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Reciprocal movement cannot be used for locomotion at low Reynolds number in an infinite fluid or near
a rigid surface. Here we show that this limitation is relaxed for a body performing reciprocal motions near
a deformable interface. Using physical arguments and scaling relationships, we show that the nonline-
arities arising from reciprocal flow-induced interfacial deformation rectify the periodic motion of the
swimmer, leading to locomotion. Such a strategy can be used to move toward, away from, and parallel to
any deformable interface as long as the length scales involved are smaller than intrinsic scales, which we
identify. A macroscale experiment of flapping motion near a free surface illustrates this new result.
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Swimming microorganisms inhabit a world quite differ-
ent from the one we experience. Their motion through the
surrounding fluid occurs at very low Reynolds numbers
(Re), a fact with two important consequences: (a) the only
physical force available to produce thrust is drag; (b) since
the fluid equations (Stokes equations) are linear and time-
reversible, swimming motions symmetric with respect to
time reversal (reciprocal motion) cannot be used for loco-
motion (the scallop theorem [1]). Biological swimmers,
such as bacteria and spermatozoa, overcome these two
limitations by exploiting the anisotropic drag of slender
filaments such as flagella and cilia, and actuating these
filaments in a wavelike fashion [2,3].

Motivated by the recent development of artificial
swimmers [4], we pose here the following general ques-
tion: are there any new low-Re swimming methods remain-
ing to be discovered? In particular, can some simple
reciprocal movements produce locomotion, thereby appar-
ently violating the constraints of the scallop theorem?

In this Letter, we propose a new method for locomotion
without inertia. Using theory and experiments, we show
that a body performing a reciprocal movement is able to
move near a soft interface: physically, the deformation of
the interface provides the geometric nonlinearities neces-
sary to escape the constraints of the scallop theorem. This
strategy, which is relevant for sufficiently small systems,
also implies that the time-reversible component of all
swimmers (including biological organisms) can generate
nontrivial flows and propulsive forces near soft interfaces.

The physical picture for soft swimming arises from the
asymmetries between different modes of motion near de-
formable interfaces, and can be illustrated by considering
the motion of a rigid sphere slowly translating below a free
surface (Fig. 1). For motion perpendicular to the interface,
the drag on the sphere is always increased by the presence
of the interface; however, the magnitude and direction of
the surface-induced component of the drag can be modu-
lated by deforming the interface [5,6]. When the sphere

moves away from the interface [Fig. 1(a)], it displaces fluid
with it, and the interface deforms toward the sphere, re-
sulting in an increase of the surface-induced drag, Fdown >
Fflat. In contrast, when the sphere moves toward the inter-
face [Fig. 1(b)], the free surface is displaced away from the
sphere, and the component of the drag due to the interface
is diminished, Fup <Fflat. The asymmetry, �F � Fdown �

Fup > 0, results in an averaged net force on the fluid, �F,
away from the interface if the sphere is oscillated in a
reciprocal fashion. (Alternatively, if the sphere is acted
upon by an external force with zero average, it will move
toward the interface.) For motion parallel to the interface
[Figs. 1(c) and 1(d)], surface deformation leads to a lift
force on the sphere, perpendicular to its direction of motion
and directed away from the interface [7,8], reminiscent of
the lift force responsible for the migration of deformable
bodies such as droplets [9], vesicles [10,11], and polymers
[12] away from boundaries. These effects are due to the
nonlinear (geometric) coupling between the moving sphere
and the deformable interface, and they vanish when the
interfaces do not deform. A similar coupling can be ex-
ploited for locomotion.

Let us consider a body—a swimmer—that deforms in a
prescribed and periodic fashion. On length scales larger
than the typical size of the swimmer, the disturbance flow
field can be modeled as a superposition of point flow
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FIG. 1 (color online). Breakdown of reversibility near soft
interfaces: a sphere moving away from a soft surface experiences
more drag than one moving toward the interface, Fdown >Fup

(a),(b); a sphere translating parallel to a soft surface experiences
a lift force, F?, perpendicular to the direction of motion (c),(d).
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disturbances. Since a low-Re swimmer cannot exert any
net force on the surrounding fluid, the instantaneous ve-
locity field decays at most like a force dipole [Fig. 2(a)];
the swimmer is also torque free, and therefore only sym-
metric force dipoles are allowed (stresslets [13,14]). In
three dimensions, the dipole strength p is a 3-by-3 ten-
sor with 6 independent components. The associated flow
field decays as �1=r2 and is given by up � pij

