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Zigzag instability of biased pusher swimmers
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Abstract – Microorganisms self-propelling in a fluid create flow fields that impact the dynamics
of other swimmers. Some organisms can be biased and have a preferred swimming direction,
e.g., those displaying gyrotaxis, chemotaxis or phototaxis, and as a result often focus along thin
lines. Here we use numerical computations and far-field theoretical calculations to show that
the position of a collection of biased swimmers moving along a line is unstable to a zigzag mode
when the swimmers act on the fluid as pusher dipoles. This instability takes the form of periodic
transverse oscillations in the position of the swimmers. We predict theoretically that the most
unstable wavelength is equal to twice the inter-swimmer distance and that the growth rate of the
instability increases linearly with the magnitude of the stresslet, both of which are in quantitative
agreement with our numerical simulations.

Copyright c⃝ 2021 EPLA

Introduction. – The swimming of biological microor-
ganisms is a rich field of study, encompassing under the
same umbrella a wide range of species, from simple unicel-
lular bacteria to large eukaryotes and multicellular aquatic
organisms [1]. From the point of view of physics, over sev-
enty years of work since GI Taylor’s early paper [2] has
led to significant advances in our understanding of the
required symmetry breaking at the cellular level [3], the
fluid dynamics governing the flows around the cells [4,5]
and the physics of active matter [6].

As a microorganism self-propels in a fluid using its ap-
pendages, e.g., flagella or cilia, it creates long-range flows.
Since microswimmers are force free, the flow fields are
typically force dipoles, known more generally in hydro-
dynamics as stresslets [7] and decaying spatially with dis-
tance r as 1/r2. The stresslets of swimmers are of two
types: “pusher”, for cells pushed from the back by their
flagella and “puller” in the opposite case where the cell
is being pulled from its beating appendages located in
front of it [5]. These flows have been measured and, ex-
cept for dense multicellular organisms that exert localised
forces [8], experimental agreement with the stresslet model
is excellent far from the swimming organism [9]. When the
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swimming motion is time varying, the nearby flows can al-
ternate between pusher and puller modes [10] and include
additional complexity [8,11].

The flow fields created by the moving cells can impact
the dynamics of other nearby swimmers and hydrody-
namic interactions have been shown to affect the coupled
locomotion of swimmers [12–14]. At the level of a popula-
tion of cells, this can then induce new, collective modes of
locomotion [15–17], impact fluid rheology [18] and lead
to bio-inspired dynamics in artificial colloids [19]. Ex-
perimental work on bacteria in their swimming [20–24]
or swarming states [25,26], algae [27,28] and sperma-
tozoa [29,30] provide diverse examples of correlated,
collective dynamics mediated by the surrounding fluid.
Collective effects have also been addressed from the point
of view of statistical physics [31,32].

Analogous to the classical route used to understand the
transition to turbulence [33], one method to tackle the
fundamental hydrodynamics of collective locomotion con-
sists in looking for unstable modes to fixed points of the
coupled cell dynamics. Pioneering work showed that long-
wavelength perturbations to any ordered swimmer sus-
pensions are unstable [34], which can be rationalised by
inspecting the vorticity created by stresslets [5]. Homo-
geneous dilute suspensions of pusher swimmers were also
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shown to be unstable in orientation while pullers were pre-
dicted to remain stable [35,36]. Recent work addressed
instabilities in artificial swimmers [37].

In this letter, we consider a collection of pusher swim-
mers assumed to be biased to swim in a particular direc-
tion. This setup is relevant to a wide range of biological
situations, with a bias that could arise from many external
factors. For example, some aquatic organisms are bottom
heavy so they display gravitaxis and are passively reori-
ented to swim upwards [38]. Similarly, swimmers display-
ing phototaxis reorient themselves and swim toward light
sources [39,40] while cells undergoing chemotaxis [41,42]
may also be modelled empirically as being biased in their
orientation.

In these cases where swimming is biased in a partic-
ular direction, cells subject to an external flow acting in
the direction opposite to the preferred swimming direction
are known to focus along elongated threads; this focus-
ing phenomenon was originally demonstrated in the case
of bottom-heavy algae in pipe flow [43]. Lines of such
swimmers were then shown to be subject to a clustering
instability in the case of puller swimmers, while pushers re-
mained stable [44]. In this letter, we use a combination of
numerical computations and far-field theoretical calcula-
tions to show that a collection of biased pusher cells swim-
ming along a line is unstable to transverse perturbations
in the position of the swimmers. We predict theoretically
that the most unstable mode has a wavelength equal to
twice the distance between swimmers (zigzag mode) and
that its growth rate increases linearly with the magnitude
of the stresslet, both of which are in quantitative agree-
ment with our numerical simulations.

