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Synchronization is often observed in the swimming of flagellated cells, either for multiple appendages on
the same organism or between the flagella of nearby cells. Beating cilia are also seen to synchronize their
dynamics. In 1951, Taylor showed that the observed in-phase beating of the flagella of coswimming spermatozoa
was consistent with minimization of the energy dissipated in the surrounding fluid. Here we revisit Taylor’s
hypothesis for three models of flagella and cilia: (1) Taylor’s waving sheets with both longitudinal and transverse
modes, as relevant for flexible flagella, (2) spheres orbiting above a no-slip surface to model interacting flexible
cilia, and (3) whirling rods above a no-slip surface to address the interaction of nodal cilia. By calculating the flow
fields explicitly, we show that the rate of working of the model flagella or cilia is minimized in our three models
for (1) a phase difference depending on the separation of the sheets and precise waving kinematics, (2) in-phase
or opposite-phase motion depending on the relative position and orientation of the spheres, and (3) in-phase
whirling of the rods. These results will be useful in future models probing the dynamics of synchronization in

these setups.
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I. INTRODUCTION

The majority of cells able to move in fluids do so with the
aid of slender cellular appendages called flagella or cilia [1],
whose time-varying motion generates hydrodynamic stresses
that propel the cells forward [2-6]. Although different or-
ganisms employ different methods, the same general physical
principles of swimming at low Reynolds number apply to the
locomotion of all cells, from simple bacteria [7] to spermato-
zoa [8,9] and higher aquatic microorganisms [10,11].

One of the peculiar features of swimming cells is their
ability to synchronize the motion of their appendages. Indeed,
synchronization is observed to take place either for organ-
isms equipped with multiple flagella or cilia, or between the
flagella of nearby cells [12]. Such synchronization occurs, for
example, for bacteria equipped with multiple helical flagella
[13-18]. Spermatozoa swimming close to one another are also
known to cooperate [19] and synchronize their waving motion
[20,21], even though each cell is independently actuated. A
unicellular alga can synchronize its two flagella [22], while
hydrodynamic interactions also lead to synchronized dynam-
ics for appendages on different cells [23]. For larger ciliated
cells [24], or for multicellular aquatic organisms equipped
with many short flagella [25], the synchronization dynamics
takes the form of metachronal waves, akin to spectator waves
in sport stadiums. Synchronization also extends beyond swim-
ming to the dynamics of cilia on biological tissues. Nodal
cilia, which rotate rigidly around tilted conical orbits and pro-
duce left-right asymmetry in embryos, are a famous example
of this [26,27].
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While the synchronized dynamics can often be described
mathematically within the framework of coupled oscillators
[28], a key question lies in identifying the physical ingredients
leading to synchronization. In order for two oscillators to
synchronize, it is intuitive that two features are required. First,
there needs to be a physical means for the oscillators to com-
municate. It has long been suspected that this is generically
achieved for swimming cells through hydrodynamic interac-
tions [29], though “dry” synchronization is also possible via
coupling to the cell body [30,31] or intracellular coupling
[32,33].

The second required ingredient is a physical mechanism
that allows the phase of the oscillators to evolve. In the context
of cellular synchronization via hydrodynamic interactions,
two such mechanisms have been identified theoretically. In
the first one, it is the elastic compliance of the orbits that
allows oscillators to speed up or slow down in response to
hydrodynamic flows [34]. The second generic mechanism is
phase-dependent cellular forcing, so that flagella or cilia are
able to change their phase dynamics in response to external
hydrodynamic stresses [35].

One interesting aspect of cellular synchronization concerns
its energetic consequences. The degrees of freedom available
to interacting flagella and cilia could be used to minimize
energetic costs, for example, the dissipation of mechanical en-
ergy in the surrounding viscous fluid. This was the argument
originally examined by Taylor to explain the in-phase syn-
chronization of nearby spermatozoa [36]. While this energetic
view has proven to be popular in addressing the collective
dynamics of cilia [37] and metachronal waves [38], theoret-
ical calculations have shown that the dynamics of swimmers
can cause cells to synchronize into a state where the energy
dissipation is maximum [39]. The states of minimum energy
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FIG. 1. Two identical waving sheets as models for two flagel-
lated spermatozoa, which interact hydrodynamically. The sheets, of
dimensionless period 27, are separated by a mean dimensionless
distance d. The phase difference between the sheets is denoted by A.
The waving motion includes both longitudinal and transverse modes,
so that a material point traces an ellipse.

also depend critically on the relative position and orientation
of the flagella [40].

In this paper, we study the relationship between synchro-
nized dynamics and the dissipation in the surrounding fluid
using three classical models for flagella and cilia. We start
in Sec. II by revisiting Taylor’s two-dimensional swimming
sheet model, relevant to the synchronization of spermatozoa
[36,39,41-43], and extending it to the general case of flex-
ible swimmers undergoing both longitudinal and transverse
waving. In this case, we show that the minimum of energy
dissipation does not necessarily occur at the in-phase config-
uration but at an optimal phase difference between the two
sheets that depends on the detailed kinematics of the sheets.
We further use a long-wavelength calculation to provide phys-
ical intuition in the case of swimmers with purely longitudinal
waves. In Sec. III, we then consider orbiting spheres, a min-
imal model used to address the dynamics of interacting cilia
in past theoretical [34,44—-47] and experimental work [48,49].
We find that depending on the orientations and relative posi-
tions of the orbits, either in-phase or opposite-phase motion
of the spheres minimizes energy dissipated. In Sec. IV, we
finally consider interacting nodal cilia [26] modeled by rods
whirling above a no-slip surface [27,50]. In this case, the
energy is seen to be always minimized at the in-phase config-
uration. We finish in Sec. V with a discussion of our results in
the context of the dynamics of biological synchronization. Our
work, able to characterize analytically the states of minimum
dissipated energy in these models, will be useful for future
studies investigating the complex synchronized dynamics of
realistic flagella and cilia.

II. MODEL FOR INTERACTING FLAGELLA:
TWO WAVING SHEETS

A. Setup

In this first section, we consider the hydrodynamics of
two waving sheets as models for two identical flagellated
spermatozoa, which interact through a viscous fluid. The setup
is illustrated in Fig. 1 in dimensionless form. The sheets are
infinite and two-dimensional, as in Taylor’s original article

[36]. This classical setup has long been a validated physical
model for flagellated swimmers, since Taylor’s waving sheet
results on swimming and energetics were later shown to agree
with the corresponding results for beating filaments [40,51].
The advantage of this two-dimensional approach is that it
allows us to analytically characterize the states of minimum
viscous dissipation in terms of the parameters of the setup.
The two sheets are separated by a mean distance £, the first at
the unperturbed position y = 0 and the second at unperturbed
position y = h. The two sheets undergo identical prescribed
waving motion but with an imposed constant phase difference
A. We extend Taylor’s original model so that the waving
motion includes both longitudinal and transverse deformation
modes with amplitudes A and B, respectively. For each swim-
mer, we denote by ¢ a phase difference between these two
modes, where ¢ = 0 means that the material points move in
ellipses with semiaxes parallel to the x and y axes. The shape
of each sheet is periodic in space with wave number k and
in time with angular frequency w. The material points on the
first sheet are given by (xg b, yil)), with similar notation for the
second sheet.

To proceed with the calculation, we will consider the limit
of small-amplitude waving and solve for the leading-order rate
at which work is done by the sheets on the fluid between them,
as a function of the phase difference A. We will then compute
the optimal phase difference A*, which minimizes this rate
of working with respect to A. Importantly, the work done on
the fluid below sheet 1 and above sheet 2 is independent of
the phase difference; therefore, its value does not affect the
optimal phase difference, and we do not need to compute it in
what follows. Taylor [36] previously found that if the sheets
undergo only transverse deformation (A = 0), then the rate of
working at leading order is always minimized by in-phase
waving of the sheets (A* = 0). In our paper, we allow the
sheets to be flexible and thus undergo both longitudinal and
transverse deformation; that is, both A and B may be nonzero.
For this setup, we then find A* as a function of the ampli-
tudes, mean sheet separation, and phase difference between
the modes.

