zðsÞ ¼
s cos θ and ηn̂ n̂ ·U the local normal force on a segment, the
local torque about the point s ¼ 0 is η_γs2 cos2 θ which,
when integrated along the filament and balanced against the
spring torque, yields the self-consistency condition

θ ¼ B sin θ cos2 θ; ð6Þ

where B ¼ η_γL3=k. For B < 1 (slow flow or a stiff
spring), θ ¼ 0 is the only fixed point, while for B≳ 1

(a) (b) (c)

FIG. 4. Continuum model in cylindrical geometry. (a) Results of linear stability analysis about the radially aligned state, with R ¼ 5L.
(b) Steady-state fiber deformations and velocity field for σ ¼ 150 and ρ ¼ 80. Density of visualized fibers corresponds to the physical
density. The top inset shows deformed MTs and the dynamics of a representative one (see also the Supplemental Video [34]). The
bottom inset shows the azimuthal velocity field as a function of r. (c) Dimensional streaming velocities in parameter space; hatched
region is consistent with in vivo estimates of 100–400 nm=s. Yellow dot denotes simulation shown in (b).

t(L)

F

^

FIG. 5. Self-consistent model. An upstream point force F
parallel to the distal filament end produces shear flow that
deflects the filament. Two variants: (i) rigid rod with a torsional
spring at its base and (ii) a clamped elastic filament.
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two mirror-image swirling solutions appear through a
pitchfork bifurcation, θ� ≃ ½6ðB − 1Þ=7�1=2. A structurally
similar model has been used to explain cytoplasmic
streaming in the Caenorhabditis elegans zygote [54].
To study the interplay between filament oscillations and

swirling we use (5) in the dynamics (1), where the control
parameter for the shear flow is [26,27]

M ¼ η_γL4

A
∼
3σ

c

�
ρ

ϕ

�
3=2

; ð7Þ

and the second relation uses the estimates above for F and
h. Because a clamped elastic filament behaves like a
torsional spring with spring constant k ¼ A=L, we see
consistency with the parameter B above. A numerical self-
consistent calculation confirms the existence of a swirling
instability [34].
Through discrete and continuummodels, we elucidated a

novel swirling instability of arrays of elastic filaments,
lending support to the hypothesis [14] that cytoplasmic
streaming flows in Drosophila oocytes are tied to self-
organization of the microtubule cytoskeleton. Further
evidence for this hypothesis may come from genetic or
other perturbations that explore the parameter space in
Fig. 4(a). Future studies could shed light on the detailed
mechanism involved in the untangling of the Drosophila
oocyte cytoskeleton when it transitions to the vortical state,
and the possibility of reproducing this transition in vitro.
Last, this study highlights the role of active force dipoles in
the self-organization of fluid-biopolymer systems [42–44].
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