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We experimentally and theoretically study the dynamics of a low-Reynolds number
helical swimmer moving across viscosity gradients. Experimentally, a double-layer vis-
cosity is generated by superposing two miscible fluids with similar densities but different
dynamic viscosities. A synthetic helical magnetically driven swimmer is then made to
move across the viscosity gradients along four different configurations: either head-first
(pusher swimmer) or tail-first (puller), and through either positive (i.e., going from low
to high viscosity) or negative viscosity gradients. We observe qualitative differences in
the penetration dynamics for each case. We find that the swimming speed can either
increase or decrease while swimming across the viscosity interface, which results from
the fact that the head and the tail of the swimmer can be in environments in which the
local viscosity leads to different relative amounts of drag and thrust. In order to rationalize
the experimental measurements, we next develop a theoretical hydrodynamic model. We
assume that the classical resistive-force theory of slender filaments is locally valid along the
helical propeller and use it to calculate the swimming speed as a function of the position
of the swimmer relative to the fluid-fluid interface. The predictions of the model agree
well with experiments for the case of positive viscosity gradients. When crossing across a
negative gradient, gravitational forces in the experiment become important, and we modify
the model to include buoyancy, which agrees with experiments. In general our results show
that it is harder for a pusher swimmer to cross from low to high viscosity, whereas for a
puller swimmer it is the opposite. Our model is also extended to the case of a swimmer
crossing a continuous viscosity gradient.

DOI: 10.1103/PhysRevFluids.6.083102

I. INTRODUCTION

Taxis is the capability of biological cells to respond to an external stimulus, such as a light or
chemical gradients, and as a result move towards or away from it [1]. In nature, the adaptability
of microorganisms to respond to a variety of cues has been demonstrated in gradients of light
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intensity (phototaxis) [2—-6], magnetic fields (magnetotaxis) [7-9], temperature (thermotaxis)
[10-12], gravitational potential (gravitaxis) [13—15], and chemical stimuli (chemotaxis) [16].

For many motile microorganisms, chemotaxis is a crucial method to escape from toxins
(chemo-repulsion or negative chemotaxis) and to find sources of food (chemo-attraction or positive
chemotaxis). Two illustrative examples are the well-studied bacterium Escherichia coli [17], whose
study is at the heart of most of what we know about bacterial sensing and information processing,
and spermatozoa looking for the ovum during fertilization [18]. Beyond individual behavior,
microorganisms may also exhibit collective dynamics through chemically based communication.
For example, when a Dictyostelium cell (a type of mold) starves, it produces a chemical that
induces a multicellular aggregation process, which allows the cells to survive long starvation periods
[16,19-21]. The mechanism behind this phenomenon is captured in the classical Keller-Segel model
[22,23] and has been extended to describe some collective phenomena of E. coli bacteria showing
chemo-attraction to self-produced autoinducers [24].

A mechanical example of taxis, viscotaxis, emerges when a cell adapts its motion in response
to viscosity gradients. Some microorganisms, such as Spiroplasma [25] and Leptospira interrogans
[26-28], have indeed the ability to respond to changes in viscosity. A particularly important example
for human health is the colonization of the stomach by the bacterium Helicobacter pylori, which
turns out to be another consequence of the ability to move in viscosity gradients [29,30]. Indeed, H.
pylori is the only known bacteria to be capable of penetrating the intestinal mucus layer and reach
the stomach wall [29,30], due to an enzymatic degradation of the stomach mucosa [31,32]. This
leads to severe inflammation that can result in ulcerogenesis or neoplasia, and since the bacterium
infects about 50% of the human population it is important to understand its pathogenesis [33].

In this paper we focus on the mechanics of artificial bacteria in model systems displaying
gradients in viscosity. In nature, the motion of helicoidal bacteria through a liquid environment
is subject to a number of additional physicochemical processes, including screened electrostatics,
the interactions with diffusing chemicals, and biochemical noise [34]. From the point of view of
continuum fluid mechanics, the dynamics of flagellated bacteria always takes place in the Stokesian
regime since the typical Reynolds numbers range from 10~ to 1072, The hydrodynamics associated
with the movement of such microorganisms is therefore dictated by the predominance of viscous
forces and the absence of inertia.

Some understanding already exists on the impact of viscosity gradients on the dynamics of
both passive and active (swimming) particles. For example, through cross-streamline migration in
viscosity gradients, it is possible to sort soft passive particles in microflows [35]. Heated particles
create temperature gradients, which induce local variations in viscosity in the surroundings of the
particle [36]. For simple swimmers composed of a small number of active spheres, viscotaxis has
been recently shown to arise from a mismatch in the viscous forces acting on the different parts
of the swimmer, allowing both positive and negative viscotaxis in Newtonian fluids [37]. Although
that mechanism does not account for the possible existence of biological viscoreceptors [38], the
positive viscotaxis in Spiroplasma [25] and Leptospira [26-28] can be explained in these terms.

Using the classical squirmer model microswimmer [39—41], work coupling the concentration of
nutrients to the viscosity of the fluid showed qualitative differences in the dynamics of swimming,
in contrast to fluids with constant viscosity [42]. The squirmer model has also allowed researchers
to study theoretically the effect of weak viscosity gradients on the motion of general spherical
swimmers, showing in particular how the swimmer “mode” (i.e., whether the swimmer is a pusher
or a puller) is critical in setting the sign of the viscotaxis response [43]. However, and despite a
good understanding of locomotion of bacteria in Newtonian fluids [44], a theory that explains how
viscosity gradients affect the swimming of helical swimmers is currently not available.

Synthetic microswimmers have often been proposed as one modeling approach to study the
motility of microorganisms. Self-phoretic Janus colloids, for example, can be made to move through
the generation of chemical, electrostatic, or thermal gradients [45]. These systems have been shown
to display similarity with biological chemotaxis, and the Keller-Segel equations for both Janus col-
loids and chemotactic microorganisms are similar [46—-50]. Chemotaxis also plays a significant role
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in the formation of dynamic clusters and patterns and synthetic colloid microswimmer suspensions
[30,31,45,48,50-53].

Artificial helicoidal swimmers typically consist of a rigid magnetic head fixed to a metallic
helical tail [54] in which the whole body is made to rotate by an external magnetic field. Propulsion
arises as a result of the chirality of the helical tail, in close analogy to the swimming of flagellated
bacteria, e.g., E. coli [17]. These types of synthetic swimmers preserve the basic physical charac-
teristics that allow locomotion in low-Re environments, namely, the coupling between rotation and
translation for a helical slender filament (here the tail). Under this framework, many control param-
eters can be explored experimentally to quantify the swimming motion in complex environments
[55,56].

Recently, inspired by the process through which H. pylory crosses the intestinal mucus layer,
we conducted an experimental study on the dynamics of helical swimmers moving through the
interface between two immiscible fluids [57]. Depending on the orientation of the swimmer and the
different stages of penetration (in particular whether the head or the tail reaches first the interface),
the interface was shown to dramatically affect the swimmer. However, interfacial tension is not
believed to play a significant role in the mucus zone, where instead high-viscosity gradients are
dominant. In this paper we therefore consider the case where the helical swimmer crosses a viscosity
interface.

We construct experimentally a stratified solution of two miscible fluids with different viscosities
and study the motion of the artificial helical swimmer as it crosses the interface between the fluids.
We show that the swimmer slows as it crosses from a region of low to high viscosity head-first
(i.e., in the pusher mode) but that it increases its speed when it approaches the interface with its
tail-forward (puller mode). In contrast, the swimmer always slows when it moves down the gradient,
regardless of its orientation. We then develop a hydrodynamic model to explain our observations.
Inspired by a previous study on viscotaxis [37], we assume that the standard Newtonian Stokes drag
laws are locally valid, and that the swimming behavior is determined by an instantaneous balance
between viscous propulsion and drag. For motion up the viscosity gradient, our model predicts a
decrease (resp. increase) in the swimming speed for pusher head-forward (resp. puller tail-forward)
orientation, which is consistent with the experimental observations. However, due to the reversibility
of Stokes flows, our model would predict the opposite behavior when the swimmer moves down the
gradient, in contrast with the experiments. Further analysis of our experiments reveal that when
the swimmer moves down the gradient it entrains a portion of the high-viscosity fluid into the
low-viscosity region, regardless of its orientation. This drift volume increases the apparent density
of the swimmer, thereby slowing it due to gravitational forces. Including a buoyancy term in our
model to account for this effect allows the theoretical predictions to come closer to the experimental
observations.