8��r3 ���ij �

3
xixj
r2 �r, where � is the fluid viscosity, and r � xiei is the

distance to the dipole. There exist two types of dipoles:
parallel dipoles, in which the direction of the forces is
aligned with that of the force gradient [Fig. 2(b)], and
perpendicular dipoles, in which these directions are per-
pendicular to one another [Fig. 2(c)]. Furthermore, in
general, the flow field can contain other types of singular-
ities (higher moments of force distribution), with faster
spatial decay, predominantly the potential (source) dipole
[Fig. 2(d)], of vector strength q, associated with a velocity
field decaying as �1=r3 and given by uqi �

qj
8��r3 ���ij �

3
xixj
r2 �.
In an infinite fluid, and by linearity of Stokes equations,

the velocity of a swimmer whose far field is described by a
superposition of stresslets and potential dipoles is given by
u �M � p�N � q, where the mobility matrices M and N
are functions of the instantaneous shape of the swim-
mer; here, we will take M and N as constants, a suitable
approximation for bodies performing small-amplitude
swimming motions. We also consider swimmers with suf-
ficiently symmetric motion so that their orientation re-
mains constant and ignore torque balance.

We now examine the case of a swimmer located near an
undeformable interface. The presence of the interface will
result in additional velocity for the swimmer, uw�h�, where
h is the distance to the interface, due to the image singu-

larities required to enforce the correct boundary conditions
at the interface [15]. The equation for the swimming
velocity becomes u �M � p�N � q� uw�h�, where the
wall-induced velocity is given by uw�h� � 1

32��h2 ��pxx �

pzz � 2pyy�ey � 1
2h �qxex � qzez � 2qyey�	 in the case of a

flat free surface [illustrated by the dashed arrows in
Figs. 2(e)–2(g)]; results for no-slip surfaces are similar.
Note that the magnitude of uw�h� scales linearly with the
dipole strengths p and q. In general, surfaces of fixed shape
will lead to an equation for the swimming kinematics given
by dr

dt � A�r� � p�t� �B�r� � q�t�: For reciprocal deforma-
tions, we have p�t� � p0f�t�, q�t� � q0f�t�, where f is an
arbitrary periodic function of time: the swimming kine-
matics are described by an autonomous dynamical system,
and no locomotion can occur on average, hui � 0. This is
the scallop theorem.

We now consider interfaces that can deform due to the
flow set up by the swimmer. Since wall effects depend on
the shape of, and the distance to the interface, and since
both can be modified by the swimmer’s flow field, the
relationship between the local reciprocal actuation and
the swimming kinematics becomes nonlinear.

Let us consider a free surface, with surface tension �,
and show that motion toward, away from, and parallel to
the surface can be devised. For motion toward the surface,
we only need to consider parallel force dipoles aligned
with the surface, p � p�t�exex [Figs. 2(h) and 2(i)]. We
assume small Capillary number to capture the first-order
effect of surface deformation (p=�h2 
 1). The normal
deformation of the interface (magnitude �) is set by the
balance between capillary and viscous forces at the inter-
face, ��=h2 ��p=h3, hence ���p=�h; note that the
surface deformation can be calculated analytically for
small Capillary numbers, as plotted in Figs. 2(h)–2(l).
The wall-induced velocity on the dipole, due to the image
system, now has a magnitude uw � ey � uw � p=��h�
��2, and can be linearized around h0 (the starting position
of the swimmer) to obtain uw � p=��h0�

2 � p�=�h3
0 �

p=��h0�
2 � p2=��h4

0. The swimming kinematics in
the y direction are then given by dh=dt�Mp�t� �
p�t�2=��h4

0 � p�t�=�h
2
0. For reciprocal swimming p�t� �

p0 cos!t, we get a net locomotion toward the surface, with
average swimming velocity huyi � p2

0=��h
4
0 [16]. In prac-

tice, the dipole arises from the unsteady actuation of a
swimmer of size L with velocity U�!L , and therefore
p0 � �L

2U, so that huyi=U� ��U=���L=h0�
4: for suffi-

ciently large deformations �U=�� 1 and confined
swimmers L=h0 � 1, we obtain a net speed on the order
of the actuation speed huyi �U [17].

