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A B S T R A C T

A highly organized and densely packed lattice of molecular machinery within the sarcomeres of muscle cells
powers contraction. Although many of the proteins that drive contraction have been studied extensively, the
mechanical impact of fluid shearing within the lattice of molecular machinery has received minimal attention.
It was recently proposed that fluid flow augments substrate transport in the sarcomere, however, this analysis
used analytical models of fluid flow in the molecular machinery that could not capture its full complexity.
By building a finite element model of the sarcomere, we estimate the explicit flow field, and contrast it with
analytical models. Our results demonstrate that viscous drag forces on sliding filaments are surprisingly small
in contrast to the forces generated by single myosin molecular motors. This model also indicates that the
energetic cost of fluid flow through viscous shearing with lattice proteins is likely minimal. The model also
highlights a steep velocity gradient between sliding filaments and demonstrates that the maximal radial fluid
velocity occurs near the tips of the filaments. To our knowledge, this is the first computational analysis of
fluid flow within the highly structured sarcomere.
Muscle contraction is enacted by nanometer-scale molecular ma-
chinery housed in highly organized sarcomeres (the fundamental con-
tractile units of the muscle cell), which are connected in series running
from one end of the cell to the other. Each sarcomere is composed of
arrays of interdigitating thick and thin filaments centered on the m line
(Fig. 1) [1]. Thick filaments anchor the myosin molecular motors that
power contraction when they bind to adjacent actin containing thin
filaments. Myosin binding is triggered by activation of the muscle cell,
and subsequent calcium regulation of thin filament binding sites [2].
Powered by the hydrolysis of adenosine triphosphate (ATP) [3], myosin
molecular motors pull the thin filaments past the thick filaments,
resulting in a net shortening of the sarcomere [4]. Sarcomere function
relies on a panoply of proteins beyond actin and myosin (see, for in-
stance [5]), and sarcomeric proteins turnover as damaged components
are removed and new proteins are incorporated [6]. Calcium signaling,
ATP requirements and protein turnover demand exchange between
the interior of the filament lattice and the intracellular environment.
Importantly, the tightly packed lattice is percolated by fluid. And, since
muscle cells are fluid filled, contraction necessitates movement of that
fluid relative to the matrix of proteins. Although the mechanics and
regulatory processes associated with muscle proteins themselves have
been studied extensively [4,7], it is largely unknown how the flow of
cytoplasm within the contractile lattice and the incumbent fluid forces
impact function.
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Two fundamental issues arise when considering the fluid environ-
ment surrounding the lattice of contractile filaments. First, the sliding
motions of filaments relative to one another will necessarily yield fluid
dynamic forces. Second, as the sarcomere shortens it is possible that
there are changes in the lattice volume within the cell, with fluid
moving out of the lattice as the sarcomere shortens. While intracellular
flows are increasingly seen as drivers of general cell function [8] and
fluid flow has been cited as a limitation for the rate of cellular defor-
mation [9], these issues have yet to be comprehensively explored in
the sarcomeres of muscle cells, cellular machinery capable of kilohertz
scale contraction frequencies [10].

The viscous drag forces exerted on sliding filaments in the lattice
was first estimated by Huxley [11] by modeling thick and thin fila-
ment interactions as a slender cylinder sliding axially within a larger
diameter cylinder (Fig. 2). He estimated the hydrodynamic force to be
on the order of tens of femtoNewtons using the estimate:

Viscous drag = −
2𝜋𝜇𝑈𝑙
ln(𝑎∕𝑅)

(1)

where 𝜇 is the viscosity of the fluid, 𝑈 is the relative velocity of the
cylinders, 𝑙 is the length of overlap between the cylinders, 𝑎 is the radius
of the smaller cylinder and 𝑅 is the radius of the larger cylinder. This
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Fig. 1. A schematic illustrating the intricate organization of muscle cells. (A)
Individual muscle cells contain many bundles of contractile machinery, the myofibrils.
While not membrane bound, the myofibrils contain densely packed contractile ma-
chinery, excluding larger organelles like the sarcoplasmic reticulum and mitochondria,
which occupy the space between them. (B) Each myofibril is composed of sarcomeres
connected in series which, in the case of skeletal muscle, run the length of the muscle
cell. The sarcomere is composed of interdigitating thick and thin filament arrays which
are mirrored about the m line. Molecular motors branching off of the thick filament
bind to the thin filaments and pull them towards the m line, resulting in net muscle
shortening. The z discs structurally anchor the thin filaments, and since they have a
tightly woven structure we modeled them as impermeable boundaries. (C) The thick
and thin filaments form a hexagonally packed lattice. The relative ratio of thick to thin
filaments varies across species and muscle types.

Fig. 2. The drag force on a cylinder sliding through a larger diameter cylinder
depends on the gap distance between the cylinders. Here we assumed that the fluid
between the cylinders had the viscosity of water (8.9E-4 Pa s), and we prescribed a
cylinder length of 1000 nm and sliding velocity of 1000 nm/s.

estimate of drag is derived from the Stokes equation, continuity, and
the assumption of pure axial flow. Notably, there is a typographical
error in the original equation for viscous drag in [11].