We impose the kinematics of material points with unper-
turbed position x on each sheet at time ¢ as

xé” =x+ Acos(kx — wt — ¢), (D
y ) = Bsin(kx — wt), 2)
x? = x+Acos(kx — wt + A — @), 3)
y? = h+ Bsin(kx — ot + A). )

Thus, a material point traces out an ellipse in time. In the case
of longitudinal oscillation only or transverse oscillation only
of each material point, this ellipse becomes a line segment. If
there is no longitudinal oscillation, then the material point has
position x; = x.

We note that the phase difference A is defined only up
to a multiple of 2. In our later discussion, we will refer to
values of A that satisfy —7 < A < m. Thus, if A is small and
positive, then the phase of the second sheet is slightly ahead
of that of the first sheet; that is, the peaks of the second sheet
are slightly to the left of those of the first sheet. Conversely,
if A is small and negative, then the phase of the second sheet
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is slightly behind that of the first sheet, and the peaks of the
second sheet are slightly to the right of those of the first sheet.

The fluid between the sheets is assumed to be Newtonian
and the Reynolds number sufficiently small that the governing
equations are the incompressible Stokes equations

V.gzluvzu—Vp:O, (5)
V.u=0, (6)

where o is the stress tensor, u is the fluid velocity field, p is
the dynamic pressure, and p is the dynamic viscosity [52].
The stress tensor o is given by 0 = —pl + u[Vu + (Vu)’],
where 1 is the identity tensor.

We nondimensionalize the problem using k' and w™! as
characteristic length and time scales, so that the pressure scale
is uw. The sheets are then separated by a mean dimensionless
distance d = kh (see Fig. 1). In preparation for calculation
of the flow in the small-amplitude limit, we define the small

parameter € = [(Ak)> + (Bk)z]%, so that we have dimension-
less longitudinal and transverse amplitudes a = Ak/e and
b = Bk/e, respectively. We now view a and b as independent
of € and let x,y,f,u, p, and o denote their corresponding
dimensionless quantities. Then the dimensionless kinematics
for the sheets become

xV = x +eacos(x —t — ¢), @)
W = ebsin(x —1), (8)
x? =x+eacos(x —t + A — ¢), )
¥ =d +ebsin(x —t + A). (10)

Note that we use the shared swimming frame of the two
sheets, which has coordinates (x, y). This is possible at order €
by the following symmetry argument. A replacement € — —¢
is equivalent to a translation of the setup by half a wavelength
in the x direction. Such a translation does not affect the relative
translational velocity of the sheets, because the sheets are
infinite and periodic in space. Hence, the relative translational
velocity is even in €. Therefore, the order € relative transla-
tional velocity of the sheets is zero.

The no-slip velocity boundary conditions for flow on the
sheets are given by

el (o \00y = €asin(x —t — ¢), (11)
uyl(xi”yyil)) = —ebcos(x — 1), (12)
(@ 0y = easinx —1 + A — @), (13)
Uyl (o 0y = —€bcos(x —1 + A). (14)

Since the problem is two-dimensional, we may introduce
a stream function v, which enforces incompressibility of the
flow, with

_ W

U, = oy’ (15)
__ ¥
Hy = ———. (16)

The Stokes equations imply classically that the stream func-
tion v is a solution to the biharmonic equation [53]

Vi = 0. (17)

Written using this stream function, the velocity boundary con-
ditions for flow on the sheets then become

0

v = ebcos(x — 1), (18)
ox (D ,0)

0

v = easin(x —t — @), (19)
ay (D y 0y

0

v =ebcos(x —t + A), (20
ox (@@

0

v =easin(x —t + A — ¢). 2n
ay (2 ,®)

These boundary conditions are nonlinear in €. We therefore
use an asymptotic approach and consider in what follows the
limit of small amplitude. Since there is no flow if € = 0, we
may use the following regular perturbation expansions in € of
the stream function v, fluid velocity field u, pressure p, and
stress tensor o

¥ = ey + O(e?), (22)
u = eu; + 0(e?), (23)
p=epi+0(), (24)
0 =¢€a; + O(). (25)

Using a Taylor expansion of the velocity boundary conditions,
we thus obtain the boundary conditions for u; on both swim-
mers as

ul,x|y:() =asin(x —t — ¢), (26)
Ml’y|y:0 = —bcos(x — 1), 27
”1,x|y:d =asin(x —t + A — ¢), (28)
Uyly_g = —bcos(x —1 + A). (29)

Note that these order € boundary conditions are now applied
at the unperturbed positions of the two sheets, which no longer
involve the value of €.

B. Flow at order ¢

The first-order stream function v in the fluid between the
two sheets satisfies the biharmonic equation

Vi, = 0. (30)
Since the Stokes equations are linear, we may use complex no-

tation for ¥; and implicitly take real parts. Then the boundary
conditions at order € in Egs. (26)—(29) become

W = bexpli(x — 1)], (€29
0x *.0)

| _ —aiexpli(x —t — ¢)], (32)
8y (x,0)

Wil pexplity — 1 + AL, (33)
3x (x,d)

Wil iexplie—t+A—¢). (34
ay (x,d)
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The general unit-speed, 2 -periodic solution to the bihar-
monic equation is

Y1 =Ky + Ly* + My’
+ Y {(Gy + yH,) cosh[n(y — d)]

n>1
+ (I, + yJn) sinh[n(y — d)]} explin(x — 1)],
(35)

where the capital letters denote constants to be determined and
we have omitted an arbitrary, physically irrelevant additive
constant [6]. Since we impose a zero mean pressure gradient
in the x direction, it is necessary to have M = 0. Similarly,
asking for zero mean shear acting on the swimmers means that
we also need L = 0. Now, by comparing with the boundary
conditions in Egs. (31)—(34), we see that K = 0 and that only
the n = 1 mode in the infinite sum is nonzero. Dropping the
subscript 1 from the n = 1 mode coefficients, we write the
relevant solution for v, as

Y1 = [(G + yH) cosh(y — d)
+ (I 4+ yJ)sinh(y — d)]explix —1)].  (36)

Substituting this into the boundary conditions, we obtain a
system of simultaneous equations

i(Gcoshd — I'sinhd) = b, 37
(H +1I)coshd — (G + J)sinhd = —aiexp(—i¢), 38)
i(G+dH) = bexp(iA), (39)

H+1+dJ = —aiexpli(A — ¢)]. (40)

C. Leading-order rate of working

We now consider the energetics of the problem and calcu-
late the rate at which work is done W by the sheets, at leading
order in the waving amplitude, on the fluid between them (per
wavelength). Since the rate of working varies quadratically
with the flow velocity, its leading-order value occurs at order

J

€2, and we may use the regular perturbation expansion
W = e2W, + 0(€?). (41)

Thus, we need the stream function only to order €. Note that
mechanical work is also done on the fluid not between the
waving sheets (i.e., above and below them) [4,6]. However, as
noted earlier, that work does not depend on the value of the
phase difference A, so it is irrelevant to the minimization with
respect to A of the total rate of working.