We first present in an overview of our numerical meth-
ods along with the results of our simulations. We then use
a far-field theoretical model to study the instability, and
compare the theoretical results with those of the compu-
tations. We conclude by a discussion and a summary of
our results.

Numerical simulations. –

Setup. The classical model swimmer used in this
study is the spherical squirmer [45,46]. The swimmer is as-
sumed to be neutrally buoyant, non-Brownian and to swim
at a very small Reynolds number. To include the bias in
its locomotion we make the swimmer bottom heavy, which
adds a restoring gravitational torque every time it is not
aligned vertically pointing upwards. The presence of this
restoring torque allows us then to model all cases where
the swimmer is biased to swim in a particular direction,
not just that due to gravitaxis.

In the squirmer model, the surface of the spherical cell is
prescribed to move purely tangentially, with a tangential
motion assumed to be axisymmetric and time indepen-
dent. We denote by e the unit orientation vector in the
direction of swimming. Using spherical coordinates, we
follow ref. [12], and prescribe the tangential surface veloc-
ity, us, as us = (3U0/2)(sin θ + β sin θ cos θ)eθ, where U0
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Fig. 1: Numerical setup for our calculations. (A) Squirmers
swimming with velocity U0e with an anterior side indicated by
the small red cap. Swimmer are subject to a restoring torque of
magnitude Tb aligning them to swim vertically upward (the an-
gle θ is the polar angle measured from the swimming direction).
(B) A suspension of squirmers interact hydrodynamically in a
Stokes flow. (C) As initial condition of our simulations the
swimmers are aligned along a vertical line and separated by a
constant distance ∆.

is the swimming speed of a solitary squirmer and θ is the
polar angle measured from e (see notation in fig. 1). The
far-field flow generated by the swimmer is classically given
by the dipolar flow [5]

u(r) = −
3U0βa2

4

(

−
1

r3
+

3(e · r)2

r5

)

r, (1)

and the dimensionless parameter β reflects the strength
of the force dipole. A squirmer with β > 0 is a puller,
whereas the case with β < 0 represents that of a pusher.

Due to their bottom heaviness, the squirmers in our
model tend to align in the direction opposite to gravity,
as illustrated in fig. 1(A). The restoring torque of magni-
tude Tb is given by Tb = 4

3πa3ρhe × g, where a is the
radius of the swimmer, ρ is the density, h is the dis-
tance of the centre of mass to the geometric centre of
the squirmer, g is the gravitational acceleration (taken
here as −ex). To measure the effect of bottom heaviness,
we can introduce a dimensionless number Gbh, defined as
Gbh = 4πρgah/(3µU0), where µ is the (dynamic) viscosity
of the fluid.

We compute the hydrodynamic interactions between an
infinite suspension of squirmers (cf. fig. 1(B)), at negligi-
ble particle Reynolds number (i.e., in the absence of in-
ertia), using the Stokesian dynamics method developed
in ref. [47]. The far-field contribution to the grand mo-
bility matrix is derived from Faxén’s laws. The infi-
nite extent of the suspension is taken into account using
Ewald summation [48]. Near-field interactions are added
in a pairwise additive fashion using the boundary element
method [12]. The method includes an infinite number
of reflected far-field interactions among an infinite num-
ber of squirmers as well as near-field lubrication forces,
whose accuracy was studied in ref. [47]. Further details
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Fig. 2: Numerical results (projected in the x-y plane) showing the initial configuration of swimmers (separation distance
∆ = 2.5a) and at the dimensionless times tU0/a = 45 and 90 for five values of the stresslet magnitude: β = 0 (neutral swimmer)
and β = −0.1, −0.5, −1, −2 and −5 (pushers). We observe a zigzag instability for all pusher swimmers with a growth rate that
increases with the magnitude of the dipole parameter, |β|. Movies of the unstable cases are also available as SM.

on the Stokesian dynamics method are provided in the
appendix.

In order to address the stability of a line of swimmers,
we place 20 equally distant squirmers along a vertical line,
i.e., the x-direction, as shown in fig. 1(C). The initial dis-
tance between centres of squirmers is set as ∆ = 2.5a, and
then small random displacements, less than 0.02a in mag-
nitude, are added in the x- and y-directions. The compu-
tational domain is a cube with the side length 50a, and we
assume triply periodic boundary conditions. Hence, the
line of squirmer is infinitely long in the vertical direction,
which is repeated horizontally in the y- and z-directions
with 50a intervals.