Although the drag forces on individual filaments are estimated to
be small, increasing the viscosity of the fluid results in decreased
shortening velocity. While drag forces increase linearly with viscos-
ity, increased fluid viscosity primarily slows sarcomere shortening by
hampering the diffusion of molecular motors to prospective binding
sites [12,13]. Additionally, the transport of calcium and ATP from the
sarcoplasmic reticulum and mitochondria, respectively, to the interior
of the myofilament lattice is mediated by the cytoplasm. Despite its
importance for transport and mechanical drag forces, the viscosity of
the cytoplasm within the sarcomere and the relevant occlusion of the
space between individual filaments remains largely unknown. Exper-
imentally, both radioactive labeling [14] and fluorescence recovery
after photobleaching (FRAP) experiments [15,16] have demonstrated
2

that diffusion is limited in muscle cells as a function of particle size
due to crowding and screening. The constraint of diffusion time may
be especially important for muscles that contract at high frequencies
where substrate demands may be particularly high. However diffusion
is not the only process mediating substrate transport. Since the lattice
of contractile machinery is not constrained to a constant volume [17–
19], bulk fluid flow in addition to the flow driven by filament shearing
must be coupled to diffusion. Using the diffusion, reaction, advection
equation paired with analytical models of fluid flow in sarcomeres
Cass et al. demonstrated that, during cyclic contraction, bulk fluid
movement augments substrate transport [20] over diffusion alone. We
have expanded analyses of flow in the sarcomere by building a finite
element model that captures the geometry of the sarcomere, and have
contrasted the resulting flow field with these analytical models.

This model examines the interactions of flows and forces for an
array of sliding filaments. This spatially explicit model also indicates
that the analytical models applied in conjunction with the diffusion
reaction advection equation in [20] are good approximations of fluid
flow in many sarcomeres. While this model does not account for the
multiscale complexity of myriad interacting sarcomeres and exterior
organelles within a muscle cell, it provides a first glimpse into the
understudied problem of intrasarcomeric flows. Our results corrob-
orate the prediction that fluid flow may impose minimal energetic
consequences, while potentially augmenting substrate transport.

Results and discussion

We have contrasted a finite element model of fluid flow in the sar-
comere with two analytical models: the first is derived from kinematic
constraints while the second follows from Darcy’s law in which flow
is proportional to the pressure gradient. Both analytical models were
developed fully by Cass et al. in an exploration of flow-mediated sub-
strate transport in sarcomeres [20]. By creating a computational model
which explicitly captures fluid flow around filaments we have explored
the effect of varying the sarcomere length (i.e. the filament overlap) and
the drag forces on filaments as a function of their diameter. Our results
uniquely reveal how filaments shape the fluid flow field.

Key assumptions

Due to the small spatial scale of the system, inertial forces are
assumed to be negligible and the system is approximated by the Stokes
equations. Since the Stokes equations are linear, flow is reversible
between contraction and elongation of a sarcomere, provided the se-
quence of structural changes occurring in contraction is mirrored dur-
ing lengthening. While the motions of molecular motors and changes
in lattice spacing are not reversible in naturally functioning muscle, we
do not expect any major differences for filament drag forces between
shortening and lengthening. However, as far as the precise nature of
the flow field, and its effects on transport and molecular motors, we
cannot say for certain until more detailed models can be constructed

Despite the small length scale, we have assumed that the fluid is
continuous and incompressible in each model (see Methods: Conceptual
underpinnings).

Kinematic model

Using the boundary and symmetry conditions inferred from the
sarcomere’s kinematics and geometry, this model provides an admiss-
able solution to flow in the half-sarcomere. While uniqueness is not
guaranteed, these solutions for radial and axial fluid velocity (𝑢𝑟 and 𝑢𝑧
respectively) satisfy the equation of continuity:

𝑢𝑟(𝑟, 𝑧) = −𝑈 3
4
𝑟
𝐿

[
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where 𝑟 is the radial coordinate, 𝑧 is the axial coordinate, 𝑈 is the
instantaneous shortening velocity of the half sarcomere, and 𝐿 is the
xial length of the half sarcomere. In contrast to the Darcy based model
elow, this kinematic model captures the physical constraint of the
o-slip condition on the z disc. However this model does not account
or the structure of the myofilament lattice, which can be roughly
haracterized by the lattice’s axial and radial permeabilities.

arcy based analytical solution

Since the sarcomere is a densely packed, anisotropic space, fluid
low may be better approximated using Darcy’s law. Although the
arcomere can be considered to have three regions (a region with
nly thick filaments, a region of filament overlap and a region of thin
ilaments only), here we have prescribed a uniform axial permeability.
ne of the features of this model is that radial and axial permeabilities
eed not be equal. This is particularly relevant for the myofilament
attice since fluid may flow more readily in the channels between
ilaments than across them.