The paper is organized as follows. In Sec. II we describe the synthetic swimmer, its characteristic
geometrical parameters, and the experimental setup. The experimental results for all four configu-
rations are presented in Sec. III, with a focus on the swimming speed as a function of the swimmer
position relative to the fluid interface. The mathematical model for a sharp viscosity gradient is
developed in Sec. IV, and its extension for a continuous viscosity profile is presented in Sec. V. We
next compare our model with the experimental results in Sec. VI; a modified model that takes into
account the fluid entrainment is discussed at the end of this section. Finally we discuss our results
in Sec. VIL

II. EXPERIMENTAL SETUP AND MATERIALS

To investigate the mechanics of a synthetic swimmer crossing a layer of variable viscosity, we
use the helical swimmer previously developed by our group to study swimming in complex media
[55-57]. The helical swimmer, shown schematically in Fig. 1(a), consists of a cylindrical head and
a right-handed helical tail, both of which are rigid; pictures of the swimmer are shown in Sec. III.
The head of the swimmer contains a small magnet; since the entire setup is exposed to an external
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FIG. 1. Experimental setup. (a) Schematic representation of the helical swimmer. The dimensions of the
device are 2ry = 4.5 mm; Ly = 16 mm; Ly = 16 mm; A = 5.3 mm; 2Ry = 4.5 mm; and the pitch angle
Y = 45°. The thickness of the wire is 2r; = 0.9 mm. (b) In this example, the swimmer moves head-first from
a high-to-low viscosity fluid through a sharp gradient and here gravity is pointing downwards. Note that in all
figures the dark and light gray denote high- and low-viscosity regions, respectively.

magnetic field rotating below the step-out frequency, the swimmer rotates at an imposed rate. Details
on the setup can be found in Ref. [58]. With this setup, the speed of the swimmer can be controlled
by changing the rotation rate of the external magnetic field, and the swimmer remains force-free
throughout. In all experiments reported here, the swimmer moves vertically in either the upwards or
downwards direction. Furthermore, the swimming direction (head or tail first) can also be changed:
since the helical tail is chiral, reversing the rotation direction of the tail (by changing the rotation
direction of the magnetic field) leads to the swimmer moving while either pushing or pulling the
head.

A viscosity gradient environment is produced by slowly superposing two miscible viscous
liquids onto each other. They are placed, in sequence, in a transparent tank initially leading to a
two-layer sharp viscosity gradient, as shown in Fig. 1(b). The bottom liquid is prepared by mixing
glucose (530 ml) and water (100 ml) to have a viscosity of approximately p, = 2.74 Pa s, at room
temperature. To ensure that the interface remains horizontal, a small amount of salt is added to this
liquid (30 g of NaCl) to increase its density slightly, p, = 1367.4 kg/m?. Note that the slight density
stratification helps to maintain the layer stable to conduct several experiments before replacing the
fluids. Several combinations of the viscosity gradient are tested, but we report on only one case. The
viscosity and density of the top fluid are u_ = 0.55 Pas and p_ = 1309.7 kg/m?, respectively. The
fluid viscosities are measured with a viscometer (DV-III, Brokefield). The densities of the liquids
are measured with a 25 ml pycnometer.

The container, with dimensions 8.9 x 8.9 x 18 cm?, with the swimmer inside is placed within
the rotating Helmholtz coil, as in previous experiments [S5-57]. To reduce the crystallization of the
glucose solutions at the free surface, the container is kept closed at all times. As explained above,
the system is slightly density-stratified. Therefore, the swimmer cannot be neutrally buoyant in both
top and bottom fluids. The density of the swimmer is adjusted to make it as close as possible to that
of the light fluid: pswimmer & 1270 kg/m?. Hence, the swimmer is slightly buoyant for both fluids.
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FIG. 2. (a) The viscosity gradients at t = 0 and 16 h. (b) Normalized viscosity, ©«(z)/u, as a function
of normalized distance from the interface, z* = z/Ly. Data points represent the pixel intensity, which serves
as a proxy for the viscosity profile, soon after the initial setup (§ = A/Ly = 0.2735) and 16 h afterwards
(8 = 1.1384). Dashed lines represent the best fit of the Arrhenius equation u(C) = AeB/% with C/C, given
by Eq. (2),and A = u_ and B = In(u /).

All experiments are conducted at a fixed rotation rate of the swimmer, Q/2x = 2.92 Hz and
the swimmer moves at a constant terminal swimming speed, Uy >~ 1.5-3.5 mm/s in one of the
fluids. Due to the slight density mismatch the terminal speed is different for each fluid and for
each direction of motion. The maximum Reynolds number is Re = 0.035, using u_, ry and the
maximum swimming speed Uy = 3.3 mm/s, as the characteristic viscosity, length, and speed.

A. Evolution of the viscosity gradient in time

If left undisturbed, the two layers of fluid slowly mix, leading to a diffuse viscosity gradient
[Fig. 2(b)]. By conducting experiments at different times after the two-layer fluid is first prepared,
the influence of the strength of the viscosity gradient on the swimming process can be tested. The
thickness of the viscosity gradient is quantified by applying the following procedure. A dye is added
to the low-viscosity gradient, which allows one to track the concentration of glucose and assign a
pixel intensity to it. We calculate the concentration gradient along the z-axis at time # by solving the
diffusion equation

aic D 3°C 0
a9z’
where D is the diffusivity and z the distance from the initial interface. Using the Green’s function
method and the initial distribution C(z, 0) = Cy[1 — 6(z)], where 6(z) is the Heaviside step function,
we obtain the viscosity distribution as

C(z,t) 1

Z
Co 5[1 _erf<\/A2/2>]’ @

where erf(x) is the error function, A = 24/2Dt¢ is the width of the transition region, and Cj is the
initial glucose concentration on the high-viscosity fluid. Next, we assume that the viscosity field w is
related to the concentration C through the Arrhenius equation 1(C) = AeB/%, where the constants
A and B depend on the properties of the fluid mixture [59].
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FIG. 3. The four swimmer-viscosity interaction configurations for motion across the viscosity gradient. In
all cases u_— < w4 and the motion is in the upwards direction; note that gravity points upwards in (a) and
(b) and downwards in (c) and (d). Notice as well the change in the sense of rotation of the tail, depending on
its orientation. All conditions are described in Table I.

We show in Fig. 2(b) the resulting viscosity profile obtained experimentally (data points) with
the pixel intensity corresponding to the viscosity of each fluid. Here z = 0 denotes the position of
the fluid interface. The plot is presented in terms of the dimensionless distance z* = z/Ly, where
Ly is the length of the head. Negative values of z* correspond to the bottom fluid, which is more
viscous than the high-viscosity fluid located at z* > 0. Choosing A and B so that the viscosity
profile matches the initial configuration at t = 0, thatis, A = p_ and B = In (it /), we can fit
the Arrhenius equation to the experimental data [with C/Cy given by Eq. (2)] and find the thickness
of the transition region § = A/Ly as a function of time. The fits are shown in Fig. 2 as dashed
lines. In the case where the measurements are conducted soon after the gradient is set up, referred
to as a “narrow gradient” (N) in what follows, a value of § = 0.2735 closely fits the data. For
experiments conducted 16 h after the setup, which we will refer to as “wide gradient” (W), the
value of § = 1.1384 closely reproduces the experiments.

It is possible to determine the fluid density, p(z, ¢) in a similar way. Assuming an initial condition
0(@) = p' 4+ 6(2)(p — p’), an expression analogous to Eq. (2) can be obtained for p(z, t).