The leading-order rate of working W, per wavelength is
given by

2 2
Wz = —/ Ml,xo'l,xy|v:() dx — / ulq)vol,yy|y:0 dx
0 : 0

2 2
+ / ul,xal,x)'|v:d dx + / ul,)fal,yy|),:d dx’ (42)
0 : 0

where the relevant components of the stress tensor o are

3M1,x 3M1'y

= — , 43

Ty ay ox “3)
ou

Ul,yy = —D1 + 2 8;V . (44)

We find the leading-order pressure by integrating the x com-
ponent of the Stokes equations at order €

0 0
o _ Vzﬂ’ (45)
dx ay

which gives
p1 = —2i[H cosh(y — d) + J sinh(y — d)] exp[i(x — 1)].
(46)

We may then use the boundary conditions on v, in Egs. (31)—
(34) to obtain components of the stress tensor in complex
notation

01,xy|y:0 = [(G + 2J)coshd — (2H + I)sinhd — ib] expli(x — t)], “n
O’l,yy|y:0 = [2i(H coshd — J sinhd) — 2a exp(—i¢)] exp[i(x — 1)], (48)
Ul.xy|y:d =[G+ dH + 2J — ibexp(iA)] expli(x —1)], 49)
Olyyly—g = (2iH — 2aexpli(A — ¢)]} expli(x —1)]. (50)

Using the real and imaginary parts of the simultaneous equations in Egs. (37)-(40), we may eliminate G and / to obtain in real

notation

al,xy|y:0 = [Re(G + 2J)coshd — Re(2H + I)sinhd]cos(x — t) + [Im(2H + I)sinhd — Im(G + 2J) coshd + b] sin(x — t)

= 2[Re(J)coshd — Re(H)sinhd]cos(x —t) + 2[b — Im(J) coshd + Im(H ) sinh d] sin(x — 1), (1))
o] ,_V_,,|y=0 = 2[Re(J) sinhd — Re(H ) cosh d]sin(x — t) 4+ 2[Im(J) sinhd — Im(H ) coshd] cos(x —t) — 2acos(x —t — ¢), (52)

al,xylyzd =Re(G+dH +2J)cos(x —t) —Im(G +dH + 2J)sin(x —t) + bsin(x —t + A)

= [bsin A +2Re(J)]cos(x —t) 4+ [bcos A —2Im(J)]sin(x —t) + bsin(x —t + A), (53)

Oyl y=d —

—2Re(H)sin(x —t) —2Im(H)cos(x —t) —2acos(x —t + A — ¢). 54)
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Solving Egs. (37)—(40) for H and J gives

H = —%{a sinh’ d expli(A — ¢)] + ad sinh d exp(—i¢) — bd exp(iA)
sinh*d — d?
— bsinhd coshd exp(iA) + bsinhd + bd cosh d}, (55)
J = —+{—ad expli(A — ¢)] + asinh d coshd exp[i(A — ¢)] — asinhd exp(—i¢)
sinh“d — d?
+ ad coshd exp(—i¢p) — bsinh?d exp(iA) + bd sinh d}. (56)

Then we find the four contributions to the rate of working per wavelength as

/2” 4 27 {—ad?[sinhd coshd — d + (d coshd — sinh d) cos A] — abd? cos ¢ + abd sinh d cos(A + ¢)}
Ui x01 xy y=0 X =
0

sinh®>d — d? ’
(57)
2 27 {—b?*[sinhd coshd + d — (d coshd + sinhd) cos A] — abd? cos ¢ — abd sinhd cos(A — ¢)}
e sinh2d — d° ’
0 —
(58)
2 27 {a*[sinh d coshd — d + (d coshd — sinh d) cos A] — abd? cos ¢ + abd sinh d cos(A — ¢)}
Ml,xo-l,xy|y7d dx = ) s (59)
0 = sinh“ d — d?
2 2w {b*[sinhd coshd + d — (d coshd + sinhd) cos A] — abd? cos ¢ — abd sinh d cos(A + ¢)}
ui, Gl.\'V| — dx = N . (60)
0 YUY y=d sinh®>d — d?

Note that, due to the general lack of 1 <> 2 symmetry when the sheets undergo both longitudinal and transverse waving, the
contribution to W, from the first sheet is not equal to the contribution from the second. (If one of the waving modes disappears,
then both sheets give equal contributions.) The total leading-order rate at which work is done by the sheets on the fluid between

them per wavelength is finally obtained as
. 47
 sinh®d — d?

{a*[sinhd coshd — d + (d coshd — sinhd) cos A]

+ bz[sinhdcoshd 4+ d — (d coshd + sinhd) cos A] 4 2abd sinh d sin A sin ¢}. (61)

D. Minimization of leading-order rate of working

We now consider the minimization of the leading-order
rate of working W, in Eq. (61) with respect to the phase dif-
ference A between the waving sheets. Classically, for Stokes
flow, the rate at which work is done by the boundaries, i.e.,
the waving sheets, is equal to the rate of dissipation of me-
chanical energy in the fluid between the sheets [52]. Thus,
minimizing W, is equivalent to finding the optimal phase
difference of synchronized sheets, which we denote by A*,
leading to minimum dissipation (in our discussion we choose
-1 < A" < ).

First, we may find by inspection the value of A* for
the two special cases a = 0 (transverse waving only), which
was considered by Taylor, and b = 0 (longitudinal waving
only). To do this, we note that for d > 0, the quantities
sinhd coshd £+ d, d coshd + sinhd and sinh? d — d?, which
appear in Eq. (61), are all strictly positive. Thus, we recover
Taylor’s result: if the sheets undergo only transverse defor-
mation (a = 0), then the in-phase waving of the two sheets
(A* = 0) minimizes the rate of working W>. Conversely, if the
sheets undergo only longitudinal deformation (b = 0), then,
perhaps surprisingly, the opposite is true. The opposite-phase
waving of the two sheets (A* = —x) minimizes W, while
in-phase waving maximizes it. This case will be interpreted
further in Sec. IIE using a long-wavelength limit of this
calculation.

(

Next we derive the value of the optimal phase difference
A* for general values of a and b. We consider the part of the
expression for the rate of working W5 that varies with A and
define

S = (a*> — b*)d coshd — (a* + b?)sinh d, (62)
T = 2abd sinh d sin ¢. (63)

These do not depend on the phase difference A between
the two sheets but are functions of the waving amplitudes a
and b, the mean sheet separation d, and the phase difference
between deformation modes ¢. Then W, as a function of A
is minimized when the sum Scos A 4 T sin A is minimized.
This is equivalent to minimizing cos(A — ®), where

S
cos® = ———, (64)
(S2+72)2
) T
sin® = ——. (65)
(S2+1T2)2
The optimal phase difference A* is therefore given by
A*=0 —m. (66)

Conversely, we see that W is maximized when A = ©, which
differs from A* by 7.

We illustrate the value of the optimal phase difference
A* in Figs. 2, 3, and 4 for three different values of the
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FIG. 2. Variation of the optimal phase difference A* with the phase difference between the longitudinal and transverse deformation modes
¢ (left panel) and with the mean sheet separation d (right panel). Both panels are in the case a/b = 0.1, i.e., mostly transverse waving. The
legends indicate the chosen values of d (left) and ¢ (right).

a/b=1

FIG. 3. Same as in Fig. 2 in the case a/b = 1, i.e., equal longitudinal and transverse waving amplitudes.

a/b=10
0 T 0
d=0.2 ¢=m/8
o5k e —d=08 05 I
............... d=1.6 B = 7/8
_______ d=16 —— =72
1r b 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 ) 5 10 15 20

FIG. 4. Same as in Fig. 2 in the case a/b = 10, i.e., mostly longitudinal waving.
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amplitude ratio a/b: a/b = 0.1 (Fig. 2), 1 (Fig. 3), and
10 (Fig. 4).

On the left panel of each figure, we plot the value of the
optimal phase difference A* as a function of the waving phase
¢, for different values of the separation d. In these plots, we
restrict values of ¢ so that 0 < ¢ < w/2. This avoids redun-
dancy, since T is proportional to sin ¢, which has symmetries.
Note that if ¢ = 0, then T = 0. This means that A* = —x or
0 depending on whether S > 0 or < 0, respectively. Then, as
the phase ¢ increases from 0 to 7 /2 with d fixed, T increases,
while S remains fixed. Thus, the optimal phase difference
A* also varies monotonically as ¢ increases from O to /2,
and whether it increases from A* = —x or decreases from
A* = 0 depends on the sign of S. For example, for a/b = 10
with d = 0.2, we have S < 0, which results in A* =0 for
¢ = 0. This reflects the limit of small d, which we discuss
below. However, for a/b = 10 with the larger values of d =
0.8, 1.6, and 16, we have S > 0, which results in A* = —7
for ¢ = 0. This reflects the fact that in these cases the waving
is mostly longitudinal; as found earlier, the special case b = 0
has A* = —m.