In order to chose a relevant value for Gbh, we can turn
to past experiments where this dimensionless number can
be estimated for Volvox carteri colonies [49,50]. The value
of Gbh depends on the size of the colonies, and ranges from
about 1.8 to Gbh ≫ 1 in the case of large colonies (above
300 µm in size). We therefore consider here squirmers with
Gbh = 100, with orientations that remain almost vertically
upward all the time due to the strong bottom heaviness;
as long as Gbh ≫ 1, its exact value does not impact our
computational results.

Results. We compute numerically the dynamics
of the hydrodynamically-interacting pusher squirmers
with β = −0.1, −0.5, −1, −2 and −5, and illustrate our
results at dimensionless times tU0/a = 0, 45 and 90 in
fig. 2 (movies of these five cases are also available as
Supplementary Material (SM): SM movie beta-0.1.avi,
SM movie beta-0.5.avi, SM movie beta-1.avi, SM

movie beta-2.avi, SM movie beta-5.avi.). With in-
creasing time, we observe that the initial perturbation
grows, and that the squirmers tend to form a zigzag line.
After the initial nearly symmetric zigzag growth, the
arrangement of squirmers becomes disordered.

The rate of growth of this instability is seen to in-
crease with the magnitude of |β|, which demonstrates
that it is controlled by hydrodynamic interactions between
squirmers. We observe the instability in the all pusher
cases, i.e., β < 0 but it disappears in the case of pullers,
i.e., β > 0, where it is instead replaced by the clustering
instability reported in ref. [44]. We include in fig. 2 the
results in the neutral case β = 0 (left); in that case the
line of swimmer is not unstable.

In order to further quantify the dependence of the in-
stability on the value of the squirmer parameter β, we plot
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Fig. 3: Exponential growth of the zigzag instabilities as obtained numerically. (A) Time change of the root mean square (RMS)
horizontal displacement of the perturbation for different values of β. The plot is displayed using log along y, hence all initial
straight slopes indicate exponential growth. (B) Initial exponential growth (obtained from (A) using least squares on the data
from tU0/a = 0 to the time at which the RMS displacement becomes one third of its value at tU0/a = 100) as a function of β;
the red line is the least-square linear fit passing through origin (R2 > 0.99).

in fig. 3(A) the time dependence of the root mean square
(RMS) horizontal displacement of the perturbation for the
five values of β. We display the result using a log scale
along the y-axis, and thus a linear slope in the figure in-
dicates an exponential growth of the perturbation. Such
a linear slope is apparent for all values of β, which clearly
illustrates that the instability grows exponentially in all
cases.

We next measure the slopes of this exponential growth
using least squares on the data ranging from tU0/a = 0
to the time at which the RMS displacement becomes one
third of its maximum value in the interval tU0/a = 0 →
100. We note that the slope (and thus the growth rate) is
essentially constant during this time interval. The fitted
growth rates are then plotted as a function of the value of
β in fig. 3(B); the red line in the figure is a linear least-
square fit passing the origin. Our computational results
clearly show that the exponential growth of the instability
is proportional to β; the same result will be recovered by
the linear stability analysis in the next section.

Finally, in order to determine which wavelength of the
initial perturbation grows the fastest in our instability,
we calculate the power spectrum of the RMS horizontal
displacement at the time tU0/a = 3 as a function of the
wavelength (normalised by the initial inter-swimmer dis-
tance); the results are then averaged over 10 independent
simulations with different initial conditions and plotted
in fig. 4. The largest amplitude appears at twice the
initial interval, which indicates that the most unstable
wavelength is equal to twice the inter-swimmer distance.
This result, which is the sign of a zigzag instability, will
also be confirmed by the modelling carried out in the next
section.

Theoretical model. – Motivated by the computa-
tional results shown in fig. 2, in this section we model
theoretically the three-dimensional swimmers as stresslets
moving on a line. Before the instability, the swimmers
are assumed to be located on a one-dimensional lattice of
spacing ∆ along the x-direction and we assume their ori-
entation is also fixed along x. We know from the work in
ref. [44] that pushers are stable to perturbations along x
(no clustering mode). Inspired by our numerical results,
we then look for an instability due to perturbation in po-
sition along y, perpendicular to the direction of swimming
(and thus that of the orientation of the cells).