Axial flow can be described as plug flow combined with pressure-
ependent Darcy flow:

𝑧(𝑧) = −𝑈
2

−
𝑘𝑙
𝜇

d𝑝
d𝑧 (3)

where 𝑘𝑙 is the coefficient of axial permeability, 𝜇 denotes the fluid’s
viscosity and 𝑝 denotes pressure. The radial component of velocity also
depends on the axially varying pressure and the lattice’s radial perme-
ability, 𝑘𝑟. The radial velocity is found by applying the conservation
of mass, which balances radial and axial flow rates with boundary
conditions:

𝑢𝑟(𝑟, 𝑧) =
𝑟𝑘𝑟
𝑅2𝜇

𝑝(𝑧) (4)

where 𝑘𝑟 is the coefficient of radial permeability and 𝑅 is the sar-
comere’s radius. The pressure in the system is then derived as (see
Methods):

𝑝(𝑧) =
𝜇𝑈𝑅

2𝑘𝑙𝛼 sinh(𝛼𝐿∕2𝑅)
cosh

(

𝛼
𝑧 − 𝐿∕2

𝑅

)

, 𝛼2 =
2𝑘𝑟
𝑘𝑙

. (5)

One advantage of this model is that the influence of radial and axial
permeability can be investigated numerically by varying 𝛼. Interest-
ingly, axial and radial permeabilities may vary across muscles since, for
instance, many invertebrates have different lattice packing ratios than
vertebrates [21]. A limitation of this model is that it does not obey the
no-slip condition at the z disc.

Numerical finite element solution

We numerically solved for the fluid flow in a simplified sarcomere-
like geometry using COMSOL multiphysics’ Creeping Flow interface. In
order to reduce the computational load, which is perhaps the largest
drawback of this method, we used radial symmetry and solved the flow
in an axial wedge of the sarcomere (Fig. 3). We modeled the thick and
thin filaments as rods and applied z no-slip boundary condition (fluid
velocity at the surface is the same as the velocity of the rods). The
axial velocity at the m line was zero (by symmetry) and the velocity
at the z disc was set to −𝑈 in the axial component and 0 in the
radial component. We chose a no-slip boundary condition for the z
disc since the structure is even more densely packed than the rest
of the sarcomere. Additionally, because the motion of two adjoining
sarcomeres is symmetric there is a mirroring boundary condition at
the center of the z disc such that fluid cannot axially cross between
two neighboring sarcomeres. In most muscles the z disc is a narrow
structure, with a notable exception found in the sonication muscle of
the plainfin midshipman fish [22], so in our model we have treated the
z disc as a boundary. The thin filaments moved along with the z disc,
while the thick filaments were prescribed to remain stationary with the
m line. Fluid was allowed to leave the model at the boundary by a
3

constant pressure outlet.
Fig. 3. A schematic illustrating the geometry and boundary conditions of the
finite element model. We use symmetry to first reduce the system to a half sarcomere,
and further consider a 1/8th wedge of the sarcomere. The sides of the wedge were
prescribed a mirroring boundary condition while the outer edge was prescribed as
a zero pressure outlet. Due to symmetry, the boundary condition at the m line is
mirroring, while the boundary condition at the z disc is a no-slip moving wall sliding
towards the m line at a prescribed velocity U = 1000 nm/s. The surfaces of the thick
and thin filaments also have a no-slip boundary condition, however the thick filaments
are stationary, while the thin filaments move along with the z disc at a prescribed
velocity of U = 1000 nm/s.

Comparison of models

Each model has its advantages. The analytical models are compu-
tationally efficient and can be combined with other analytical models,
however they neglect important structural details. The kinematic model
accurately captures boundary conditions, but is unable to account for
the internal structure of the lattice that may effect the patterns of flow.
The Darcy based model accounts for the axial and radial permeability
of the lattice, but it fails to meet the no-slip condition on the z disc.
Qualitatively these analytical models still provide similar flow fields:
the fluid is ejected at the m line and axial and radial flow velocities are
zero at the very center of the sarcomere due to symmetry (Fig. 4). A
key difference between them is that fluid is radially ejected along the
entire length of the sarcomere’s boundary in the Darcy model, while in
the kinematic model the fluid has very little radial velocity near the z
disc.

These qualitative results differ from the finite element model, in
which the maximum radial outflow occurs at the ends of the thin
filaments (Fig. 5). In fact, along an axial transect near the exterior of
the filament array approximating a sarcomere the fluid has almost no
radial velocity in the zone of filament overlap. The exception to this
trend is when thin filaments are nearly pressed against the m line where
a mirroring boundary condition was imposed. In this model, we observe
that the fluid is ejected radially within the zone of filament overlap, as
shown in the top panel of Fig. 5. Nonetheless, the analytical models
may still be reasonable approximations of fluid flow in the sarcomere
since many muscles operate on the ascending and plateau portions of
their length tension curves [23–25], although some muscles do at times
operate on their descending limb [26,27].