On the right panel of each figure, we next plot how A*
varies with the mean sheet separation d, for selected values
of the phase difference ¢ between longitudinal and transverse
waving modes. In that case, we can examine analytically
the two limits d — 0 [which we compare with the long-
wavelength limit result in Eq. (87)] and d — oo. In the limit
asd — 0 (i.e., sheets very close together), we can expand the
expression for W in powers of d and find

4

= %[Sade(Z +cos A) + 6b*(5 + d*)(1 — cos A)

W
+ 30abd sin A sin ¢ + O(d*)]. (67)

In particular, the leading-order result for b # 0 is that in-phase
waving always minimizes the rate of working. This is clearly
reflected in the dependence of A* on d in Figs. 2, 3, and
4 (right panels). We also see that in general, if the sheets
only deform longitudinally (b = 0), then the rate of working
is order 1/d, but otherwise (b # 0), the rate of working is
order 1 /d3. Thus, contributions to the rate of working due to
longitudinal deformation are much smaller than those due to
transverse deformation.

In the opposite limit where d — oo (i.e., the limit where
the sheets are widely separated), we need to distinguish the
cases a # b and a = b. If a # b, then S ~ (a* — b*)d coshd
and T ~ 2abd sinhdsin¢g as d — oo, so that tan A* —
2absin ¢/(a®> — b?) as d — oo. In the case a = b, we instead
have S = —(a® + b*)sinhd and T = 2abd sinh d sin ¢. Then
we have cot A* = —(a*> + b?)/(2abd sin¢) — 0 as d — oo,
unless we have ¢ = 0, a case that was treated earlier. These
results are reflected in the plots.

We further note that the two plots for a/b = 0.1 in Fig. 2
show that if the waving of the sheets is mainly but not entirely
transverse, then A* is close to zero. This is therefore the
relevant limit for inextensible flagella [36]. In other words, the
leading-order rate of working is minimized when the sheets
wave with a small phase difference between them. This result
is reminiscent of the small, but nonzero, phase differences
observed in cilia arrays deforming as metachronal waves.

E. Longitudinal waving: Long-wavelength limit
and interpretation

We calculated above the rate at which work was expended
by the swimmers with both longitudinal and transverse modes
in the limit of small-amplitude waving. In particular, we
found in Sec. IID that in the case of only longitudinal wav-
ing, the optimal phase difference between the two sheets
was A* = —m, i.e., opposite-phase synchronization. This re-
sult is the opposite of what was obtained by Taylor in the
case of transverse waving [36]. To investigate this further,
we consider here the long-wavelength limit and allow only
small-amplitude, longitudinal deformation of the sheets (b =
0). In the long-wavelength limit, the mean separation of
the swimmers is much smaller than their wavelength, so
that the dimensionless mean sheet separation satisfies d < 1.
Therefore, we may use the classical lubrication theory of hy-
drodynamics to find the rate at which work is done, W, by the
swimmers on the fluid between them. We will then compare
our result to the limit as d — 0 of €>W, previously found for
small-amplitude waving, in Eq. (67), which will allow us to
gain physical intuition on the case of longitudinal waving.

As in the earlier setup of Sec. Il A, we impose the dimen-
sionless kinematics of material points on the sheets, given by
Egs. (7)-(10) with b = 0 in the shared swimming frame with
coordinates (x, y). This results in velocity boundary condi-
tions correct to order € given by Egs. (26)—(29). Since for this
lubrication theory calculation we consider only longitudinal
deformation of the sheets, we may set the phase difference
between the longitudinal and transverse waving modes ¢ to
zero without loss of generality. Then the kinematics become

x‘il) =X+ e€acos(x — 1), (68)
y =0, (69)
1 =x+eacos(x —t + A), (70)

2 = 4. (71)

We now move from the swimming frame to the wave
frame, which travels at unit speed in the x direction relative to
the swimming frame; that is, the wave frame has coordinates
(¥, y), where ¥ = x — t. In the wave frame, the velocity at each
X on the sheets is constant in time; physically, the wave frame
follows the compressions and extensions as they travel along
the sheet.

In the long-wavelength limit, the incompressible Stokes
equations become the lubrication equations [54]

ap  0%uz
= = , (72)
0x  0y?
0
Lo, (73)
dy

V-u=0. (74)

The no-slip velocity boundary conditions correct to order €
are given by

u;c|y:0 = easink — 1, (75)
Uyly_g =0, (76)
Ugly—qg = €asin(x + A) — 1, )
uyl,_y = 0. (78)
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Since the pressure p is a function of ¥ only, we may directly
integrate the ¥ component of the lubrication equations. Then
the horizontal component of the velocity, correct to order ¢, is
given by

10
Uz = EFy( — d)+—[51n(x + A) —sinX] + €asinX — 1.
(719)
This flow is clearly a sum of a pressure-driven flow (quadratic

in y), a shear flow (linear) and uniform flow (constant). The
flow rate between the sheets Q is then a function of ¥ given by

d
QE/ us dy

d?ap
=—az —[sm(x + A) +sinx] — (80)

Using the incompressibility condition and the boundary con-
ditions, we find the derivative of the flow rate

900 [ duz

=0. 81

Therefore, the flow rate Q is constant along the sheet. Rear-
ranging the expression for Q gives the pressure gradient

op 6 . .

— = —{ead[sin(X + A sin X] —
o = s leadlsin@ + A) + sin3]
To eliminate the constant O, we impose the condition that
pressure is periodic via

2T ap
f i = 0. (83)
0 oz

2d —20).  (82)

This gives Q = —d, so that the pressure gradient is obtained
explicitly as

ap 6ea . _ .
— = —[sin(X + A) + sin X]. (84)
ox 2

In the long-wavelength limit, the rate of viscous dissipation
in the fluid between the sheets, which is equal to the rate at
which work is done by the sheets on the fluid between them,
Wi, is given by

2
WL_/ / (a”> dy dx. (85)

The shear rate is given by

ous 10
E;;x — E8_‘[’( y—d)+ & y Tsin(E + A) —sin%],  (86)
so that the rate of working, correct to order €2, is finally
obtained as
. 4 eg?
WL = 7 (2+cosA). 87)

Yy
in-phase
(reeemsssssccse e e e mm == =2
1
0 x
0 —» T <4— 2
Yy
opposite-phase
P Y
1
0 x

0 _> ™ 4_ 2

FIG. 5. Sketch of flow fields for in-phase (top) and opposite-
phase (bottom) small-amplitude, longitudinal deformation of sheets
in the swimming frame (x, y). Arrows indicate direction of motion of
the sheets (dark arrows) and the fluid (light arrows). In-phase waving
of the sheets induces backflows halfway between the swimmers and
increases the total rate of viscous dissipation.

Earlier, we calculated the order €2 rate of working for
small-amplitude waving and found the expression in Eq. (67)
for Wh, valid for small mean sheet separation d. The expres-
sion for Wy, in Eq. (87) agrees with €2W, from Eq. (67) for
b = 0 (longitudinal waving only) to leading order. Therefore,
in the lubrication limit, we recover the result for d <« 1 and
b = 0 that opposite-phase waving minimizes the rate at which
work is done by the sheets.