The physical interpretation for this motion toward the
surface is illustrated in Figs. 2(h) and 2(i). When p > 0, the
swimmer deflects the surface toward it, enhancing the wall-
induced attraction [Fig. 2(h), dashed arrow] by a small
amount (empty arrow); when p < 0, the surface is de-
flected away from the swimmer, reducing the wall-induced
repulsion [Fig. 2(i), dashed arrow], by a small amount
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FIG. 2 (color online). Physics of soft swimming. (a) The
lowest-order flow around a low-Re swimmer decays as a force
dipole; (b) parallel force dipole (pxx > 0); (c) perpendicular
force dipole (pxy < 0); (d) potential (source) dipole (qx > 0);
(e) pxx > 0 is attracted by a flat surface; (f) pyy > 0 is repelled
by a flat surface; (g) qx < 0 moves parallel to a flat surface;
(h) pxx > 0 deforms a soft surface in a manner that enhances the
attraction; (i) pxx < 0 deforms the same surface in a manner that
reduces the repulsion; (j) a reciprocal pyy is attracted by a soft
surface; (k) a reciprocal pxy is repelled by a soft surface; (l) a
reciprocal combination of pxy and qx moves away from, and
parallel to a deformable surface.
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(empty arrow). Both deformation-induced effects are di-
rected toward the surface, and therefore do not average to
zero for a reciprocal actuation. The results are similar for a
parallel force dipole in the direction perpendicular to the
surface, p � p�t�eyey [Fig. 2(j)].

Locomotion away from the surface can be obtained by
considering perpendicular force dipoles, of the form p �
p�t��exey � eyex� [Fig. 2(k)]. In that case, the surface
deformation is asymmetric, and it induces a lift force
which does not average to zero with p [5]. The scaling
for the time-averaged swimming speed is similar to the
previous section, except that it is now directed away from
the free surface huyi � �p2

0=��h
4
0.

Moving parallel to the deformable surface is more
subtle. Indeed, since the first effect of surface deformation
is always directed perpendicular to the undisturbed surface
[5], the only way to move parallel to the surface is to use
motion toward or away from the surface to rectify an
otherwise time-periodic and spatially dependent parallel
motion [such as the one illustrated in Fig. 2(g)]. This can be
achieved, for example, by combining a perpendicular
force dipole, p � p�t��exey � eyex�, with a potential di-
pole, q � q�t�ex [Fig. 2(l)]. Since the flow field due to the
potential dipole decays faster (by 1 order of magnitude)
than that due to the force dipole, the first effect of surface
deformation will be the establishment of the lift force due to
p. The swimming kinematics are therefore given by
dh=dt��p�t�2=��h4 in the direction perpendicular to
the surface, and dx=dt��q�t�=�h3 in the parallel direc-
tion. Writing h�t� � h0 � ~h�t�, with ~h�t� 
 h0, we have
dx=dt��q=�h3

0 � q~h=�h4
0. For a reciprocal motion with

p�t� � p0 cos�!t� ’� and q�t� � q0 cos�!t� ’�, time
integration leads to ~h�t� � �p2

0�t� sin�2!t� 2’�=2!�=
��h4

0, and therefore the average swimming speed in the x
direction is given by huxi � �p2

0q0 sin’=!��2h8
0. Thus

swimming occurs both away from the surface and in the�
or �x direction, depending on the sign of sin’. Similarly,
combining a force dipole in the exex or eyey direction with
a source dipole along ex leads to combined motion toward
and parallel to the surface.

The examples above demonstrate that a free surface can
be exploited to obtain locomotion in all directions using
reciprocal forcing. To analyze the effectiveness of these
swimming strategies, three types of biologically relevant
soft surfaces can be considered (Fig. 3): the interface
between two liquids [Fig. 3(a)], an elastic membrane sep-
arating two liquids [Fig. 3(b)], and the interface between a
liquid and an elastic gel [Fig. 3(c)].

Consider a fluid with viscosity � and density �, in which
all length scales L (swimmer size a, distance to the surface
h) are similar. For soft swimming to occur, the local
reciprocal actuation of the swimmer has to generate flow
speedsU sufficiently small for the Reynolds number, Re �
�UL=�, to be small, yet large enough to induce significant
deformation of the interface, i.e., a large (a) capillary
number, Ca � �U=�, for the interface between two fluids

with similar viscosities (�, ��) and densities (�, ��),
(b) dimensionless membrane-viscous number, Me �
�U=KA, for two fluids separated by an elastic membrane
(thickness t, area modulus KA, density �m, bending stiff-
ness �B), (c) elastoviscous number, El � �U=LE, for an
elastic gel (Young’s modulus E, Poisson’s ratio �g, density
�g). By combining Re< 1 with (a) Ca> 1, (b) Me> 1,
(c) El> 1, we find that soft swimming is expected to be
effective for length scales below (a) L < ‘f, where ‘f �
�2=�� is an intrinsic viscocapillary length scale (the
Ohnesorge length), (b) L < ‘m, where ‘m � �2=�KA is
the intrinsic membrane-viscous length scale, (c) L< ‘g,