The finite element model also draws attention to fluid shearing
between individual thick and thin filaments. How fluid shearing in
this region impacts myosin molecular motor binding probability is un-
known, and this model does not capture how motor molecules impact
flow.

While fluid flow generally augments substrate transport to the
interior of the myofibril [20], the explicit nature of the flow field and
its ramifications for substrate transport have not been investigated.
Although the finite element model provides valuable information about
how filaments structure flow within the sarcomere, at a larger scale the
spatial arrangement of organelles on the outside of the myofibril (like
the sarcoplasmic reticulum, mitochondria and t-tubules) may obstruct
diffusion [28] and structure fluid flow. Since these organelles act as
both substrate sources and sinks their location relative to the flow
field may also be important, as in other cell types [29]. For instance,
mitochondrial location within the cell is constrained by both the need
to acquire oxygen, and to supply myofibrils with ATP [30]. Developing
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Fig. 4. A comparison of the flow fields predicted by each model, where in each plot arrows denote the predicted fluid velocity. In both panels (A) and (B) the vertical
axis represents the normalized radial distance from the center of the sarcomere (0) to the exterior of the sarcomere (1), while the horizontal axis corresponds to the normalized
axial distance from the m line (0) to the z disc (1). In panel (C) the aspect ratio of the model is visually preserved. (A) The Darcy-based analytical fluid flow model shows that
the peak radial flow occurs at the m line, although there is significant radial flow across the sarcomere’s edge, violating the no-slip condition at the z disc. (B) In contrast, the
analytical flow field derived from the kinematic boundary conditions of the sarcomere meets the necessary boundary conditions. It also shows a peak radial outflow at the m line
and a region of stagnation at the center of the sarcomere (r = 0 and z = 0). (C) In the finite element model, the velocity arrows overlay a heat map which indicates velocity
magnitude. The finite element solution allows the explicit inclusion of filaments in the system, which stream the flow. The peak radial flow occurs at the tips of the thick and
thin filament arrays, and there is fluid shearing between the filaments. In contrast to the analytical solutions, the fluid largely stagnates at the m line unless the thin filaments
are nearly pushed up against it.
a model of transport that accounts for the spatial distribution of or-
ganelles and structurally relevant flows is an exciting avenue to better
determine the structural constraints of muscle cells.

Are viscous shearing and drag forces significant?

Two central issues are critical in our estimate of drag forces asso-
ciated with intrasarcomeric flows: (1) we do not know the viscosity
of the fluid in the sarcomere and (2) there is an unknown extent
of water bound to the filaments themselves. In addition to layers of
bound water, the effective diameter of the thick filament may depend
on the extension of molecular motors away from the thick filament’s
backbone. Here we address these issues explicitly.

In the packed intra-cellular space, factors such as macromolecular
crowding and bound water may significant influence drag forces and
diffusion mediated processes [31]. Although the depth of bound water
layers around the thick and thin filaments is unknown, osmotic com-
pression indicates that 30% of the myofilament lattice is osmotically
inactive, with a protein volume of 20 − 25%, indicating that 5 − 10%
of the volume is composed of bound cytoplasm [7]. Additionally, the
extent to which myosin motors are extended from the backbone, or
held against it, depends on a host of regulatory factors [32]. Using
a parameter sweep, we estimated how the thickness of the filaments
impacted drag forces.

It is also vitally important to note that the sarcomere is packed with
myriad regulatory and structural proteins that we have not included in
our model. How their precise structures, locations and motions impact
fluid flow and drag forces is unknown. While increasing filament
diameters accounts to some extent for the occlusion of the space, it does
not account for how radial protein structures may prevent channeling
of fluid between the thick and thin filaments.

Using our finite element model we estimated the drag force on a
single thick filament near the center of the sarcomere, and a neighbor-
ing thin filament. Our results confirm an early hydrodynamic estimate
that drag forces are small [11]. Although drag force increases with
filament diameter, even when filaments were nearly touching one
another viscous drag was still surprisingly small when contrasted with
the picoNewton scale forces generated by individual molecular mo-
tors [33,34] (Fig. 6). We note that the viscosity of water is likely a lower
bound for the viscosity of the cytoplasm, and drag forces scale linearly
with viscosity. However, even scaling the viscosity up to 1000× that
of water the drag forces are still of the same order of magnitude as the
4

forces generated by single myosin molecular motors [35]. These results
support earlier findings that demonstrated increasing fluid viscosity re-
duced contraction velocity by slowing cross-bridge kinetics, rather than
by imposing drag forces on filaments that hampered contraction [13].

It is reasonable to ask how fluid moves in response to the lattice’s
shape change, but also how fluid flow influences the lattice’s volume.
Since the drag forces our model predicts are small when contrasted with
the forces generated by cross bridges we expect that fluid flow is not
the primary determinant of lattice volume changes, but instead that it
flows in response to the lattice’s motions.