To help explain intuitively why the value of A* = —m
leads to minimum energy dissipation for synchronized longi-
tudinal waving, we sketch in Fig. 5 the flow fields for in-phase
(top) and opposite-phase (bottom) waving of the sheets in the
swimming frame, so that we may see the order € flow clearly.
From the results above, we note that the pressure gradient
given by Eq. (84) may be written as

8p_126a A\ . ~_'_A (88)
% cos > sin | X 5 )

The periodic pressure gradient has an amplitude proportional
to | cos(A/2)|. In particular, the pressure gradient is zero at
the optimal phase difference A* = —m between the sheets,
for which there is no quadratic part of the flow in Eq. (79). In
that case, in the swimming frame, the fluid circulates in cells
of width  and height d between the two sheets in a linear,
shearlike manner. If instead the sheets wave in phase (A = 0),
then in the swimming frame, backflows are induced (relative
to the waving of the swimmers at each x) halfway between
the sheets due to incompressibility. The fluid circulates in
smaller cells of width 7 and smaller height d /2 between the
two swimmers, again in the swimming frame. These smaller
recirculation regions are accompanied by the maximum
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56— D

h

FIG. 6. Two identical spheres interacting hydrodynamically are
models for two anchored cilia. Each sphere is of radius a and moves
in a circular orbit of radius R. The orbits lie in a plane a distance
h above a parallel no-slip surface and their centers are separated by
distance £.

possible amplitude of pressure gradient and the maximum rate
of working as A is varied.

III. MODEL FOR INTERACTING CILIA:
TWO SPHERES IN ELLIPTICAL ORBITS

After considering a model for two interacting flexible flag-
ella in the previous section, we now investigate the energetics
of synchronized cilia interacting through the fluid.

Following a classical modeling approach, we represent
the anchored cilia as rigid spheres immersed in a fluid and
orbiting periodically above a no-slip surface. We consider
two such identical spheres that interact hydrodynamically in
the far field. The flow outside the spheres is governed by
the incompressible Stokes equations for a fluid of viscosity
w, Egs. (5) and (6), and the far-field flow generated by the
motion of a sphere will be approximated as that due to a
point force (Stokeslet) [52]. Each sphere undergoes periodic
motion in an elliptical orbit with a constant imposed phase
difference A. An elliptical orbit is a minimal model for the
two-stroke motion of a flexible cilium, capturing the essential
time irreversibility that allows it to generate net forces and
flows. Here, similarly to the previous section, we impose the
kinematics of each sphere and calculate their time-averaged
rate of working as a function of the phase difference A. We
will consider two different cases. In Sec. III A, the orbits lie in
a plane parallel to the no-slip surface and are circular, similar
to the setup in Ref. [34]. Next, in Sec. III B, each sphere’s
orbit lies in a plane perpendicular to the no-slip surface and
is elliptical, a motion akin to that of the centers of mass of
flexible cilia during their effective and recovery strokes.

A. Circular orbits parallel to no-slip surface
1. Setup

The setup is illustrated in Fig. 6, with views of each orbit
from above shown in Fig. 7. Each sphere, of radius a, moves
at constant angular speed o in a circular orbit of radius R,
clockwise when viewed from above, with a constant imposed

Y
x
2
1

FIG. 7. View from above of each orbit in Fig. 6.

phase difference of A. Each orbit lies in the plane a distance
h above the no-slip surface. We use Cartesian coordinates
(x, y, z) with corresponding unit vectors ey, €,, and e, where
the plane z = 0 is the no-slip surface, and the centers of the
orbits of the spheres are separated by a distance ¢ in the x
direction. Thus, we may choose the centers of the orbits of
the first and second spheres to have coordinates (0, 0, #) and
(€, 0, h), respectively. The spheres are far from the no-slip
surface (@ < h). In order to derive our results analytically, and
as done in other work, we let the separation of orbit centers
£ be much larger than all other imposed length scales in the
setup (a, h, R < £). This means that the spheres are widely
separated at all times and interact hydrodynamically only in
the far field. We proceed to calculate the rate at which work is
done by each sphere averaged over one period, including the
first correction due to interaction between the two spheres,
which depends on the phase difference A.

We impose the kinematics as follows. The position of the
first sphere r) is a function of time ¢ given by

r; = R(cos ot e, — sinwt e,) + he., (89)
so that its velocity is

d
U, = % = —wR(sin wt e; + cos wt ey). (90)

The position of the second sphere r; is given by
r; = R[cos(wt + A)e, — sin(wt + A)e,] + Le, + he;, (91)
and its velocity is
dl'2
dt
= —wR[sin(wt + A)e, + cos(wt + A)e,]. 92)

U, =

2. Time-averaged rate of working

From the setup above, we can calculate the time-averaged
rate at which work is done by the first sphere in the far-field
limit, by using Faxén’s first law. We denote by u,_,; the flow
induced by the motion of the second sphere at the position
of the first sphere and let r,_,; be the position of the first
sphere relative to the second (i.e., r,-.; = r; — ;). We also
denote by F; the force exerted by the ith sphere on the fluid.
The flow u,_,; may be approximated as that due to a point
force F, above a no-slip surface, since the spheres are widely
separated. Using the classical image system for flow singular-
ities above rigid walls [55], and since the spheres are the same
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distance & above the no-slip surface, the flow u,_, is given to
leading order by

3h* (F2 - rami)lsy
e s P

Approximating the second sphere generating the force F;
above as moving in an unbounded fluid otherwise at rest, that
force is given by Stokes’s law as

F, ~ 67 puaU,. %4)

93)

U, =

In other words, we neglect at leading order the impact of the
flow due to the first sphere at the position of the second on the
hydrodynamic interactions, since this decays in the limit as
the spheres become infinitely separated. We also neglect order
a/h corrections to the viscous resistance coefficient for the
sphere (~6m na), since the sphere is assumed to be far from
the no-slip surface. To leading order we have approximately
r,_.1 ~ —/{e,, since the radius of orbit is small, R < £. Then
the flow u,_,; is given to leading order by

ah?

U, =~ — 1E wR sin(wt + A)e,. 95)

This then allows us to obtain the leading-order correction
to the Stokes’s law value for the force F; exerted by the first
sphere on the fluid. This perturbation to the value given by
Stokes’s law is due to the flow created by the second sphere in
the far field. By Faxén’s first law, the force F; exerted by the
first sphere on the fluid is approximately given by

Fi >~ 6 pna(U; —uy, 1)

~ 6 pawR [—(sin wt €, + cos wt e)

9ah* .
+ IE sin(wt + A)e, |. (96)
This gives the instantaneous rate of working
202 9ah? . .
F, - U > 6rpuaw R |1 — IE sin wt sin(wt + A)|. (97)

Then the rate at which work is done by the first sphere
averaged over a period is obtained as

w 27 o

9ah?
F,-U,dt ~ 6nuaa)2R2<1 2 cos A).

27 Jo 203
(93)

To find the corresponding result for the second sphere, we
replace the phase difference A with —A and find that the
rate of working is unchanged; the total rate at which en-
ergy is dissipated in the fluid is thus twice the result from
Eq. (98). Consequently, the in-phase synchronized motion of
the spheres always minimizes the average rate of dissipation
of energy in the fluid. We will compare these results to past
predictions for the dynamic synchronization in Sec. V.

B. Elliptical orbits perpendicular to no-slip surface
1. Setup

In Sec. III A, we considered a model in which the orbits of
the spheres are circular and lie in a plane parallel to a no-slip

FIG. 8. Two identical spheres of radius a interacting hydrody-
namically as models for two anchored cilia. Each orbit is elliptical
and has center at height /4 above the no-slip surface z = 0. Each orbit
lies in a plane perpendicular to the no-slip surface. The relative angle
between the planes of the two orbits is « (see top view in Fig. 9). The
center of the second sphere’s orbit is displaced from that of the first
sphere’s orbit by the vector £ cos Be, + £ sin Be,.

surface. This allowed us to consider the energetic properties of
the setup addressed in the classical work of Ref. [34]. In this
section, we now allow the orbits to be elliptical and oriented
perpendicular to the no-slip surface. Each of the two identical
rigid spheres of radius a may be viewed as representing the
center of mass of a flexible cilium [23]. The elliptical orbit is
therefore an approximation to the cilium’s two-stroke periodic
motion, with an effective stroke where the cilium is further
from the surface and a recovery stroke where the cilium is
closer to the surface. We again will calculate the rate at which
work is done by each sphere as a function of the phase differ-
ence A between their orbiting motions.