B. Four different swimmer-viscosity interactions

With the setup described above, we can now consider four distinct swimmer-viscosity interaction
scenarios. First, the swimmer can move head-forward (pusher mode) or tail-forward (puller mode).
Since the helical tail is chiral, reversing the rotation direction of the tail (by changing the rotation
direction of the magnetic field) results, for the same swimmer, in a displacement in the opposite
direction. In a uniform fluid at small Re, the swimming speed is, as expected, unaffected by this
change of direction (not shown). In addition to the swimming direction, the swimmer can be made
to swim across the interface from low to high viscosity (i.e., from w_ to p) or from high to
low viscosity (i.e., from w4 to w_). These four scenarios are depicted schematically in Fig. 3 and
summarized in Table I. In what follows, we will refer to the viscosity gradient as being positive
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TABLE I. The four possible swimmer-viscosity interactions depicted in Fig. 3.

Case Direction Gradient
1 Head-first (pusher) Positive
II Tail-first (puller) Positive
I Head-first (pusher) Negative
v Tail-first (puller) Negative

when the swimmer moves from a low- to a high-viscosity region, or negative in the opposite case,
from high to low.

Before each experiment is conducted, the swimmer is slowly placed in the desired initial position
and alignment, as far as possible from the interface, such that the viscosity gradient is not signif-
icantly disturbed. The motion is recorded with a video camera (920 x 1080 pixels, Sony RX10II,
60 frames per second), using the same distance from the setup to the camera and lens magnification
for all experiments. The speed of the swimmer is obtained by measuring its displacement in time.
The location of the head is determined using the software TRACKER; the speed is deduced from the
position of the head using a central difference scheme. Note that the uncertainty in the measurements
of the speed is larger for small swimming speeds, as the displacement must be larger than two pixels
between frames. If the traveling time of the swimmer across the two-fluid layer is smaller than the
diffusion time, the viscosity gradient can be considered to be approximately constant. Although,
in principle, it is possible to conduct experiments considering different values of the viscosity
gradient we consider only two cases here: a narrow gradient (N, § = 0.274) and a wide gradient
(W, 6 = 1.138), as described above.

III. EXPERIMENTAL RESULTS

We now analyze the crossing of the viscosity gradients by our swimmers along the four
configurations described in Table I, for which we find significantly contrasting behaviors. In all
experiments, the position z measures the distance from the leading edge of the swimmer to the
undisturbed interface; negative and positive z values denote therefore locations before and after
reaching the interface, respectively.

A. Case I: Head-first, positive viscosity gradient

In this first case, the swimmer is placed initially at the upper part of the tank. The vertical
displacement begins as soon as the rotating magnetic field forces the swimmer to rotate and swim
downwards; it reaches quickly its steady-state speed, Uy~ = 1.75 mm/s. After the interaction with
the interface, the swimmer attains a new steady-state speed U}"* = U} = 2.5 mm/s.

In Fig. 4 we show a sequence of images illustrating the crossing process. The time is given in
dimensionless terms, t* = tU, /Ly, and t* = O represents the instant at which the swimmer (in this
case the head) first reaches the interface. Along with the images, Fig. 5(a) shows the normalized
position of the swimmer, z* = z/Ly, as a function of the normalized time, t* (note that the images
have been flipped so that the swimmer appears to move upwards); Fig. 5(b) shows the normalized
speed U /U, as a function of z*.

As the swimmer approaches the viscosity gradient, its speed progressively decreases [Figs. 4(a)
and 4(b)]. When the head of the swimmer begins to cross the interface [z* ~ 0, Fig. 4(b)], the speed
decreases sharply reaching a minimum value at z* & 0.5. During this period, the swimming speed
is so small that our measurements become inaccurate (they correspond to very small displacement
between each frame), characterized by the noisy velocity seen in the region 0.2 < z* < 1. Once
the head has completely passed, the swimmer experiences two different viscous environments
simultaneously: the head is in the high-viscosity region while the tail is in the low-viscosity domain
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FIG. 4. Case I: time sequence of the head-first (pusher) swimmer crossing a positive viscosity gradient, for
6 = 0.274 (narrow gradient). Images have been flipped so that the swimmer appears to move upwards.

[Fig. 4(c)]. Shortly after the head has crossed, the swimmer rapidly increases its speed and the
helical tail is progressively crossing the interface [Fig. 4(d)]. Once the tail has completely gone
through the interface, the swimmer attains its new steady-state speed, z* > 2 [Figs. 4(e) and 4(f)].
For the two values considered experimentally, the thickness of the viscosity gradient does not seem
to affect the process significantly. However, we note that when the gradient is sharp, the swimmer
spends a longer time at the interface than in the case of the wider viscosity gradient.

B. Case II: Tail-first, positive viscosity gradient

In this second case, the same swimmer is also placed near the top of the tank but the tail is ori-
ented towards the interface. By reversing the rotation direction, the swimmer is then made to move
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FIG. 5. Case I dynamics, head-first (pusher) swimmer crossing a positive viscosity gradient: (a) dimen-
sionless position, z*, as function of dimensionless time, #*; (b) normalized speed U/U, as a function of
dimensionless position z*. At#* ~ 0 the swimmer reaches the interface, located at z* =~ 0.
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FIG. 6. Case II: time sequence of the tail-first (puller) swimmer crossing a positive viscosity gradient, for
6 = 0.274 (narrow gradient). Images have been flipped so that the swimmer appears to move upwards.

tail-first (puller mode). In Fig. 6 we show an image sequence of the process. The corresponding
position and speed of the swimmer are plotted in Fig. 7.

As in the previous case, initially the swimmer moves at a constant speed when it is relatively far
from the interface, see Fig. 6(a). In contrast with the previous case, when the tail of the swimmer
reaches the interface, the swimming speed increases sharply [Fig. 6(b)]. The swimming speed
continues to increase until the head reaches the interface [Fig. 6(c)]. The maximum speed reached
is nearly twice that of the steady speed in the more viscous fluid. As the process progresses, the
head crosses the interface and the swimming speed decreases from the maximum value to the free
swimming value; see Fig. 6(f). The process can be observed clearly in the two plots that show
normalized position and speed in Fig. 7. As in the previous case, the thickness of the viscosity
gradient does not significantly change the process.
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FIG. 7. Case Il dynamics, tail-first (puller) swimmer crossing a positive viscosity gradient: (a) dimen-
sionless position, z*, as function of dimensionless time, #*; (b) normalized speed U/U, as a function of
dimensionless position z*. At#* ~ 0 the swimmer reaches the interface, located at z* =~ 0.
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FIG. 8. Case III: time sequence of the head-first (pusher) swimmer crossing a negative viscosity gradient,
for 8§ = 0.274 (narrow gradient). The sketch on the right depicts the crossing dynamics schematically.

C. Case III: Head-first, negative viscosity gradient

In this third set of experiments, the swimmer moves up from the bottom of the tank head-first
(i.e., in pusher mode) across a negative viscosity gradient. Interestingly, we find some important
differences with case I. In Fig. 8 we show snapshots of the crossing process at different times while
we plot in Fig. 9 the normalized position and the speed of the swimmer.

The experiment starts with the swimmer moving in the high-viscosity fluid at constant speed,
Uy = Uy = 3.2mm/s; see Fig. 8(a). As in the previous cases, the swimmer slows as it approaches
the interface, but the process is different from case I since, although in both cases the swimmer
approaches the interface head-first, the viscosity gradients are in opposite directions. In the case of
a negative viscosity gradient, the swimmer appears to entrain some of the fluid with it as it crosses
the interface, as can be seen in Figs. 8(b) and 8(c). This results in the swimming speed staying
relatively constant during the crossing of the head. Once the head of the swimmer has completely
crossed the interface, the tail remains in the more viscous fluid [Fig. 8(d)] and the speed decreases
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FIG. 9. Case III dynamics, head-first swimmer (pusher) crossing a negative viscosity gradient: (a) di-
mensionless position, z*, as function of dimensionless time, #*; (b) normalized speed U/U, as a function
of dimensionless position z*. At t* & 0 the swimmer reaches the interface, located at z* =~ 0.
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FIG. 10. Case IV: Time sequence of the tail-first swimmer crossing the viscosity gradients from high to
low viscosity. The sketch on the right shows the crossing dynamics schematically.

sharply. At later times, the speed of the swimmer slowly increases until it reaches the free swimming
speed Uj)'~; see Figs. 8(f) and 8(g). We note that the thickness of the viscosity gradient does not seem
to affect the crossing process significantly.