While the forces themselves do not prohibit filament sliding, it is
interesting to ask if the total energetic cost of overcoming viscous shear-
ing is similarly negligible. To address this issue, we used our computed
drag forces for thin and thick filaments at the center of the sarcomere
along with their velocity to compute the rate of energy expenditure by
viscous shearing. Then, for an idealized sarcomere that contains 500
thick filaments and 3000 thin filaments and that shortens at 1000 nm/s,
we computed the lower-bound total rate of viscous energy dissipation
to be 0.004 fW. Since this is not an intuitive unit, we can frame this
number in a more biological context by observing that the energy
released by ATP hydrolysis is 69 kJ/mole [36] and then converting
from W to ATP molecules consumed per second. We estimate at the
lower bound that approximately 35 ATP molecules per second are
consumed by viscous drag forces. This estimate was computed using
the minimum filament diameters, the viscosity of water, a 1:3 thick
to thin filament packing ratio and D10 of 45 nm (corresponding to a
surface to surface gap distance of 20 nm).

Although the 1:3 packing ratio we used is common among inver-
tebrate muscles, there is considerable taxonomic diversity in packing
ratio [21]. In vertebrates, a 1:2 packing ratio is standard. However
among invertebrate taxa there are multiple examples of muscles with
many more thin filaments than either the 1:2 or 1:3 packing ratios.
To investigate how drag forces depend on packing ratio, we computed
the fluid flow for a sarcomere with a packing ratio of 1:5 (which is
approximately the packing ratio of cockroach femoral muscle [37],
although it has also been estimated at a 1:6 packing ratio [38]). With
a smaller thick to thin filament ratio, the thick filament drag force
magnitude was slightly larger than that of the corresponding model
with a 1:3 packing ratio (3.2 fN to 2.6 fN respectively), and a slightly
smaller thin filament drag force (0.6 fN to 0.9 fN respectively).

Although these drag estimates remain small compared to the forces
generated by individual molecular motors, viscous drag forces could
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Fig. 5. The fluid flow field depends on the length of the half sarcomere as the amount of filament overlap changes. The velocity magnitude is shown as a heat map.
Speeds over 1250 nm/s only occurred in a small region near the m line of the 1010 nm geometry, and these were cut off and forced to appear as 1250 nm/s so that the finer
structure of the flow fields could be compared across simulations. The velocity along an axial transect near the border of the geometry is shown. The velocity is largest at the
tips of filaments. Lattice spacing was held constant across all half sarcomere lengths.
have broader ramifications, such as pushing molecular motors into a
different position and altering their binding probability. Since contrac-
tion of the micron-scale sarcomere is enabled by the cyclic action of
nanometer-scale molecular motors working in concert, small reorienta-
tions could have a large effect. Additionally, the effective diameter of
the filaments given bound water and the presence of molecular motors
projecting from the backbone has received minimal attention.

Future horizons

Our analytical and numerical approaches are based on a continuum
mechanics model of flow in the myofilament lattice, revealing that
the geometry of the lattice shapes the fluid flow field, and influences
forces. Each approach stems from finding an approximate solution to
the Navier–Stokes equations for a geometry and motion similar to those
observed in nature. The continuum approach assumes that individual
molecular interactions can be averaged since the Knudsen number is

Kn = 𝜆
𝐿

≈ 0.3 nm
20 nm = 0.015 (6)

given a mean free path (𝜆) of liquid water of approximately 0.3 nm [39]
and a representative length scale for the geometry (𝐿) of 20 nm.
However, sub-sarcomeric fluid mechanics is close to the spatial scale
at which the continuum hypothesis breaks down (Kn ≈ 0.1), and
we note that future bulk hydrodynamic modeling may need to be
coupled with methods that account for non-continuum effects. This
may be especially true for investigating the ramifications of fluid flow
around molecular motors and regulatory proteins. Approaches that
may be effective include Direct Simulation Monte Carlo (DSMC, which
takes a probabilistic view of particle location based on the Boltzmann
equation) [40], fluctuating hydrodynamics (which blends stochasticity
5

with the deterministic Navier–Stokes equations to approximate parti-
cle effects at a bulk scale [41]) or molecular dynamics (MD, which,
although computationally expensive and computationally unrealistic
at the sarcomere scale, explicitly account for particle collisions) [42].
Due to the range of time and spatial scales represented, estimating the
dynamics of the cytoplasm during muscle contraction will likely require
techniques that coarse-grain individual particle motions, coupling large
scale hydrodynamics with Brownian motion [39].