The setup is illustrated in Fig. 8, with a view from above in
Fig. 9. Each sphere moves in an elliptical orbit with semiaxes
b and c lying in a plane perpendicular to the no-slip surface.
The centers of the orbits are separated by a distance ¢ and lie
a distance h above the no-slip plane, while the relative angle
between the two orbital planes is «. The imposed motion of
each sphere is identical but with a constant imposed phase
difference of A. The period of the motion is 27 /w, but impor-
tantly we note that the frequency w is not the angular velocity
of the spheres, since the orbits are not circular in general. In
other words, unless the orbit is circular, the motion does not
occur at constant speed.

We again use Cartesian coordinates (x,y,z) with corre-
sponding unit vectors ey, €,, and e, where the no-slip surface
is given by z = 0. We choose the orbit of the first sphere
to have center with coordinates (0, 0, /), and its semiaxis of

FIG. 9. View from above of setup in Fig. 8. Each elliptical orbit
has one semiaxis of length b lying in the plane z = A.
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length b aligned with the y axis when viewed from above as
in Fig. 9. The semiaxes of the orbits have length ¢ parallel to
the z axis. We let the center of the second sphere’s orbit have
coordinates (€ cos 8, £sin 8, h). The second sphere’s orbit,
when viewed from above, makes an angle « with the y axis.
This setup breaks the symmetry between the two spheres. The
spheres are at all times far from the no-slip surface (a, ¢ <K h)
and widely separated (a, b < £). The separation ¢ of the cen-
ters of the orbits is the largest imposed length scale (£ > h),
allowing us to treat the hydrodynamic interactions between
the spheres in the far field.

We impose the kinematics as follows. The position of the
first sphere r| is given by

r; = bcoswt e, + csinwt e; + he,, (99)
so that its velocity Uj is
dl'l
dt
= w(—bsinwt e, + ccoswt ;).

U, =

(100)
Similarly, the second sphere has position r; given by

r; = bcos(wt + A)(sin ae, + cosae,) + csin(wt + A)e;

+ £cos Be, + £sin Be, + he,, (101)
with velocity U, given by
dl‘2
U, =—-
T dr
= o[—bsin(wt + A)(sinae, + cos ae,)
+ ccos(wt + A)e,]. (102)

2. Time-averaged rate of working

As in Sec. IIT A, we use Faxén’s first law to find the time-
averaged rate at which work is done by the first sphere in the
far-field limit. We also retain the notation u,_,; for the flow
induced by the motion of the second sphere at the position of
the first sphere and r;_,; = r; — r; for the relative position
vector. As above we denote by F; the force exerted by the
ith sphere on the fluid. Since we are in the far field, we may
approximate the flow u,_,; as that due to a point force F5.
Furthermore, we may use the leading-order expression for
u,_,; in Eq. (93), since the orbits are small compared with
the distance % to the no-slip plane (a, ¢ < h). As in Eq. (94),

the force F, is then obtained to leading order as
F, ~ 6 naU,, (103)

since the spheres are widely separated and far from the no-slip
surface. This time, however, we have

ry 1 > —£(cos Be, + sin Be,), (104)
which gives the leading-order flow
ah? 2 .
w_, 6_3[(U2,x cos” B + U,y cos B sin B)e,
+ (UpxcosBsin B+ Uy, sin’ Be,]
9abwh? sin(wt+A) si
_ e sm(a); )sin(p + a)(cos Be.+sin Be,).
(105)

As above, we can now find the leading-order correction to
the Stokes’s law value for the force F; exerted by the first
sphere, due to the motion of the second sphere. Substituting
quantities into Faxén’s first law gives

Fi >~ 6 pua(U; —uy1)
o~ 6nuaw|: — bsinwt e, + ccos wt €,

9abh? sin(wt + A)sin(B + «)
+ 1B

(cos Be, + sin ﬂey):|

(106)

and

F,-U >~ 6nuaw2 |:b2 sin wt + 2 cos? wr

9ab*h? sin wt sin(wt + A)sin B sin(B + a)}
_ = )

(107)

Then the rate of work done by the first sphere averaged
over a period is obtained as

w 21 /o

— F, U, dt
2 ), 1-Uy

~ 37 paw? [bz +2— 9ab*h?* sin B sin(B + «) cos A}

53
(108)

To find the corresponding result for the second sphere, we may
use a symmetry argument illustrated in Fig. 10 (which was not
evident a priori since the geometrical setup is not symmetric).
If we replace the angle g with o + B — 7, the relative angle
o with —a and the phase difference A with —A, we see that
the setup has been switched 1 <> 2. As a result, we obtain that
the rate of working of the second sphere is equal to the rate of
working of the first sphere at this order.

With this, we can now consider the optimization of the
viscous dissipation with respect to the phase difference A
between the synchronized motion of the two spheres. The sign
of the coefficient of cos A determines whether rate of working
is minimized by in-phase or opposite-phase motion. This de-
pends on the quantity sin §sin(8 + «), which is unchanged
by replacing 8 with 7 + 8 and whose sign is changed by
replacing o with w + «. If in-phase motion minimizes the
rate of working, then opposite-phase motion maximizes it,
and vice versa. We see that if sin 8sin(f8 + «) is positive,
then in-phase motion of the spheres minimizes the rate of
working; that is, motion where the two spheres are at the
same height at all times leads to minimum power dissipated
in the fluid. This includes the case of precisely aligned el-
liptical orbits (o = 0). On the other hand, if sin 8 sin(8 + «)
is negative, then opposite-phase motion of the spheres is the
optimal motion. These results are illustrated in a plot of the
(e, B) plane in Fig. 11. We see that if the two orbital planes
are almost but not precisely aligned (o close to 0 or 2r), then
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FIG. 10. Diagram illustrating the required changes in angles in
the setup of Fig. 9 to derive the rate at which work is done by the
second sphere from that by the first sphere. We replace the angle g
with —[(7/2 —a) 4+ (7 /2 — B)] = @ + B — 7, the relative angle o
with —a and the phase difference A with —A.

in-phase motion minimizes energy dissipation for most values
of B, while opposite-phase motion leads to the minimum for
a narrow range of 8 near 7. The same result (either in-phase
or opposite-phase motion is optimal, depending on geome-
try) was obtained for the planar beating of three-dimensional

2T
in-phase
opposite-phase
in-phase
S
in-phase
opposite-phase
in-phase
00 s 27

o

FIG. 11. Regions in the («, B) plane for the setup in Fig. 8
where in-phase or opposite-phase motion of spheres minimizes time-
averaged rate of working. The relative angle between the planes of
the orbits is «. The angle g indicates the relative position of the
centers of the orbits.
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FIG. 12. Two identical rigid rods of length L as models for two
nodal cilia interacting hydrodynamically. Each rod rotates clockwise
when viewed from above, sweeping out a cone with tip fixed on a
no-slip surface. The semiangle of each cone is ¥ and each cone has a
posterior tilt of 6 about the x axis. The second cone is displaced from
the first cone by £ cos Se, + £ sin Be,.

flagella [40]. In Sec. V, we will compare these results to
related studies showing that both in-phase and opposite-phase
beating can also arise dynamically, depending on the relative
conformation of model cilia [47].

IV. MODEL FOR INTERACTING NODAL CILIA:
TWO WHIRLING RODS

In this final model, we consider nodal cilia, which, instead
of beating with effective and recovery strokes of different
shapes, rotate rigidly along conical surfaces. We use the
whirling rod model for nodal cilia proposed in past studies
[50,56] to compute the impact of phase difference on the rate
of working of two such interacting, synchronized cilia.