D. Case IV: Tail-first, negative viscosity gradient

The final case considers the dynamics of the swimmer moving tail-first from the high to low
viscous fluid (negative gradient). In case II, when the swimmer also moved tail-first, a significant
increase of the swimming speed was observed during the interface crossing process. As shown
below, the behavior in this case is quite different.

In this case, the swimmer moves upwards from the bottom of the tank, approaching the interface
tail-forward. A sequence of images of the dynamics are shown in Fig. 10, and we display in Fig. 11
the corresponding position and speed of the swimmer for the two experiments with narrow and
wide viscosity gradients (as in all previous cases, Fig. 10 illustrates only the motion in the case of a
narrow viscosity gradient).

The swimmer starts to move from the bottom of the tank towards the viscosity interface at a
constant speed; see Fig. 10(a). When the tail reaches the viscosity interface, the speed increases
slightly [Fig. 10(b)] but then continuously decreases as the swimmer crosses the interface [see
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0 8 4 @g
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-1 0 1 2 3 4 5 6 7 8 -1 05 0 05 1 15 2 25 3 35
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FIG. 11. Case IV dynamics, tail-first (puller) swimming crossing negative viscosity gradient: (a) dimen-
sionless position, z*, as function of dimensionless time, #*; (b) normalized speed U/U, as a function of
dimensionless position z*. At#* ~ 0 the swimmer reaches the interface, located at z* =~ 0.
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Figs. 10(c)-10(f)], reaching a minimum speed when the head finally reaches z* ~ 0. As in the pre-
vious case, as the swimmer crosses the gradient it is seen to entrain some of the more viscous fluid.
The speed of the swimmer increases finally reaching its steady speed for z* > 3 [see Figs. 10(h) and
10(i)], while the more viscous fluid entrained by the swimmer progressively returns to its location
at the bottom of the tank.

IV. DISCRETE INTERFACE MODEL

As shown in the four cases studied experimentally above, a rich dynamical process is observed,
resulting from the intricate balance between drag and thrust for a swimmer straddling two domains
of different viscosities. Since the two-fluid arrangement is naturally stratified (the more-viscous fluid
is denser), buoyancy may also play an important role in the process. Based on these observations, we
now propose a model to describe the motion of a swimmer immersed in a fluid of nonhomogeneous
viscosity. Following the experimental setup, the rigid swimmer consists of a cylindrical head and a
helical tail. It rotates at a fixed angular speed €2, causing the tail to rotate and push on the surrounding
fluid, thus propelling the swimmer forward with velocity U. The size of the swimmer, velocity of
motion, and the viscosity of the fluid media are such that inertia can be neglected and we are in
the creeping flow conditions. Assuming that the classical resistive-force theory of slender filaments
[60] remains applicable locally at each point along the swimmer, the force per unit length acting on
the swimmer is given by

f=—-ciu+ @ — ¢ 1T, 3)

where ¢, and ¢ are, respectively, the perpendicular and parallel drag coefficients per unit length
given by [61]

2w u

(T A
I In(Lyr/rur)’

“4)

where the superscripts denote head (H) and tail (7). We also ignore hydrodynamic interactions
between the tail and the head, an assumption that we can check a posteriori to be reasonable given
the comparison between the model and the experimental results.

Using force balance we can then relate the swimming velocity to the angular velocity with a linear
relationship, U = S, with a prefactor S that can be determined for different viscosity profiles. We
start below with a sharp (step) function, which is a good approximation to a mixture of two miscible
fluids of different viscosities at early times. We will next generalize to a continuous profile. We then
complete the model by adding the effect of gravity to our calculations. The predictions of the model
are finally compared against experimental data.

A. Sharp viscosity gradient

We start by analyzing the motion at early times when the gradient in viscosity is sharp. In this
case we can model the fluid as two semi-infinite domains with viscosity

ur=pn" z<0
= , 5
n(z) {M2=M 0<z (&)
where z = 0 denotes the location of the interface (see Fig. 12). The analysis below will be valid
for any viscosity distribution and any orientation. Indeed, if we express the swimming speed as a
function of the distance from the head to the fluid interface, instead of the vertical coordinate z,
we can describe the dynamics in cases I and III (head-first negative and positive gradient) by taking
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FIG. 12. Helical swimmer crossing a sharp viscosity gradient.

w < pand pu < p/, respectively. As discussed in Sec. V A, the tail-first dynamics then follows from
the reversibility of Stokes flow.

B. Head-first interaction
1. Head crossing

When the head crosses the viscosity gradient first (Fig. 12, left), we model the drag exerted on
each part of the head as that experienced in an infinite fluid of viscosity p; = u’ or u, = . The
total viscous drag on the head is therefore given by

Fp = —[¢lLy, +¢f'Ly,]Ue, = —¢f! [LH, ?LHZ}UeZ, (6)

where Ly, , are the lengths of the portions of the head above and below the interface (which therefore
change in time as the swimmer moves through the interface). The resistance coefficients CI are
proportional to the corresponding local viscosities and depend on the geometry of the head [62]
The tail is modeled as a right-handed helix of radius R and pitch angle . We parametrize it using
the arc-length s = R¢/ sin iy, where ¢ is the azimuthal coordinate. The position x(s, #) of a material
point on the tail is therefore given by (see Fig. 12)

X(s,t) = Rcos 2ms/l + Qt)e, + Rsin 2ms/L + Qt)e, + (Ut + bs)e,, @)

where £ = 2m R/ sin ¥ is the arc-length per helical turn and b = cos . The tangent () and velocity
vectors (u) are obtained by differentiation with respect to s and ¢, respectively:

T(s) = —siny sin 2w s/€ + Qt)e, + sin 1 cos (2w s/L + Q )e, + cos Yre,, ®)

u(s) = —RQsin 27s/€ + Qt)e, + RQcos 2ms/L + Qt)e, + Ue,. )]
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The total hydrodynamic force exerted on the helix is then obtained using resistive-force theory as

Ly /cosy , . .
= _/0 gru+ (g, — ¢ - 1)Tds

Ly /cosy
=—d&/ u+ (" - D 1)rds, (10)
0

where ffl, {HTI are the perpendicular and parallel drag coefficients for the helix center line filament

and BT = {HT] / ;L , approximately equal to 1/2 in the slender limit [60]. Ignoring end effects, the
propulsive force acts mainly in the z direction, therefore we evaluate

Ly /cosy
e. F,=—¢] /0 (U + (BT — Db(QRsiny + Ub)]ds

TL
= —gl‘—T{U[l + (BT — 1)cos® Y1+ (BT — HQR sin ¢ cos ¥} (11)
cos

We obtain the swimming velocity in terms of the angular velocity by imposing the free swimming
condition e, - (F, + Fp) = 0. The swimming speed is then given by

U — CLLT(l — BTRsin ¥ cos Q2
N ¢l cos ¥ (Luy, + B2L,) + ¢ Lr[1 4 (BT — 1) cos? al

Using the condition Ly, + Ly, = Ly and defining A = Ly /Ly, § = ¢ /¢! and €y = Ly, /Ly, we
can write the swimming speed as a function of {5 = h as

EX(1 — BTHR sin ¥ cos Y Q2
cos ¥ (1 4 27 h) + €A1 + (BT — 1) cos? al

where h = H /Ly is the dimensionless position of the swimmer’s head.