where ‘g �
���������������
�2=�E

p
is the intrinsic elastoviscous length

scale [18].
To examine the biological relevance of these ideas, we

consider an environment where motility is crucial, namely,
the female reproductive tract in humans [19]. In this case,
the fluids involved (e.g. cervical mucus) have viscosities in
the range �� 0:1–10 Pa s [20], leading to values of ‘f
between fractions of millimeters to meters. A similar range
for ‘m is obtained in the case where such fluids are sepa-
rated by a lipid bilayer [21], and for ‘g when the fluids are
near an elastic gel such as a crosslinked actin network [21].
In all cases, the intrinsic length scales are large, and there-
fore biological flows arising from time-reversible motion
could be substantial.

To further illustrate the breaking of the scallop theorem
near soft surfaces, we exploit the increase of the intrinsic
scale ‘f with the viscosity, and perform a macroscale
experiment near a free surface. Instead of a swimmer, we
consider a flapper fixed in place, for which the problem of
reciprocal swimming is replaced by the dual problem of
reciprocal pumping, i.e., creating a nonzero flow from a
time-periodic forcing.

A thin plate, the flapper (size 2 cm� 7 cm), was
mounted to the shaft of a servomotor and rotated over a
range of 90 (45 on each side) at flapping periods of 3–
200 s [Fig. 4(a)]. The flapper was immersed in a high-
viscosity silicone oil (� � 60 Pa s, ‘f � 50 m) with the
tip of the flapper positioned 2 cm below the free surface;
alternatively, the free surface could be covered by a solid
acrylic sheet to prevent surface deformation. A laser sheet

FIG. 3 (color online). Examples where soft swimming can
occur: (a) interface between two liquids (or between a liquid
and a gas), (b) elastic membrane separating two liquids, and
(c) interface between a liquid and an elastic gel (see text for
notation).
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illuminated polyamide beads (diameter, 93 �m) dispersed
in the oil, and images of the beads were captured after
every flapping cycle using a digital SLR camera with
3072� 2048 pixels per image. The displacement field
per flapping cycle was calculated from sequential images
using the MatPIV toolbox for MATLAB.

The experimental results are presented in Figs. 4(b) and
4(c). When the surface is free to deform, the reciprocal
flapping motion induces a net flow. An example of the
vorticity contours (top right is positive vorticity) and flow
field over one flapping cycle is displayed in Fig. 4(b): the
net flow is induced along the flapper, away from the free
surface; when the free surface is replaced by a solid lid, this
flow disappears. Measurements of the kinetic energy in the
flow (integrated over the whole system) are shown in
Fig. 4(c) (nondimensionalized by flapper length and flap-
ping frequency). When the surface is solid (hollow sym-
bols), no flow occurs on average, whereas when the surface
is free to deform, the average flow possesses finite kinetic
energy (solid symbols), demonstrating that reciprocal ac-
tuation near a soft surface can be used to escape the
constraints of the scallop theorem.

In summary, we have shown that soft interfaces allow
propulsion driven by reciprocal motion. This new strategy
for low Reynolds number swimming means not only that
primitive swimming methods become effective near a soft
interface, but more generally that the usually neglected
time-reversible component of all swimmers (including
biological organisms and appendages) can generate non-
trivial flows and propulsive forces in such settings. The
symmetry breaking arises from the normal stress boundary
condition: changing the sign of the forcing by a recipro-
cal swimmer changes the sign of the interfacial normal
stresses, thereby changing the interface curvature, and its
shape. The strategy is relevant for sufficiently small sys-
tems. Moreover, for swimmers of size L at a distance h
from a surface, the swimming efficiency is expected to
scale as E � �L=h�n (n > 1) and will therefore be most
efficient for confined geometries where L� h, for ex-

ample, for the motion of swimmers in thin films and
membranes, or near surfaces. Similar results are expected
for the dual problem of generating feeding currents from
reciprocal forcing. Possible extensions of this work include
investigating surface-induced reorientation, rotational
swimming, and a closer examination of cases in which
surface deformations are large. Together with the current
work, this would provide a comprehensive framework for
understanding the consequences of soft interfaces on loco-
motion and transport on small scales.
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FIG. 4 (color online). Experiment to generate a net flow by
reciprocal flapping motion below a free surface; (a) principle of
the experiment; (b) velocity and vorticity fields over one flapping
cycle (top right is positive vorticity); (c) dimensionless kinetic
energy over one cycle as a function of the flapping capillary
number, Ca (inset, photograph of the free surface deformation).
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