While in this study we highlighted the flow of fluid within the
sarcomere, fluid flow across organelles, from the interacting flow fields
induced by neighboring sarcomeres to the movement of fluid around
the sarcoplasmic reticulum and mitochondria, may have functional
implications that depend explicitly on cell geometry. Thus the scales
over which models must couple may range from nanometers (for
instance, as drag forces may alter the dynamics of molecular motors
and other regulatory proteins, and spatially explicit fluid flow may
reveal directed substrate transport) to millimeters (as fluid flow me-
diates substrate transport within whole cells). To address these issues,
future computational efforts can build upon the spatially explicit mod-
els of flow that we have developed here. Integrating from molecular
to cell scales is an exciting horizon for cell biologists necessitating
an understanding Brownian dynamics, colloidal dynamics and contin-
uum mechanics [43]. Striated muscle boasts a uniquely organized and
well-studied system to build models that integrate across these scales.

Conclusion

We contrasted two analytical models of fluid flow in the sarcomere
with a finite element model created with COMSOL to characterize
flow fields and forces in a sarcomere-like geometry. The fluid flow
field is significantly impacted by the presence of filaments occluding
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Fig. 6. A finite element model demonstrates that drag forces, along with the
energy dissipated by drag forces, increase as filament diameters increase in a
sarcomere-like geometry. (A) Drag force increases with increasing filament diameters.
Drag forces were measured using a surface integration on a thin and a thick filament
near the center of the sarcomere. We multiplied the filament diameters by a scaling
factor (normalized filament diameter) till their surfaces nearly touched since their
effective in vivo diameters are unknown. (B) The energy dissipated by viscous drag
forces on the sliding filaments was estimated by assuming that the sarcomere is
composed of 500 thick filaments and 3000 thin filaments and shortens at 1,000 nm/s.
Although more energy is dissipated by viscous drag as filament diameter is increased,
the overall energetic expense is relatively small compared to the cell’s overall energy
demands. (C) The diameter of the filaments was increased by multiplying their base
diameter by a scaling factor: the normalized filament diameter. To illustrate how the
geometry changes as filament diameter is increased we have shown a cross-sectional
heatmap of velocity magnitude for each of the simulations.

the space, with the regions of largest velocity magnitude near the z
disc, and maximum radial outflow at the tips of the filaments. When
the tips are at the m line, radial flow fields are more similar to the
analytical results, and the maximum radial velocity occurs at the m line.
Interestingly, such flows correspond to conditions of maximum filament
overlap which is physiologically quite common.

Both drag forces and diffusion are influenced by a number of hard-
to-characterize parameters: the viscosity of the cytoplasm, the degree
of molecular crowding (and the size of the molecules crowding the
space), layers of bound water and electrostatic interactions. Despite
these uncertainties, we suggest that the energetic cost induced by
viscous dissipation is small compared to the cell’s overall energy use.
However it is important to note that we assumed a steady sliding
velocity, rather than sliding induced by impulsive forces. The latter
6

Fig. 7. Fluid flow in the sarcomere may impact function through multiple
mechanisms. ATP powers the shape change of the myosin molecular motors, which
ultimately results in sarcomere shortening. Due to the shortening of the sarcomere,
there is a flow of fluid, potentially in and out of the lattice. The movement of fluid
could impact function by augmenting substrate delivery to the interior of the densely
packed lattice. The shearing of filaments with the fluid will also result in the dissipation
of energy by viscous drag. The drag force of the fluid on molecular motors could
bias their positions and alter their binding probabilities. Whether this would have a
positive or negative impact on contractility is unknown, and would likely depend on
the characteristics of the flow field.

could drastically increase viscous drag forces on sliding filaments [44].
Overall, the generally tiny viscous forces suggest that advective flow
may be an energetically inexpensive mechanism that augments sub-
strate transport, and fluid flow could bias cross bridge binding with
as yet unknown effects. (See Fig. 7.)

Methods

Conceptual underpinnings

We estimated fluid flow in the sarcomere with analytical models
and a finite element based approach using COMSOL. Each ultimately
derives from finding an approximate solution for the Navier–Stokes
equations for a geometry and motion similar to those observed ex-
perimentally. The Navier–Stokes equations (Eq. (7)) along with the
equation of continuity fully describe the movement of a fluid [45]:

𝜌
( 𝜕𝒖
𝜕𝑡

+ 𝒖 ⋅ ∇𝒖
)

= −∇𝑝 + 𝜇∇2𝒖 + 𝒇 (7)

where 𝜌 is the mass density of the fluid, 𝑡 denotes time, 𝐮 is a vector
field describing the fluid’s velocity, 𝑝 is a scalar field accounting for
pressure, 𝜇 is the fluid’s viscosity and 𝒇 captures external body forces
(such as gravity). Positing that the sarcoplasm is incompressible and
that the flow is steady, the continuity equation expressed in cylindrical
coordinates is:
1
𝑟
𝜕
𝜕𝑟

(𝑟𝑢𝑟) +
1
𝑟
𝜕𝑢𝜃
𝜕𝜃

+
𝜕𝑢𝑧
𝜕𝑧

= 0. (8)

Considering axisymmetric flow, the continuity equation reduces to:

1
𝑟
𝜕
𝜕𝑟

(𝑟𝑢𝑟) +
𝜕𝑢𝑧
𝜕𝑧

= 0. (9)