(12)

Ui(h) = 13)

2. Tail crossing

After the head has crossed the interface completely (2 = 1) the force balance changes. In this
case, the head is completely immersed in the fluid of viscosity u,, and the drag on the head is given
by

Fp=—¢LyUe.. (14)
On the other hand, the propulsive force from the tail as it crosses the interface (Fig. 12, right) is now
given by
&1 L + ¢, L,

U1+ (BT = Dcos’ ¢+ (BT — 1)QQRsin cos ¥/}, (15)
cos ¥

e, -F,=—
where B7 is independent of the viscosities. Applying the free swimming condition along z, we then
obtain the swimming speed

e;/\(jj—j + B2 ) (1 = BT)R sin  cos Y Q2

= cos Y iz —i—ék(% + %ET)[I + (BT — 1)cos2y]’

where we have used the fact that ¢| /¢[T = ¢ /¢! = & and defined ¢ = Ly, /Ly . The position of
the top part of the head is now H = Lg[1 4+ A(1 — £7)], so we can rewrite Eq. (16) in terms of % as
follows:

(16)

E[r + 2 (h — D](1 = BT)Rsin ¢ cos Y2
cosy 2 +E[A+ B2 (h = D1+ (BT — Dcos? Y]’

Us(h) = a7)
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3. Summary

In the calculations above we obtained that U;({y = 0) = U, ({7 = 0) = Uy, so the swimming
speeds are identical when the swimmer is completely immersed in either of the two fluids. The final
speed of the swimmer is then given parametrically by

U() h<0,
Uith)  0<h<,
= 1
UMW =300m 1<h<1+a, (18)
Uy 1+ A< h.

We further note that the information about the direction of motion is only embedded in the values
of the viscosities, hence Eq. (18) is the swimming speed in case [ when 1 = u’ < pu, = u, and case
III for the choice u < w'.

C. Swimmer position

When the head crosses the interface, the swimming speed is of the form

Ay
Uh) = ——Q, 19
1(h) B 1 Ch (19)
where
Ay = Er(1 — BT)Rsin y cos v, (20)
By =cos +EA[L + (87 — 1) cos® ¥], (21)
o =2 sy, (22)
M1
On the other hand, when the tail crosses the interface, the speed is of the form
Ay + Doh
Ur(h)= ——=-Q, 23
2 (h) B, + Coh (23)
where
Ay = EX(1 — BTHRsiny cos v, (24)
Dy = eE2 7L _ BT)Rsin cos v, (25)
1
B, = cosw% +ENT 4+ (BT = 1)cos® ¥, (26)
1
G = s%[l + (8" — 1ycos? 1, @7)
1

where 1" = A — (12 — 1)/ 1.
The swimming speed is the derivative with respect to time of the position of the head, therefore
to find the position we need to integrate the ordinary differential equation
dh;

Ly—> = Ui(h). 28)

That equation is separable and can be integrated to obtain %, (¢) and h,(¢) as solutions of

Bk +Ch%—Ath (29)
171 12—LH 5

D>By — Ay, Ay 4+ Drhy
LH In

o B
D% A, + D, > + D_z(hz — 1)i| = Q(t — Tl), (30)
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where T1 = Ly (2B + C1)/(2A1Q2) satisfies h(Ty) = 1, that is, 7 is the time at which the head has
fully crossed the interface. Taking the condition #(0) = 0, we then choose the positive branch of
Eq. (29) so the position of the head for 0 < ¢ < T is given by

B A1C Q2 12
hh=—|[1+2 — 1. 31
e [( N LyB} ) Gh

In the second period, 71 < t < T, the position of the head is given implicitly as the solution of

’ﬁ_“mr4ﬂ+@%—nzgkw—nx (32)
w Ly

1

cos ¥ In |:1 +

where we used Eqs. (24)—(27) while T, = Lg[cos ¥ In (ua/ 1) + CGoA1/(D,2) + T; is the time at
which the tail has completely crossed the interface, the solution to /#,(7;) = 1 + A. As the swimming
speed is constant, U = Uy, for h < 0 and 1 + A < h, or equivalently + < 0 and 7, < t, the position
of the head as a function of time is given by

Upt t <0,
_ @ 0<t <,
MO = hatr) T <1<T 33)

1+A2+U)t - T7) T, <t.

D. Buoyancy

In order to maintain a stable two-fluid configuration, the fluids must have different densities.
Experimentally, salt was added to the high-viscosity fluid to slightly increase its density. The effect
on the swimmer is to add a buoyancy term in the force balance equation (Fp +F, +F,) -e; =0,
where the buoyancy term is given by

L
Fo = {ﬂRz[LH, (o — p1) + Lu, (pu — p2)] + wa? cosTw (por — Pl)}g, (34
for0 <h < 1and
) wa?
Fpo = {nR"Ly(py — p2) + cos v [Lt,(or — p1) + L1, (o1 — 02)]{ &, (35)

for 1 <h <1+ A. Here py and pr are the effective densities of the head and the helical tail
respectively, the density of fluid i = 1, 2 is denoted by p; and g is the gravitational acceleration.
As none of these expressions contain the swimming speed U explicitly, we can modify Eq. (13) and
Eq. (17) to include an extra buoyancy term Uy; on the right-hand side, given by

(Fg1 - €;)cosyr

Ua = 2 , (36)
T gff cosy (L, + B2 L) + ¢ Lr[1+ (BT — 1) cos? y]
Fyp -e cosy
Up=—5 T £ T - — (37)
¢ cos YLy + (¢ Ly, + ¢ L) [1 + (BT — 1) cos? y/]
Defining the typical buoyancy speed “g =nR*(py — p))g - €./ ”1? we can then write
U, — gy [<1+p1_p2h)cost//+ka—2pT_pl:| 38)
& B+ Cih PH — P1 R2 py — pi ’
Up = —“?2 |:COS v+ (h 1)(12 Ll e + )\.az Pr—p :| (39)
2 - - Y pupy b
£ B+ Gh Bon—p “Ron—m

where B; and C; are as given in Egs. (21), (22), (26), and (27).
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1

FIG. 13. Continuous viscosity gradient with a transition region of size A. Left: a linear viscosity profile
between two fluid layers of viscosities 1" and w. Right: a diffuse layer with A ~ +/Dt, where D is the diffusivity
of u(z).

V. CONTINUOUS INTERFACE MODEL

At short times after depositing the fluids in the tank, the interface between the two fluid mixture
is sharp and the analysis of Sec. IV A is appropriate. At later times, however, the components
responsible for the increase in the viscosity of the fluid mixture diffuse, and therefore so does
the viscosity profile (see our measurements in Sec. IT A). Therefore, we need to include in our
calculations for the swimming speed, the case in which the viscosity distribution is continuous. We
can achieve this by using a local drag coefficient ;f ’HT ((2)) in the resistive force calculation above.
Here u(z) is the value of the local viscosity of the fluid at some point on the body of the swimmer
at a distance z from the fluid interface. Considering a viscosity profile such that u(z — —oc0) — u’
and p(z — o0) — w (see Fig. 13), the drag, propulsion, and buoyancy forces are then given by the

linear superposition

H h  ~
e Fp=— f £ () dz =~ (W) LyU / ? dz. (40)
h

H-Ly —1
Lr/cosy
e.-F,= —/ ¢Hulz) ds{UTL + (BT — 1) cos* ¥1+ (BT — DQR sin ¥ cos ¥/}
0

_ @)Ly " )
cosy  Jp1oa W

dz{U[1 + (B" = D)cos® ¥ ] + (B" — )R sin ¥ cos ¥/},
41

h 2 h—1
_ 2 _ s @ _ 3
F,=nR LH{/h1 log — p(2)]1dz + Ricost )., [or — P(2)] dz}g, (42)

where fi(z) = u(Lyz), and p(z) = p(Lyz) with p(z) the continuous density distribution of the fluid
along z. Applying the free-swimming condition Fp + F, + F, = 0, and solving for U, we obtain
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the swimming speed in the continuous case as

h—1 .
g[S % dz](1 — ") sinyr cos yRQ + (Fy - e, cos /¢ L)
7 h—1 :

cosy[ [, 5P de] +E[ [T, 5P de]l1 + (BT — Dcos? ]

Note that the transition between ' and p does not have to be monotonic. However, in order
to apply this model to the experiments presented in Sec. III we will choose a monotonic viscosity
profile, with a transition region § = A /Ly, such as the linear and diffuse distributions depicted
in Fig. 13. Again, the dynamics in cases I and III are obtained by setting ' < @ and u < @/,
respectively.