Moving into the co-swimming frame, the far-field flow
induced by a cell swimming along a unit vector e located
at the origin is assumed to be given by a stresslet in the
form of a force dipole of strength P

uP(r) =
P

8πµ

(

−
1

r3
+

3(e · r)2

r5

)

r. (2)

Indeed, for the squirmer model used in our simulations, it
is a classical result that the flow in the far field is given
by eq. (1), i.e.,

u(r) = −
3U0βa2

4

(

−
1

r3
+

3(e · r)2

r5

)

r, (3)

which is that of a force dipole, eq. (2), with P =
−6πµU0βa2. The dipole strength is therefore of the sign
opposite to the parameter β in our numerical simulations.
We assume the orientation of the swimmers is unchanged
and fixed to e = ex so eq. (2) becomes

uP(r) =
P

8πµ

(

−
1

r3
+

3x2

r5

)

r. (4)
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Fig. 4: Power spectrum of the RMS horizontal amplitude at
tU0/a = 3 as a function of the wavelength of the perturba-
tion normalized by the initial inter-swimmer distance (equal
here to ∆ = 2.5a). The results are averaged over 10 indepen-
dent simulations with different initial conditions and show that
the maximum amplitude is obtained for a wavelength equal to
twice the inter-swimmer distance.

Here r2 = x2 + y2 + z2 and we restrict in what follows
the whole motion to the z = 0 plane. Since we investigate
stability along the y-direction, we need to evaluate the
y-component of the swimmer-swimmer interactions, which
is given by

uP
y (x, y) =

P

8πµ

y(2x2 − y2)

r5
. (5)

Before the instability the swimmers are at the fixed
points x̄n = (n∆, 0). We allow them to be perturbed
by ϵn along the y-direction with no perturbation along
x so that xn = x̄n + δxn = (n∆, ϵn). Due to hydrody-
namic interactions with all other swimmers, and in the
absence of inertia, the dynamics of swimmer #n is then
given along y by the sum of the y velocities created by all
other swimmers #p with p ̸= n, i.e.,

ϵ̇n =
∑

p>1

uP
y (xn − xn+p, yn − yn+p)

+
∑

p>1

uP
y (xn − xn−p, yn − yn−p). (6)

Using a Taylor expansion for small ϵn with ϵn − ϵn−p ≪
p∆ we have at first order in the ϵq’s

uP
y (xn − xn−p, yn − yn−p) =

P

4πµ

(ϵn − ϵn−p)

(p∆)3
. (7)

Assuming nearest-neighbour interactions for simplicity,
we next obtain at first order

ϵ̇n = uP
y (xn − xn+1, yn − yn+1)

+uP
y (xn − xn−1, yn − yn−1)

=
P

4πµ∆3
(2ϵn − ϵn+1 − ϵn−1). (8)

Looking for Fourier modes of the form

ϵn±p = ε eσte−i[k(n±p)∆], (9)

we finally obtain from eq. (8) the dispersion relation for
the modes

σ =
P

4πµ∆3

(

2 − e−ik∆ − eik∆
)

=
P

2πµ∆3
(1 − cos k∆) .

(10)
Clearly σ > 0 for all values of the discrete wavenumber
k provided that P > 0, which corresponds to β < 0 in
the simulations. A line of pusher cells swimming along
x and also aligned with x leads to an instability along
y, i.e., in the direction perpendicular to the direction of
swimming. This is consistent with what we observed in
our numerical simulations. In contrast, the case of pullers
with P < 0 (i.e., β > 0) is stable, again in agreement with
our computational results. Furthermore, we obtain that
the growth rate of the instability scales increases linearly
with the magnitude of the dipole, a result consistent with
the simulations shown in fig. 3.

What is the shape of the most unstable mode, i.e., the
one leading to the largest value of σ? For a given value of
the dipole strength, the maximum growth rate is obtained
for cos k∆ = −1, i.e., k∆ = π. Using eq. (9) we therefore
have

ϵm = ε eσte−imk∆ = ε eσte−imπ, (11)

and since e−iπ = −1 this means that

ϵm = ε eσt(−1)m. (12)

The most unstable mode corresponds therefore to alter-
nating +/− transverse motion of the swimmers and the
most unstable wavelength is twice the inter-swimmer dis-
tance. This is identical to the zigzag motion seen in the
numerics (figs. 2 and 4).

