
J. Fluid Mech. (2023), vol. 963, A24, doi:10.1017/jfm.2023.336
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In many natural settings, spatial variations in a fluid’s viscosity arise due to changes in
its local physico-chemical environment. We consider the low-Reynolds-number dynamics
of slender bodies in fluids with a linearly varying viscosity. Assuming the spatial change
in viscosity to be small compared to the spatial deviation of the body but large relative
to the body’s aspect ratio, we derive the modifications to resistive-force theory in a
fluid due to a constant viscosity gradient. At leading order in the body slenderness,
the results are identical to the classical theory in a constant-viscosity fluid but with the
viscosity taking everywhere its local, non-constant value. At next order in slenderness,
non-local terms arise due to the non-zero viscosity gradient. We use our results to
predict the motion of straight and toroidal filaments settling under the action of gravity.
We show that viscosity gradients induce rigid-body rotation of the filaments at a rate
proportional to the components of the gradients along the filaments. This result contrasts
with constant-viscosity fluids where the filaments do not rotate. We demonstrate further
that if the viscosity gradient acts in the direction opposite to the gravitational field, then
the filaments rotate towards a stable orientation, whose value depends on the ratio between
the viscosity gradients parallel and perpendicular to the gravitational field; otherwise, the
filaments align in the direction of the gravitational field. Our work shows that viscosity
gradients can exert new forces on slender bodies, which could, for example, be used to
control their orientation and drift.

Key words: slender-body theory

1. Introduction

From living organisms to passive particles, predicting the low-Reynolds-number resistance
(or mobility) of bodies in viscous flow is fundamental in the field of colloidal science.
Under the classical incompressible Stokes flow assumptions, exact solutions exist for a
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few shapes, including the textbook example of a spherical body in an unbounded fluid
(Stokes’ solution), but challenges arise when it comes to the dynamics of elongated
particles. Analytical expressions for the resistance coefficients of spheroids and ellipsoidal
particles have been derived (Kim & Karrila 2013), and as such can be used to predict the
resistance of elongated particles. Burgers (1938) was the first to attempt to predict the
resistance of slender filaments in Stokes flow. He showed that the disturbance field of a
slender body translating with uniform velocity is given to leading order by a constant line
distribution of point forces over the body’s length. His approach was developed in the
1960s and 1970s into what is now termed resistive-force theory (RFT), the leading-order
slender-body theory used to approximate the dynamics of very slender particles (Tuck
1964; Batchelor 1970; Cox 1970, 1971; Tillett 1970). That theory leads to a locally linear
and instantaneous, albeit tensorial, relationship between the velocity of a filament and the
hydrodynamic forces exerted by the moving fluid. The predictions from RFT have since
been used widely to approximate the mobility of both passive slender fibres (Du Roure
et al. 2019) and living slender organisms (Brennen & Winet 1977; Lauga 2020).

The standard RFT formalism was derived assuming a Newtonian fluid with constant
viscosity, but in many natural environments, patchiness and heterogeneity can often violate
one or more of the classical assumptions assumed in Stokes flow. For example, spatial
variations in the viscosity of a fluid can occur due to changes in temperature gradients or
salt concentrations, such as in lakes and oceans (Arrigo et al. 1999), and changes in pH due
to chemical reactions (Ottemann & Lowenthal 2002; Mirbagheri & Fu 2016) or through the
mixing of different fluids such as mucus or extracellular polymeric substances. In addition,
introducing external bodies into a fluid can also create local viscosity gradients when the
particles have a temperature or chemical composition different to that of the background
fluid (Han, Shields IV & Velev 2018). Recent microrheological studies have revealed the
existence of viscosity gradients on the length scales of planktonic microorganisms, with
up to 40-fold local increases in viscosity (Guadayol et al. 2021). In microbiology, viscosity
gradients in mucus and other biological fluids play an important role in preventing
pathogens, and these gradients affect the mobility of cells or other organisms inside the
fluid (Swidsinski et al. 2007; Wheeler et al. 2019). Further, in what is termed viscotaxis,
some pathogens, such as the bacteria Spiroplasma and Leptospira interrogans (Greenberg
& Canale-Parola 1977; Petrino & Doetsch 1978; Daniels, Longland & Gilbart 1980;
Takabe et al. 2017), and the microalga Chlamydomonas reinhardtii (Coppola & Kantsler
2021; Stehnach et al. 2021), have the ability to adapt their motion in viscosity gradients to
migrate towards favourable regions of viscosity.