A. Setup

The setup is illustrated in Figs. 12 and 13. We model each
nodal cilium as a rigid rod of length L, a simplification that ne-
glects slight bending of the cilia due to viscous resistance [26].
The flow outside the rods is governed by the incompressible
Stokes equations for a fluid of viscosity u, Eqs. (5) and (6).
We consider two such rods interacting hydrodynamically in
the far field. We impose their kinematics so that each rod ro-
tates with constant angular frequency w, sweeping out a cone
of constant semiangle 1 above a no-slip surface. The rotation
is clockwise when viewed from above and the tip of each cone
has a fixed position on the no-slip plane. Each cone axis is
tilted by a constant angle 9, called the “posterior tilt,” away
from the normal to the no-slip surface; this tilt of nodal cilia,
which is a mechanism for producing unidirectional flow, was

L sin L sin 1

wt

FIG. 13. View of each of the orbits traced by the whirling rods in
the setup of Fig. 12, looking down each cone axis towards the no-slip
surface.
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confirmed in experimental studies of mouse embryos [57]. So
that the rods do not make contact with the no-slip surface,
we necessarily have the geometrical constraint 6 + ¢ < /2.
The two cones are separated by a distance £, assumed to be
much larger than the rod length L. We impose a constant phase
difference A between the otherwise-identical, synchronized,
periodic motion of the two rods, and we calculate below the
rate of working averaged over one period as a function of the
phase difference A.

We use Cartesian coordinates (x,y,z) with the no-slip
surface given by z = 0. We choose the first cone to have
its tip at the origin and the second cone to have its tip at
(€ cos B, £sin B,0). The position of a material point on the
first rod is denoted by r;(s, ¢), where s is the arclength with
0<s< L and ¢ is time. If the cone had no posterior tilt
(6 =0), then the cone axis would be aligned with the z
axis. To find the cone with posterior tilt 8, we rotate the
cone with zero posterior tilt, about the x axis and away from
the positive y direction. Thus, the position r(s,t) of the
material point at arclength s along the first rod at time ¢
is given by

x1(s, 1)
ri(s,t) = | y1(s, 1)
Z](S,t)
1 0 0 s sin iy cos wt
={0 cos® —sinf —s sin Y sin wt
0 sinf  cosf sCos Y
s sin ¥ cos wt
= | —ssiny sin wf cos @ — scos ¥ sin 6 (109)

—s sin ¥ sin wt sin 6 + s cos ¥ cos 6

The corresponding velocity of this material point U, (s, ) is
then given by a time derivative

a t
Ui, = )

—ws sin Y sin wt
= | —ws sin  cos wt cos 6
—ws sin ¥ cos wt sin O

(110)

J

" 3BaG,na 1)
(s, 1) PPENE
0 27T/'L|r1(sv t) - rZ(S ) t)l

Similarly, the position r;(s, ) of the material point on the
second rod is

x(s, 1)

y2(s,1)
22(s,1)

(s, t) =

s sin Y cos(wt + A)
= | —ssiny sin(wt + A)cos6 — scos y sin 6
—s sin i sin(wt + A)sin 6 + scos Y cos 6

£cos B
+ | ¢sing |,
0

(111)

with velocity U, (s, ¢) found as
ary (s, t)

ot
—ws sin ¥ sin(wt + A)
= | —wssin Yy cos(wt + A)cos 6
—ws sin Y cos(wt + A)sin 6

Us(s,t) =

(112)

B. Time-averaged rate of working

We next use resistive-force theory [58,59] to calculate the
rate at which work is done by the first rod on the fluid, aver-
aged over one period. We denote by ¢ and ¢, the resistance
coefficients of the rods in the tangential and normal directions,
respectively. We approximate these coefficients as constant,
even though the presence of the no-slip wall means that the
coefficients may vary as the orientations of the rods change
during their periodic motion [3]. Neglecting the wall effect, as
in Refs. [50,56], will allow us to make progress analytically.

We denote by f,(s,¢) the hydrodynamic force per unit
length exerted on the fluid by the material point on the second
rod at arclength s and time ¢. To leading order in their separa-
tion, the second rod is unaffected by the first, so we may use
resistive-force theory and find that f, (s, ¢) is given by

f(5,1) = c Us(s, t). (113)

Similarly to Sec. III, we denote by u,_, | (s, #) the flow induced
by the motion of the second rod, evaluated at the material
point r; (s, t) at arclength s along the first rod, at time ¢. Using
the image system near no-slip surfaces as in our derivation of
Eq. (93) [55,60], the flow u,_,; is given to leading order by a
line integral along the second rod as

(s, Dx1 (s, 1) = x2(5', O + fory (', Dx1(s, 1) — x2(5", DI yi (s, 1) — ya (s, 1)]
Fox(s', Olxi(s, 1) = x2(5", DIy (s, 1) = yo(s', D] + foy (s, Dlyi(s, 1) — ya(s', )] |ds',

0
(114)

where we recall that z; is given by Eq. (109). Using this result and the approximations x; — x, >~ —fcos 8 and y; — y, =~
—£sin B (justified since L < £), the flow u,_, | is given to leading order by

sci Lwsin v cos f

Uy (s, 1) > — Pl

X [cos B sin(wt + A) + sin B cos(wt + A)cos].

sin 8 | (— sin ¢ sin wt sin 6 + cos ¥ cos )[— sin ¥ sin(wt + A)sin 6 + cos i cos 6]
0

(115)
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We next denote by f (s, ¢) the force per unit length exerted on the fluid by the material point on the first rod at arclength s and

time 7. Then, using resistive-force theory, we have

fi(s,t) = {epti(t () + c [T =t (Ot ()]} - [Ui(s, 1) — o (s, )],

(116)

where we recall that ¢ and ¢, are the resistance coefficients and 1 is the identity tensor. Here t;(¢) is the unit tangent vector to

the first rod, given explicitly by

sin Y cos wt

() =

— sin v sin wt cos § — cos ¥ sin O

(117)

— sin ¥ sin wt sin 6 + cos ¥ cos O

The final term in Eq. (116) captures the interaction between the two model cilia. Since the velocity of each rod is perpendicular
to the rod’s tangent, we have (omitting the s and ¢ dependence for brevity)

fi ~c1(Up —uay) — (¢ — c)(ty - up )ty

(118)

so that the instantaneous rate of working per unit length at each material point is

fi - Uy ~ci (U —upy)- Uy

We can then calculate explicitly

U -U = ’s? sin’ v

and
s’c L3 w? sin® ¢

u,q-Up > ST

X [cos B sin(wt + A) 4+ sin B cos(wt + A) cos 0](cos B sin wt + sin B cos wt cos f).

(119)

(120)

(— sin ¢ sin wt sin 6 + cos ¥ cos 8)[— sin Y sin(wt + A)sin 6 + cos i cos 6]

(121)

From this, we find the average rate at which work is done by the first rod in one period as

w

¢ L3 sin? 6 sin® ¥ (sin” B cos? 6 — cos? B)

2n/w pL 1 3 9o
— fi -Uydsdt ~ —c,L’w"sin” | 1 +
27 0 0 3

167 w3

c1 L3 cos A(2cos? ¥ cos? @ + sin® i sin® O cos A)(sin’ B cos? 0 + cos? B)

Note that for physically relevant setups, the semiangle of the
cone V¥ is nonzero, and since the posterior tilt satisfies 6 <
7 /2, the quantity sin® B cos?6 + cos 8 is nonzero. To find
the corresponding result for the second rod, we simply replace
the angle 8 with w 4 B and the phase difference A with —A,
and see (again) that the rate of working is unchanged. Thus,
the total rate of energy dissipation in the fluid is given by twice
the final result in Eq. (122).

With this, we can now consider the optimization of the rate
of working. By inspection, it is straightforward to see that in-
phase motion of the rods (i.e., the case where A = 0) always
minimizes the rate of working, since the coefficients of both
cos A and cos® A are negative. We may additionally compute
the phase difference A that maximizes the rate of working.
In the case sinf = 0, it is clear that opposite-phase motion
maximizes the rate of working. Otherwise, the rate of work-
ing may be written as A — B cos A(2 cot? ¥ cot> @ + cos A),
where both A and B are positive constants. If there are no
solutions to the equation

cos A = —cot® y cot? 0, (123)

then opposite-phase motion of the rods (cos A = —1) maxi-
mizes the rate of working. Luckily, for all physically relevant

8 w3
(122)

(

values of the parameters ¥ and 6, there are no solutions to
Eq. (123). This is due to the fact that, for a fixed value of
¥, the quantity cot? ¥ cot? @ decreases from +oo to 1 as 6
increases from 0 to 7 /2 — ¢ (which we recall is the value
of 6 corresponding to a cone that is tangent to the no-slip
surface). Hence, in all cases, the opposite-phase synchronized
motion of the rods maximizes the rate of working, and in-
phase motion minimizes it. As discussed in the next section,
this compares favourably to past theoretical predictions for the
dynamic synchronization of cilia [34].