Next we consider the Reynolds number, which is the ratio of inertial
to viscous stresses in the system. Given a characteristic length scale of
3 μm = 3 × 10−6 m (which is a common sarcomere length), velocity of
1 μm∕s = 1 × 10−6 m∕s, viscosity of 8.9 × 10−4 Pa s and density of 997
kg∕m3 the Reynolds number is:

𝑅𝑒 =
𝐷𝑈𝜌
𝜇

= 1 × 10−6 ⋅ 1 × 10−6 ⋅ 997
8.9 × 10−4

≈ 3 × 10−6 ≪ 1

(10)

A Reynolds number much less than one means that viscous forces
predominately determine the behavior of the system, and so inertial
forces can be neglected. Therefore we can simplify the system of
governing equations, yielding the linear Stokes equations:

∇𝑝 = 𝜇∇2𝒖 + 𝒇 (11)



Archives of Biochemistry and Biophysics 706 (2021) 108923S.A. Malingen et al.

W
(

𝑢

B

G

𝑢

A
y

𝑢

T

Since the Stokes equations are linear, the flow elicited by a sequence of
geometry changes is precisely reversible if the sequence of geometric
changes is performed in exact reverse.

These governing equations undergird the modeling methods we
used. Ultimately, each of the modeling methods we used searches for a
possible solution to these equations subject to the boundary conditions
posed by the geometry and motion of the sarcomere. Here we provide
a brief explanation of the Darcy-based and kinematic-based fluid flow
models which are fully developed by Cass et al. [20].

Development of Darcy based model

This model combines plug flow and Darcy based flow, which allows
the variation of permeability. The half sarcomere can be considered
to have three regions (thick filaments only, filament overlap and thin
filaments only) that change in proportion with shortening. This model
simplifies the problem by considering only a single region of overlap-
ping filaments and approximating flow as a combination of plug flow
and Darcy flow due to the motion of the z disc and the presence of
filaments occluding the space. Plug flow varies only as a function of
axial location and decreases as a function of the change in pressure
and the resistance of the lattice to fluid flow:

𝑢𝑧(z) = −𝑈
2

−
𝑘𝑙
𝜇

d𝑝
d𝑧 , (12)

where 𝑘𝑙 is the longitudinal permeability of the fibers and is propor-
tional to the inter-fiber distance squared (𝑘𝑙 ∼ 𝛿2). In our case, the
inter-fiber distance 𝛿 = 𝐷10

√

3
.

To derive the pressure term in Eq. (12), we note that mass conserva-
tion demands the radial and axial volume flows must
balance:
d
dz (𝜋R2𝑢𝑧) = −2𝜋R𝑢r(R,z). (13)

e then invoke a Darcy relationship at the edge of the half sarcomere
𝑟 = 𝑅) where 𝑘𝑟 denotes the radial permeability of the fiber bundle:

𝑟(𝑅, 𝑧) =
𝑘𝑟
𝑅𝜇

𝑝(𝑧). (14)

y pairing these we come to an equation describing the pressure:

d2𝑝
d𝑧2

= 𝛼2

𝑅2
𝑝(𝑧), 𝛼2 =

2𝑘𝑟
𝑘𝑙

. (15)

Since this is a second order linear homogeneous differential equation,
the solution takes the form of a superposition of exponentials, which
can be expressed as the sum of a hyperbolic sine and hyperbolic cosine.
While there are two roots of the equation, it can be simplified since
𝑘𝑙 , 𝑘𝑟 and 𝑅 are all positive. Hence the general solution for pressure
is:

𝑝(𝑧) = 𝑝1cosh
(

𝛼 𝑧
𝑅

)

+ 𝑝1sinh
(

𝛼 𝑧
𝑅

)

. (16)

iven the boundary conditions for pressure:
d𝑝
d𝑧

|

|

|

|L
=

𝜇𝑈
2𝑘𝑙

,
d𝑝
d𝑧

|

|

|

|0
= −

𝜇𝑈
2𝑘𝑙

(17)

and the fact that the solution for pressure is even with respect to the
mid-point 𝑧 = 𝐿∕2, where 𝐿 is the half sarcomere’s length, the solution
can be simplified to:

𝑝(𝑧) = 𝑝1cosh
(

𝛼
𝑧 − 𝐿∕2

𝑅

)

, (18)

where:

𝑝1 =
𝜇𝑈𝑅

2𝑘𝑙𝛼sinh(𝛼𝐿∕2𝑅) . (19)

Then the radial velocity at the sarcomere’s edge (𝑅) is:

𝑟(𝑅, 𝑧) =
𝑈𝛼 cosh

(

𝛼 𝑧−𝐿∕2
𝑅

)

. (20)
7

4 sinh (𝛼𝐿∕2𝑅)
The radial flow within the sarcomere can be obtained from the
conservation of mass. By taking a local average, and assuming flow is
axisymmetric, we obtain:
𝜕𝑟𝑢𝑟
𝜕𝑟