The position of the swimmer as a function of time A(¢) can then be obtained by solving the
ordinary differential equation

U(h) = (43)

L dh _ U(h) (44)
Tar ~ '
This might not be solvable analytically for an arbitrary viscosity profile, but it is straightforward to
do numerically. As a final remark, note that we can recover the swimming speed in the two-fluid
case, by setting ji(z < 0) = u/, ii(z > 0) = p in Eq. (43). More generally, for any discrete number
of fluid layers the swimming speed is found by replacing the integrals in Eq. (43) by the appropriate
sums.

A. Head-first versus tail-first approach

The calculations above were all carried out in the case where the head of the swimmer crosses
the interface first (pusher mode). Since the motion is dominated by viscosity, expressions for the
speed when the swimmer approaches the interface with the tail first may then be obtained by
time reversal. Indeed, time reversal of Stokes flow corresponds to the map {U, 2, h, i/, u} —
{=U, —2, —h, u, n'}, therefore the tail-first approach is obtained by evaluating Eq. (43) at &' =
—h 4+ A + 1, where the translation A + 1 comes from the fact that #’ = 0 corresponds to the moment
when the tail meets the fluid interface. Note that we need to be careful with the sign of the
gravitational field, and to remember that in the experiments, the high-viscosity fluid always sits
at the bottom, so F, - e, < 0 when the swimmer crosses from high to low viscosity and vice versa.

B. Model predictions: Parameter dependence

Before comparing the model predictions with the experimental data, we explore the impact
of the different parameters of the problem on the swimming speed. One of the advantages of
the model developed here is that it allows us to explore a wider set of conditions than those
attainable experimentally. In this and the following section we will adopt the convention ' < u
for clarity. This means that, when the swimmer moves up the gradient, u(h — —oo) — ' and
u(h — 00) = . When the swimmer moves down the gradient, we swap ' and u. Furthermore,
we will use the terminology defined in Table I to refer to the different swimming conditions.

To simplify the interpretation of predictions, we first neglect buoyancy; in such a case, the time-
reversal symmetry between the head-first and tail-first is exact. The dimensional parameters we are
left with are the sizes of the swimmer (Ly, 7y, Lr, rr) and the pitch of the helical tail (Pr). Another
length scale is the size of the transition region (A) or, equivalently, the time at which the experiment
is performed after the two-fluid mixture is set up. We will keep the proportions of the head fixed
as well as the pitch and thickness of the helical filament so that we are left with two dimensionless
parameters: § = A/Ly and A = L /Ly, which quantify the relative size of the transition region and
the size of the tail compared to the head of the swimmer. Finally, we will also consider variations in
the viscosity ratio of the initial two-mixture fluid, i.e., p/u’.

In Fig. 14 we first show the swimming speed as a function of the distance between the head
and the fluid-fluid interface (normalized by the initial, and terminal, speed Uj). We assume that
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FIG. 14. Swimming speed in a linear viscosity gradient for different widths of the transition region. (a) Case
I, (b) case IIl. The viscosities of the semi-infinite fluids on either side of the interface are given by the
experimental values, i.e., u' = u_ = 0.55Pas and u = u, = 2.74 Pas. The length of the tail and head are
the same, i.e., A = 1, and the swimmer is neutrally buoyant in both fluids. The diagrams on the right indicate
the direction of motion, with dark and light gray representing high () and low viscosity (1), respectively. The
values are normalized by the terminal speed U.

the viscosity varies linearly between the two experimental values, ' = u_ = 0.55Pas and pu =
U+ = 2.74Pas, and we take the head and tail to have the same lengths, i.e., A = 1. In Fig. 14(a)
we consider case I, and the fluid interface is located at 2 = 0. The speed is constant when the
swimmer is completely immersed on the low-viscosity fluid. As the head crosses the interface, the
drag increases but the propulsion stays the same, therefore the speed decreases. Once the tail meets
the interface, the propulsion starts to increase thereby compensating the drag, and thus the speed
increases until it plateaus back to a constant speed. Figure 14(b) shows the speed of the swimmer in
case III. Here the drag reduces as the head traverses the interface, and hence the swimming speed
increases until the tail meets the interface, when the propulsion starts decreasing, compensating for
the lower drag. This continues until the swimmer is completely immersed in the top fluid, at which
point the speed reaches a new constant value.

The speed of the swimmer in case II (tail-first) may be obtained by reflecting Fig. 14(b) on
the vertical axis & = 1, with 4 now measured from the tip of the tail to the interface. Similarly for
case IV, we reflect Fig. 14(a). Notice that for A = 1, this reflection corresponds to the transformation
h — —h + 1 4+ A. In general, for arbitrary A, we need to reflect on the axis - = (1 + A)/2 in order to
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FIG. 15. Swimming speed in a diffusive viscosity gradient for different widths of the transition region.
(a) Case I, (b) case III. The parameters {u/u’, A} are the same as in Fig. 14.

obtain the swimming speed in the tail-forward scenarios. Therefore, the behavior of the swimming
speed is reversed in the tail first approach: the swimming speed increases when it crosses from low
to high viscosity and vice versa.

We next show in Figs. 15(a) and 15(b) analogous graphs to those in Fig. 14 for a diffusive
viscosity gradient with different values of the transition length scale A = 2+/2Dt. The behavior is
seen to be qualitatively the same as in the linear case. We also show the position of the swimmer
as a function of time for the same conditions in Figs. 15(c) and 15(d). The evolution of the position
is seen to not strongly depend on the width of the viscosity transition region, with the strongest
variability occurring for case I [Fig. 15(c)].

The behavior of the swimmer dynamics with increasing values of the viscosity ratio (u/u’) is
shown in Fig. 16 (for values § = 0.25 and A = 1). As could have been expected, the viscosity ratio
greatly influences the amount by which the speed of the swimmer changes as it crosses the interface.
In particular, when motion occurs from low to high viscosity, it is possible for the swimmer to spend
an arbitrarily long time crossing the gradient if the viscosity ratio is large [see Figs. 16(a) and 16(c)].
In contrast, the effect on the dynamics when the swimmer crosses from high to low viscosity is less
pronounced, with the time spent crossing the gradient decreasing by about 30% when the viscosity
ratio is 1000 times larger.

The impact of the dimensionless length of the tail (1) is next plotted in Fig. 17, for which we
use the same size of the transition region and the viscosity values used in Fig. 14. The speed of the
swimmer is seen to increase with the length of its tail, as expected since it is the tail that generates
propulsion. We further observe that the time the swimmer takes to cross the interface decreases with
A in both cases.

We also observe that the speed changes less for swimmers with long tails; indeed, if the tail is
much larger than the size of the transition region, then the propulsion remains almost the same
during a crossing event. Therefore, we expect swimmers with short tails to be less efficient at
crossing the interface.
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FIG. 16. Swimming speed and position in a diffusive viscosity gradient for different values of the viscosity
ratio: w;/pn’ = 1.0, 1.1, 2.0, 5.0, 10.0, 100.0, and 1000.0. (a), (c) Speed and position, Case I; (b), (d) speed
and position, case III. The width of the transition region is 6 = A/Ly = 0.25, the viscosity of the top fluid is
W =u_ =0.55Pasand A = 1.

When buoyancy is considered, many additional parameters impact the penetration dynamics, in
particular the relative densities between the swimmer’s tail and head and the densities of the fluids.
We did not explore all the dependencies, but it is important to point out two possible scenarios. In
the situation where the bottom fluid is significantly denser than the top one, the swimmer could end
up trapped at the interface between the two fluids in two different ways. Case (i) is the one where the
head dominates the weight of the swimmer and case (ii) when the tail does. In case (i) the densities
of the head and tail can be chosen in such a way that the propulsion is sufficiently large for the
swimmer to cross the interface when moving head forwards down the viscosity gradient (assuming
the bottom fluid is also the more viscous one), but then for the relative weight of the head in the top
fluid to be so large that it opposes any further propulsion. Symmetrically, in case (ii), when the tail
dominates the weight of the swimmer, it would be possible for the head of the swimmer, moving
head first, to be light enough so as to provide buoyancy able to cancel the propulsion generated by
the tail when the swimmer moves up the gradient. In both cases the swimmer would thus end up
being trapped at the interface, like a buoy.

VI. COMPARISON WITH EXPERIMENTS

A. Positive viscosity gradient

In this section we compare the predictions of our model to the experiments of Sec. III.