V. DISCUSSION

In this paper, we investigated analytically the energetics
of synchronized motion for three different models for inter-
acting flagella and cilia. In each case, we imposed periodic
motion for the two appendages with a constant phase dif-
ference A. For two sheets waving with small amplitude and
with both longitudinal and transverse modes, we found that
the optimal phase difference A*, which minimizes the rate
of working of the sheets, can take all values between —m
and 7 in a manner that depends on the amplitudes of and
the phase difference between the waving modes and the mean
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sheet separation. Our calculations reproduced Taylor’s result
that in the case of purely transverse deformation, the rate
of working is minimized for in-phase waving. We saw also
that if the longitudinal mode has nonzero but small ampli-
tude compared to the transverse mode, then the energetic
minimum occurs for small, but nonzero, phase differences,
reminiscent of what is seen in the metachronal waves of cilia
and in continuum models of cilia arrays [38]. Furthermore, if
the sheets deform only longitudinally, then in-phase waving
results in maximum dissipation, a result that we rationalized
physically.

In contrast to this, in the cases of spheres moving along
circular orbits parallel to a no-slip plane (modeling two-stroke
cilia) and whirling rods with a posterior tilt also above a
no-slip surface (modeling nodal cilia), the energetic mini-
mum always occurs at the in-phase configuration, A = 0. For
spheres in elliptical orbits perpendicular to a no-slip plane,
the minimum rate of dissipation of energy occurs for either
in-phase or opposite-phase motion, depending on the relative
position and orientation of the orbits. For all these models
considered, the dissipation is maximized when the phase dif-
ference A differs from that giving minimum dissipation by
exactly .

The original motivation of our work was Taylor’s energetic
argument as explaining the synchronization of spermatozoa
observed in nature [36]. In his paper, Taylor also remarked that
the dynamics of interacting swimmers might not necessarily
result in the minimum-dissipation configuration, depending
on how the flagella are actuated. Equipped with our ener-
getics results in the case where we imposed the kinematics,
we can now examine previous studies on the mechanisms
that result in the synchronization of model flagella or
cilia.

In an important paper in the field, elastic compliance was
proposed as a generic mechanism allowing hydrodynamic
synchronization [34]. In the model from that work, cilia are
replaced by spheres, which orbit in a plane parallel to a no-slip
surface and interact hydrodynamically in the far field. How-
ever, unlike our setup in Sec. III A, the orbits of the spheres are
only approximately circular. The intrinsic preferred waving
motion of each cilium is modeled as a preferred radius of
circular orbit and a preferred angular frequency. An elastic
restoring force then acts radially to bring the radius of the
orbit back to this preferred value, and the angular frequen-
cies of the spheres remain close to their preferred values
since the spheres are widely separated. With this setup, in
the case of equal intrinsic frequencies, the phase difference
between the two spheres is governed by the Adler equa-
tion. This showed remarkable agreement with experimental
observation of synchronization of the two flagella on the
unicellular biflagellate alga Chlamydomonas [22]. The theo-
retical prediction in that case was therefore that the model
cilia synchronize to an in-phase configuration regardless of
initial phase difference. In Sec. III A, we found that for im-
posed constant angular velocity on precisely circular orbits,
dissipation of energy is also minimized by in-phase motion.
This is also the case for the whirling rods modeling nodal
cilia found in Sec. IV. There is therefore full agreement in
these cases between the dynamics and the energetics points of
view.

Another study also modeled cilia as spheres above a no-
slip surface, but constrained them to move on fixed, tilted,
precisely elliptical trajectories [47]. This led to coupled dif-
ferential equations for the evolution of the phases of the
two spheres. We recall that, in our paper, the angle 8 de-
scribes the relative position of the two orbits in Sec. III B for
spheres in elliptical orbits and in Sec. IV for whirling rods. In
Ref. [47], far-field calculation showed that for generic tilted
orbits, the stable synchronized states are in-phase motion for
0<pB <m/2andm < B < 37 /2, and opposite-phase motion
form/2 < B <mand3n /2 < B < 2m. These stability results
were found to also be consistent with full numerical solutions
to the dynamic equations.

We may relate the above far-field result to our result for
energetics in Sec. IV on whirling rods. We found that in the
far field, for rotation at constant angular frequency, dissipation
is minimized by in-phase motion, while in Ref. [47] the stable
synchronized states are opposite-phase or in-phase motion,
depending on the relative position of the two nodal cilia. Thus,
it is possible for two cilia to synchronize to a state where
dissipation is maximum.

We also recall our far-field result in Sec. III B, for elliptical
orbits perpendicular to the no-slip surface, allowed to have
different orientations. We found that the rate of dissipation
of energy is minimized by either in-phase or opposite-phase
motion of the spheres, depending on the relative position and
orientation of orbits. Although the setup is not quite identical
to that in Ref. [47], we note the appearance of in-phase and
opposite-phase motion in both cases. The same also occurs
for interacting three-dimensional flagella, modeled as beating
filaments, with in-phase or opposite-phase motion minimizing
viscous dissipation depending on the relative position and
orientation of the flagella [40].

From a molecular standpoint, the beating of eukaryotic
flagella is enabled internally by molecular motors (dyneins)
that power the relative sliding of microtubule doublets due to
the energy released by the hydrolysis of adenosine triphos-
phate (ATP). The behavior of molecular motors is complex,
with fluctuating on-off collective dynamics [61]. It is difficult
to relate the local, nonconservative energy conversion by the
molecular motors to the coarse-grained energetic features of
the beating flagella, but from a mechanical standpoint, it is
clear that a significant portion of the work done by the motors
is dissipated by viscous stresses in the surrounding fluid. In
this paper, we considered the relationship between synchro-
nization and this external dissipation with the understanding
that these continuum energy arguments cannot necessarily
be used to rationalize the collective dynamics of molecular
motors.

Recent models of active flexible flagella have taken into
account in great detail the biological complexity of the flag-
ellum core (or axoneme) and the mechanism by which the
flagella deform [62—65]. Through comparison of a model of
the axoneme with detailed experiments, the long-standing hy-
pothesis of control of the dynein motors by the curvature of
the flagellum was confirmed in Ref. [62]. Modeling the flag-
ellum as a filament and accounting for internal dynein motor
kinetics [63], both in-phase and opposite-phase synchroniza-
tion of two filaments were shown to arise hydrodynamically
depending on the beating patterns of the flagella, which in turn
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depend on the motor kinetics [64]. For example, two cilia with
effective strokes in the same direction were found to achieve
in-phase synchronization. This may be compared with our
result in Sec. III B showing that the in-phase motion of spheres
minimizes viscous dissipation for a relative angle between
orbits @ = 0 and a relative position given by g = /2. On
the other hand, in Ref. [64], two cilia with effective strokes in
opposite directions achieved opposite-phase synchronization.
This is related to the result of our sphere model in Sec. III B
with « = 7 and B = /2, for which opposite-phase motion
minimizes dissipation.

Recently, the work in Ref. [65] showed that two elastic
filaments coupled via near-field hydrodynamic interactions
can synchronize not only in phase or in opposite phase, but
also with other phase differences. This is reminiscent of the
swimming sheet model in Sec. II, which is the only one that
we considered where the configuration with minimum energy

dissipation can occur for synchronized motion that is neither
in phase nor in opposite phase. Past research on dynamic
models of synchronization for swimming sheets considered
only the case of transverse waving [39,41,43]. Further work
will therefore be needed to probe the relationship between
energetics and dynamics in the case of flexible waving swim-
mers with the most general swimming kinematics.
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