= −𝑟
d𝑢𝑧
d𝑧 . (21)

ssuming that this expression is regular about 𝑟 = 0, integrating by 𝑟
ields:

𝑟(𝑟, 𝑧) = − 𝑟
2

d𝑢𝑧
d𝑧 . (22)

hen since
d𝑢𝑧
d𝑧 = −

𝑘𝑙
𝜇

d2𝑝
dz2

= −
𝑘𝑙𝛼2

𝜇𝑅2
𝑝(𝑧) = −

2𝑘𝑟
𝜇𝑅2

𝑝(𝑧), (23)

we finally obtain

𝑢𝑟(𝑟, 𝑧) =
𝑟𝑘𝑟
𝑅2𝜇

𝑝(𝑧) = 𝑟
𝑅
𝑢𝑟(𝑅, 𝑧). (24)

Kinematics based model

The kinematic based model was postulated from the system’s bound-
ary conditions. While uniqueness is not shown, this solution is continu-
ous and meets the available kinematic conditions, so it is an admissible
solution. First, by the no slip condition, fluid at the z disc has zero radial
velocity:

𝑢𝑟(𝑟, 𝐿) = 0. (25)

The m line and the radial center of the sarcomere also define two
planes of symmetry. At the m line there can be zero net axial shear,
while along the axial center there can be no net radial shearing:
𝜕
𝜕𝑧

𝑢𝑧(𝑟, 0) = 0, (26)

𝜕
𝜕𝑧

𝑢𝑟(0, 𝑧) = 0. (27)

In addition to the equation of continuity these conditions constrain the
solution space, and they are met by the model:

𝑢𝑟(𝑟, 𝑧) = −𝑈 3
4
𝑟
𝐿

[

1 −
( 𝑧
𝐿

)2
]

, (28a)

𝑢𝑧(𝑧) = −𝑈 3
2
𝑧
𝐿

[

1 − 1
3

( 𝑧
𝐿

)2
]

. (28b)

Finite element model

The geometry of the model was based on experimental observations.
See Table 1. Although the lengths of the thick and thin filaments de-
pend on the species and muscle type, the values we used are similar to
a variety of muscles in common model organisms [21,46]. The spacing
of the filament lattice also varies depending on organism, muscle type,
and even the operating conditions for a single muscle. Our choice is
based on Manduca sexta during in vivo function [47]. In our model
we held lattice spacing constant, although lattice spacing changes
commonly occur over the course of contraction in living systems [32].
Finally, the diameter of the thick and thin filaments was chosen based
on atomic reconstructions of the filaments, [48] and [49], respectively,
and electron microscopy [50]. The diameters of the filaments relevant
for hydrodynamic interactions is unknown since layers of water may be
bound to filament surfaces, and since myosin molecular motors extend
from the thick filament backbone. Therefore we chose conservative
base values and later scaled these values with a dimensionless factor
from 1 to 1.9. We used a model with a 1:3 thick-to-thin filament
packing ratio for the base simulations. We also used a separate model
with a 1:5 thick-to-thin filament packing ratio since there is natural
variation in packing ratios across taxa. We took advantage of symmetry
to reduce the computational cost of the simulation, first reducing the
simulation to a half sarcomere from the m line to z disc, and then
further constraining it to a one-eighth wedge, resulting in one-sixteenth
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Table 1
The base values used for the model geometries are provided. Filament lengths
were chosen based on commonly observed values in a variety of organisms
[21,46]. It should be noted that these lengths correspond to only the portions of
the thick and thin filaments within a single half sarcomere (z disc to m line), so
we refer to a half thick filament length, and thin filament length. The spacing of
the filament lattice is also variable, however our choice is commonly observed in
Manduca sexta during in vivo function [47]. The diameters of the thick and thin
filaments were chosen based on atomic reconstructions of the filaments, [48] and
[49], respectively, and electron microscopy [50].

Structure Size (nm)

Thin filament radius 5
Thin filament length 1000
Thick filament radius 7
Half thick filament length 800
Lattice spacing (D10) 45

of a sarcomere. In order to reduce the computational load we limited
the model’s radius to be six times the lattice’s spacing (the D10). The
boundary conditions we prescribed for the model are illustrated in
Fig. 3, briefly, the z disc was prescribed as a no slip wall, the m line
and adjoining radial faces were prescribed as a symmetry plane, the
outer face along the circumference was a zero-pressure outlet and the
surfaces of the filaments were prescribed a no-slip condition.

Creeping flow simulations

We used a free tetrahedral mesh paired with COMSOL’s option
for a normal mesh element size calibrated for fluid dynamics. The
maximum element size was 1.49E−8 m and the minimum element size
was 4.44E−9 m with a maximum element growth rate of 1.15 and
curvature factor of 0.6 and 0.7 resolution of narrow regions.

Data availability

The Comsol models can be accessed via the Dryad digital repository
at: https://doi.org/10.5061/dryad.q2bvq83jb.
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