We begin with the situation where the swimmer crosses the interface from the low- to the high-
viscosity domain, and we start by analyzing case I, in which the head approaches the interface
first. The swimmer moves at a constant speed when it is completely immersed in fluid 1. When the
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FIG. 17. Swimming speed and position in a diffusive viscosity gradient for different values of the tail-to-
head size ratio, . (a), (c) Speed and position, case I; (b), (c) speed and position, case III. The width of the
transition region is § = A/Ly = 0.25, and the viscosity ratio is the same as in Fig. 14 (experimental values).

head reaches the interface, based on the results from the previous section, we expect the speed to
decrease due to an increase in drag experienced by the head. When the tail meets the interface, the
propulsion should then start to increase until it compensates the higher drag, achieving a constant
terminal speed. Indeed, both Eq. (43) and the experimental data confirm this. We plot in Fig. 18
the speed of the swimmer (normalized by the swimming speed in the high-viscosity fluid) as a
function of the dimensionless position of the head /; the swimmer starts from the low-viscosity fluid
(W = u_ = 0.55 Pas) and approaches the interface head-first. We compare the experimental data
against our model, Eq. (43), using the experimental parameters, i.e., A = 1, u = uy = 2.74 Pas,
o =p_ =1310kg/m>, p = p; = 1370 kg/m? and an average density pgyimmer = 1270 kg/m? for
the swimmer. The size of the transition region § is obtained by the procedure described in Sec. IT A.
With no additional fitting parameters, we observe that our model matches the experiments very
well, especially at early times [in the narrow viscosity gradient, indicated by (N)]. The model is
able to predict also that the speed reduction decreases with an increase in the thickness of the fluid
interface, §.

Note that the swimming speed drops dramatically to less than 10% of its initial value when
crossing the interface. This is a result of the combination of drag and buoyancy: as the swimmer
crosses the interface, its velocity is reduced both by an increase in drag and by an increase in
buoyancy (since the swimmer is slightly buoyant in both fluids; this is the least favorable case
for it).

083102-22



DYNAMICS OF A HELICAL SWIMMER CROSSING ...

14 Experiment W O

: Experiment N = A
Model § = 1.1384 = =
1.2 Model ¢ = 0.2735

+
> 08 g
~
D06 - I
0.4
0.2 ! !
0 L
3 9 4 5

FIG. 18. Comparison between experiments and data for case I [i.e., head-first (pusher) swimmer crossing
a positive viscosity gradient]: Speed of the swimmer as a function of the dimensionless position of the head
h with respect to the interface located at & = 0. The speed is normalized by the speed in the fluid of high
viscosity, U, = U(h — o00). We display the measurements early after the viscosity gradient has been set up
([N]arrow gradient): triangles (experiment) and blue solid line (model), and 16 h after ([W]ide gradient): circles
(experiment) and red dashed line (model).

In contrast to the head first approach, in case II (tail-first motion) we expect the swimmer to
increase its speed as it traverses the viscosity gradient, this as a result of an increase in propulsion.
When the head meets the interface, the drag increases and the speed should decrease, until the
swimmer achieves a constant speed. Both our model in Eq. (43) and the experiments agree with
this behavior, as shown in Fig. 19; we use the same values for the parameters A and Pswimmer @S in
Figs. 18 and 20. The position 4 is now measured from the tip of the tail to the interface. We swap
the values of the viscosities and densities &' = 4, u = u_, o' = p, and p = p_, to be consistent
with reversibility and the speed is still normalized by U,. Here we also observe that the model can
reproduce the experimental behavior, especially at early times. It can also capture the reduction of
the increase in speed with the width of the transition region §.

2.5

Exberil}lellt W o
Experiment N = A

FIG. 19. Comparison between experiments and data for case II [tail-first (puller) swimmer in a positive
viscosity gradient]. The speed of the swimmer is plotted as a function of the dimensionless position of the tail
h with respect to the interface located at 47 = 0, and the speed is normalized by that in the high-viscosity fluid,
U, =U(h — 00). We show the measurements soon after the viscosity gradient has been set up ([N]arrow
gradient case): triangles (experiment) and blue solid line (model), as well as 16 h after the start of the
experiment ([W]ide gradient case): circles (experiment) and red dashed line (model).
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FIG. 20. Comparison between experiments and data for case III [i.e., head-first swimmer (pusher) crossing
a negative viscosity gradient]. We plot the dimensionless speed of the swimmer as a function of the dimen-
sionless position of the head 7 measured relative to the interface located at 4 = 0. The speed of the swimmer is
normalized by the speed in the high-viscosity fluid, U, = U (h — —o0). We display the measurements early
after the viscosity gradient has been set up ([N]arrow gradient): triangles (experiment) and blue solid line
(model), and 16 h after ([W]ide gradient): circles (experiment) and red dashed line (model). The figure on the
left shows the predictions of the original model, not taking into account entrainment, while the plot on the right
the modified model with variable buoyancy and o, = 0.1.

B. Negative viscosity gradient

We now move on to the case where the swimmer crosses the interface from the high- to the
low-viscosity region, that is swimming down the gradient. To compare the results against our model,
Eq. (43), we use the same set of the parameters: &' = uy = 2.74 Pas, u = u_ = 0.55 Pas, p' =
o+ = 1370 kg/m3, p = p_ = 1310 kg/m>, peyimmer = 1270 kg/m>, and A = 1. The width of the
transition region, §, is obtained as before by fitting Eq. (2) to the experimental data.

In case III (head-first) we expect to see a behavior opposite to that of case I. Again, the swimmer
travels at constant speed when it is completely immersed in the high viscosity fluid. As predicted
by our model, when the head crosses the interface we would expect the drag experienced by the
swimmer to decrease, resulting in an increase in the swimming speed. Then, when the tail reaches
the interface, the propulsion should decrease, compensating for the reduced drag, until the swim-
ming speed reaches a constant value. However, the experimental data show a completely different
behavior. We plot in Fig. 20 a comparison between the experimental data and the predictions of
Eq. (43) (theoretical predictions are shown in thin lines). In the experiments, the swimmer seems to
maintain a constant speed as the head crosses the interface. When the tail then meets the interface,
the speed starts decreasing. It is only once the swimmer has fully crossed and is completely
immersed in the low viscosity fluid that the speed starts to increase.

Based on experimental observations, we hypothesize that this counterintuitive behavior is due to
the head of the swimmer entraining a significant amount of high-viscosity fluid with it as it crosses
into the low-viscosity region, thereby increasing its effective density and being slowed down. We
show experimental evidence of this entrainment in Fig. 21(a).

It is difficult to precisely calculate the amount of fluid that the swimmer entrains. However,
we can use our model to show that an increase in the effective swimmer density leads to theo-
retical results closer to what is observed experimentally. In order to do that, we assume that the
swimmer has an average density pswimmer Which increases by a height-dependent fraction « (k) as
[1 4+ a(h)]pswimmer- The increase is set explicitly by the relation

Mswimmer + Mf(h)

) 45
Vswimmer + Vf (h) ( )

p(h) = [1 + a(h)] pswimmer =
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(a) (b)

FIG. 21. Viscous entrainment of the high-viscosity fluid by the swimmer. (a) Experimental picture showing
the swimmer moving down the gradient and entraining some of the high-viscosity fluid as it crosses the
interface, regardless of its orientation relative to the interface. (b) The entrained fluid accounts for an increase
in the apparent density of the swimmer from Pswimmer = Mswimmer/ Vewimmer 10 0 = [1 4 & (1)] Oswimmer, Where o
depends on the mass of fluid dragged along with the swimmer, M; = pV/, as given in Eq. (45).

where {Myimmer, Vswimmer)> {My, Vr} are the masses and volumes of the swimmer and the entrained
fluid, respectively [see Fig. 21(b)]. Therefore the maximum increase in density is obtained in the
limit 1 < V¢/Vswimmer and is given by amax = (07 — Oswimmer)/ OPswimmer- Once the density reaches
its maximum, the fluid slides off and the density decreases. This observation is consistent with
previous calculations for the drift volume entrained by organisms in density stratified media [63].
At small Péclet number (i.e., for advection dominated by diffusion), the drift volume is a symmetric
function of the distance to a reference line and it decreases as the swimmer moves away [63]. For
finite Péclet number, the drift volume remains symmetric provided the Richardson number is small
(i.e., for buoyancy negligible compared to viscous stresses). Here we assume that the shape remains
symmetric, and we set & to be a Gaussian function with variance [(1 + 1)/2 + §]*> and maximum
Omax at # =1+ A 4 5. This means that (1) the changes in apparent density are negligible before
the swimmer meets the interface, (2) the maximum increase in density occurs when the swimmer
has fully crossed the interface, and (3) most of the dragged fluid slides off after the swimmer has
traveled the same distance it did before accumulating the maximum amount of entrained fluid.