Discussion. – The study carried out in this letter is
focused on one-dimensional lines of microswimmers. Past
theoretical work addressed three-dimensional instability
modes coupling orientation and density for swimmer sus-
pensions [34–36]. By tackling swimmers with a fixed
orientation, we are able here to focus on position insta-
bilities. A previous calculation showed that pullers are
unstable to clustering [44], confirming results seen in nu-
merical simulations [51] and in agreement with the bands
of swimmers observed in a previous study [52]. The zigzag
instability discovered in the current work is consistent with
the results of ref. [52] showing a similar instability aris-
ing in an horizontal band of puller swimmers (see their
fig. 5). Since a horizontal straight line of pullers have hy-
drodynamic interactions analogous to a vertical straight
line of pushers, both instabilities have the same physical
mechanism.

The work in our letter can also be used to explain in-
stabilities in finite-size clusters of swimmers. We illustrate
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Fig. 5: Zigzag instability in the case of a finite suspension of
N = 6 pusher squirmers with β = −2. The periodicity of the
domain is taken to be 1000a in each direction in order to model
the dynamics of an isolated cluster. The swimming cells are
repelled from one another while displaying the instability.

this by carrying out numerical simulations for a finite sus-
pension of N = 6 identical pusher squirmers with β = −2
in a periodic domain of periodicity 1000a in all three di-
rections. The results are shown in fig. 5, with the initial
configuration and the positions of the swimmers at three
different times (results are shown in the frame of the swim-
ming cluster). Since this is a finite group of swimmers, the
pusher flow fields induce a repulsion between the cells and
they move away from one another. As this repulsion takes
place, we clearly see superimposed the same zigzag insta-
bility as in the previous case of the infinite line. An ide-
alised study on an infinite line can therefore provide the
basis for understanding the dynamics of finite swimmer
clusters.

Summary. – In summary, motivated by the focusing
of biased swimmers along thin lines, we investigated the-
oretically in this letter the stability of a line of biased
swimmers. We first used Stokesian dynamics simulations
of spherical squirmers with full hydrodynamic interactions
to reveal a new zigzag instability in the transverse posi-
tion of the swimmers, which occurs only in the case of
pusher cells. Using a far-field stresslet model, we were
then able to rationalise the numerical results, predicting
in particular that the most unstable wavelength is equal
to twice the inter-swimmer distance and that the growth
rate of the instability increases with the magnitude of the
stresslet, both of which are agreement with our numerical
simulations.
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Appendix: Stokesian dynamics. – At negligible
particle Reynolds number, the motions of N squirmers pe-
riodically replicated in three-dimensional space is solution
to [47]

[

I + M
far
FU : K2b

FU

]

.

(

U − U0e + Hsq

Ω

)

= M
far
SU : Sfar

+M
far
FU .

{(

F + Fα

T + Tα

)

− K2b
SU :

[

−
3

10
U0β (3ee − I)

]}

,

(A.1)

with

(

Fα

Tα

)

= Kn
2B :

⎛

⎝

−U0e + Hsq

0
− 3

10U0β (3ee − I)

⎞

⎠ −

(

Fn
sq

Tn
sq

)

(A.2)

and

Mfar =

[

M
far
FU M

far
FE

M
far
SU M

far
SE

]

, (A.3)

K2b = −Kfar
2B + Kn

2B =

[

K2b
FU K2b

FE

K2b
SU K2b

SE

]

, (A.4)

where F, T and S are, respectively, the force, torque,
and stresslet exerted by a squirmer on the fluid; U and
Ω are the translational and rotational velocities of the
squirmer, and I is the unit tensor; Sfar and Hsq are, re-
spectively, the far-field contributions to the stresslet and
the irreducible quadrupole, which are approximated by
neglecting the additional contribution of cell-cell interac-
tions; Mfar is the far-field contribution to the grand mobil-
ity matrix derived from Faxén’s laws. The infinite extent
of the suspension is taken into account using Ewald sum-
mation [48]. To include near-field interactions, we add
near-field multipoles in a pairwise additive fashion. The
far-field two-body resistance matrix is K

far
2B while Kn

2B is
the near-field two-body resistance matrix. The mobility
and resistance matrices are split into four components, as
in eq. (A.4), with subscripts FU , FE, SU , and SE indi-
cating couplings between force and velocity, force and rate
of strain, stresslet and velocity, and stresslet and rate of
strain, respectively. The vectors Fn

sq and Tn
sq are, respec-

tively, the force and torque generated by the two-squirmer
interaction in the near field, calculated numerically using
the boundary element method [12]. A short-range inter-
particle repulsive force is added to the system to avoid
the prohibitively small time step needed to overcome the
problem of overlapping particles [53]. The accuracy of the
method was confirmed by two benchmark tests in ref. [47]:
i) interaction of three inert spheres in a shear flow, and
ii) diffusion of squirmers in a fluid otherwise at rest.
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