Although this approach is a phenomenological way to account for the effect of the drift volume,
it shows that an increase in the effective swimmer density plays an important role in the dynamics.
We show in Fig. 20 the predictions of the modified model with the increase in density as thick lines.
This new model is now able to capture the qualitative features observed in experiments.

We finally address the situation in case IV with a swimmer approaching the interface tail-first
(puller case). Here we expect the swimming speed to slow as the swimmer crosses the gradient as a
result of a decrease in propulsion. As soon as the head meets the interface the drag should decrease,
compensating for the lower propulsion, until the speed reaches a constant value. However, we can
see in Fig. 22 that in the experiments the swimmer does not increase its speed until it has completely
crossed the viscosity gradient (h = 0), unlike the predictions from the original model (thin lines).
An increase in the effective density of the swimmer due to entrainment of the high-viscosity fluid
might here also be at the origin of this result. We use the modified model outlined above and plot
its predictions in Fig. 22 as thick lines; we see that the new model is able to come closer to the
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FIG. 22. Comparison between experiments and data for case IV (tail-first swimmer (puller) crossing the
viscosity gradients from high to low viscosity): Speed of the swimmer as a function of the dimensionless
position of the tail 4 with respect to the interface located at 4 = 0. Values for the speed are normalized by the
speed in the high-viscosity fluid U, = U(h — —o0). We display the measurements early after the viscosity
gradient has been set up ([N]arrow gradient): triangles (experiment) and blue solid line (model), and 16 h after
([W]ide gradient): circles (experiment) and red dashed line (model). The figure on the left shows the predictions
of the original model, while the plot on the right the modified model with variable buoyancy and o, = 0.1.

experimental data. As for case II, here 4 is measured from the tip of the tail and we flip the values
of the viscosities and densities to be consistent with reversibility, u' = u_, u = u4, o' = p_, and
P = P+.

Since the viscosity of the bottom fluid is five times larger than that of the top fluid, the deforma-
tion of the interface and the amount of fluid that the swimmer carries with it are much smaller when
it moves up the gradient (small entrainment of the low-viscosity fluid into the other one) than when
it moves down the gradient (larger entrainment of the large-viscosity fluid). Therefore the correction
to the buoyancy forces in cases I and II do not need to be included.

VII. CONCLUSION

In this paper, we present a joint experimental-theoretical study of the dynamics of synthetic
magnetic helical swimmers moving across viscosity gradients between two miscible fluids. The
viscosity gradients are seen to play a significant role in the swimming dynamics.

For motion up the viscosity gradient, there are two possible behaviors: first, for going up the
gradient motion, if the swimmer moves head-first (pusher mode), its speed reduces due to an
increase in drag. On the other hand, the swimmer increases its speed when it swims tail-first (puller
mode), due to an increase in the viscous propulsion. When the swimmer moves instead from high- to
low-viscosity regions, the opposite behavior is expected, i.e., the swimming speed should increase
if the swimmer moves head-first and decrease if it moves tail-first. However, we observe in our
experiments that the swimmer slows in both cases. We hypothesize that buoyancy forces resulting
from entrainment of the high-viscosity fluid are responsible for such counterintuitive behavior: as
the swimmer traverses the gradient, it drags a large amount of fluid with it, increasing its apparent
mass and slowing its speed. We show evidence of this mechanism by modifying our model to include
a buoyant term that increases as the swimmer advances. Although our model is able to capture
many of the experimental features, its makes a number of simplifying assumptions (in particular
hydrodynamic interactions between the head and the tail are neglected and drift is modeled in an
ad hoc fashion). We believe that improvements are possible, and we hope to pursue them in future
work.

Since we focus only on swimming motion parallel to the viscosity gradient in this paper, our
model cannot tackle the issue of viscotaxis for single swimmers. However, our results suggest that,
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regardless of the viscous entrainment, it is always harder for a pusher-like swimmer to swim up
the gradient and that the opposite is true for a puller-like swimmer. Therefore, in addition to the
reorientation of chiral swimmers in viscosity gradients [37], our results point to both positive and
negative collective viscotaxis as being not only possible but governed solely by the motility pattern
of the cells.

Specifically, let us consider microorganisms which perform a run-and-tumble dynamics, as is the
case for many bacteria [64,65], and therefore swimmers that repeatedly stop their motion to change
direction. For simplicity, we can assume that the swimmer’s mode is always the same, i.e., that it
always remains a puller or a pusher. For example E. coli remains a pusher during its swimming
motion. If the motility pattern of the swimmer has a large positive directional persistence (i.e., the
swimming direction after a reorientation event is close to the previous direction), then pusher-like
swimmers would be predicted to statistically accumulate in regions of high viscosity (collective
positive viscotaxis), because individual swimmers would spend more time in regions were they
swim slower. The opposite situation would happen for puller-like swimmers (negative collective
viscotaxis). In contrast, if the directional persistence is negative (i.e., reorientation angles larger
than 90° on average), then pusher swimmers would exhibit negative collective viscotaxis while
pullers would display positive viscotaxis.

The situation is more complex for bacteria such as H. pylori that can switch between swimming
modes [66] or V. alginolyticus that exhibits a bimodal motility pattern with two different persistence
parameters [64]. In the case of H. pylori, persistence is negative and the cell switches between pusher
and puller modes during its locomotion. Using our results, we predict that a swimmer with this type
of motility would accumulate in regions of high viscosity. This, in turn, would be advantageous
for the cell as it would tend to spend longer times in the high-viscosity mucus layer that protects
the stomach, ultimately leading to penetration and colonization of the stomach wall. On the other
hand, our results also indicate that a healthy mucus layer will do its function if it remains narrow: if
the bacteria remain at the viscosity gradient for too long, they would exhaust their available energy
trying to cross the interface. The understanding of this process may be helpful in trying to understand
prevention or remediation of gut infection and inflammation [67].

The reorientation towards, or away from, the gradient might of course modify the collective
viscotactic effect. A recent theoretical study concluded that a squirmer swimming in a weak
viscosity gradient will always reorient towards the direction of decreasing viscosity (negative
viscotaxis), regardless of the swimming mode, puller or pusher [43]. This effect has been confirmed
experimentally for the puller-like alga C.reinhardtii [68,69]. These studies showed that the green
algae reorient against the viscosity gradient and perform collective negative viscotaxis. These results
would seem to support our findings; however, C.reinhardtii swims at constant propulsive force rather
than with a constant beating rate, and therefore its swimming speed decreases with increasing
viscosity. At small viscosity ratios it is possible to observe a slight positive viscotactic effect,
whereas for large viscosity ratios the viscous torque is strong enough for the cells to move away
from high-viscosity regions. Another theoretical study found that positive viscotaxis is possible for
a dumbbell swimmer which is driven by a force pulling on its leading pole, while negative viscotaxis
happens for a dumbbell which is pushed on its back pole [37]. This suggests that a pusher-like
swimmer such as E. coli might also exhibit negative viscotaxis. However, a detail calculation of the
hydrodynamic torque on a rotating helix due to an imbalance in the viscosity that it experiences is
still lacking, and therefore further investigation would be necessary to draw definite conclusions.

The idealized system considered in our paper was desiged to emulate biological processes, in
particular the one by which bacteria are capable of penetrating mucus layers or membranes to cause
infections. Even in the simplified situation considered in our paper the process is seen to exhibit rich
dynamics. We hope that this study will motivate further work on swimming in viscosity-stratified
fluids.
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