Viscotaxis has motivated recent theoretical and numerical studies of active and passive
swimmers in viscosity gradients or media with spatially varying viscosity (Takabe et al.
2017; Liebchen et al. 2018; Datt & Elfring 2019; Laumann & Zimmermann 2019;
Dandekar & Ardekani 2020; Eastham & Shoele 2020; López et al. 2021; Shaik & Elfring
2021; Stehnach et al. 2021). One important finding of these studies is the impact of
viscosity changes on mobility. A linear force acting on two passive particles connected
by a filament results in the particle migrating to regions of greater viscosity, while a
nonlinear or chiral force results in the particles migrating to lower regions of viscosity
(Liebchen et al. 2018). Spherical squirmers (Datt & Elfring 2019; Shaik & Elfring 2021)
and soft passive particles in shear flow (Laumann & Zimmermann 2019) are also found to
migrate towards lower regions of viscosity. A synthetic helical swimmer crossing a sharp
viscosity gradient created by two miscible fluids has also been studied, both experimentally
and theoretically (López et al. 2021), and it was found to be generally easier for a
swimmer pulled from the front to swim towards higher regions of viscosity, and harder
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Slender bodies in viscosity gradients

for a swimmer pushed from the back. A theoretical study on the propulsion of Taylor’s
waving sheet found its locomotion to depend critically on the dimensionless Péclet number
quantifying the convection-to-diffusion for the transport of the viscosity (Dandekar &
Ardekani 2020); at high Péclet number, the sheet propelled to higher-viscosity regions
with propulsion speed proportional to the magnitude of the viscosity gradient, while at
smaller Péclet numbers, the direction of the sheet’s propulsion is reversed.

In this paper, we focus on the dynamics of slender bodies in viscosity gradients. As a
first step towards modelling direct hydrodynamic interactions in arbitrary viscosity fields,
we derive here how to modify rigorously the classical constant-viscosity RFT to account
for a viscosity field with a constant gradient (§ 2). In our calculation, the spatial change in
viscosity is assumed to be small with respect to the spatial deviation of the filament, but
large relative to the filament’s width-to-length aspect ratio. We then show how to apply
our modified RFT to examine the effect of a viscosity gradient on the resistance of motion
of rigid filaments settling under the action of gravity (straight filament in § 3 and toroidal
filament in § 4). In particular, in a uniform viscosity field, symmetric rigid bodies settle
without rotating (Taylor 1967), but the presence of viscosity difference leads to asymmetric
stresses exerted on the particle, which can induce reorientation. The results in this paper
provide a basis to approximate the dynamics of passive and active slender particles in
arbitrary viscosity gradient fields, provided that they are small compared to the relevant
length scale for viscosity changes.

2. Resistive-force theory in a uniform viscosity gradient

2.1. Set-up
We consider a slender body placed in a fluid with a prescribed constant viscosity gradient

η(x) = η0

(
1 + κ̃ · x − x0

2a

)
. (2.1)

Here, x0 represents the location at which the viscosity η equals the reference viscosity
η0, and κ̃ is the constant viscosity gradient, made dimensionless using η0 and the body’s
half-length a. The fluid is subject to an incompressible external flow field denoted by
u∞. In the limit of vanishing Reynolds number, the total velocity field u satisfies the
incompressible Stokes equations

∇ · {η(x)
[∇u + (∇u)T]} = ∇p, ∇ · u = 0. (2.2)

The slender body has half-length a and a circular cross-section with maximum radius b, as
illustrated in figure 1. The width-to-length aspect ratio of the body, ε = b/a, is assumed
to be small. We parametrise the body using a dimensionless arc length s running through
its longitudinal centre (made dimensionless with respect to a). Under this parametrisation,
the body’s longitudinal centreline can thus be written as a R̃(s), where −1 ≤ s ≤ 1, and its
radius is described by b λ̃(s). We assume that the dimensionless radius λ̃(s) is continuous
and that the radii at the endpoints of the body are zero (i.e. λ̃(−1) = λ̃(1) = 0). Without
loss of generality, we may set η0 = η(a R̃(s = 0)), i.e. we take the reference viscosity
to be that at the instantaneous middle point of the filament. Unless otherwise stated, we
carry out in what follows our derivation in a dimensionless form, non-dimensionalising
all length scales by a, viscosity by η0 (so that η̃ = η/η0), and velocity by a characteristic
velocity U, with tilde signs used to represent the dimensionless variables.
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High viscosity

Low viscosity

2b λ̃(s)

2a

a R̃(s)

η(x) u∗

ê2 ê3

ê1

u∞

Figure 1. Sketch of a slender filament of length 2a and maximum radius b in an external velocity field u∞ in a
fluid with a linearly varying viscosity η(x) = η0(1 + κ̃ · (x − x0)/(2a)), where η0 is the value of the viscosity
at the instantaneous centre of the filament, and the constant viscosity gradient is denoted κ̃ . The red dashed
line represents the body’s centreline, located at a R̃(s), while the radius of the filament is denoted by b λ̃(s).
The gradient background represents the variation in viscosity schematically.

A classical approach used to compute the hydrodynamics of slender bodies in Stokes
flows (Batchelor 1970) is to approximate the velocity field u by a line distribution of point
forces of density f over the centreline a R̃(s). The effects of the edges on the leading force
distribution are assumed to be subdominant.

We introduce the Green’s function GV · f dŝ/(8π) to represent the velocity field
produced by a force density f spread over an infinitesimal length dŝ in a viscous flow field
with the prescribed viscosity field η(x̃), where ŝ is the dimensionless arc length integration
variable. Since the viscosity field η(x̃) is embedded into GV , the Green’s function has
dimensions of the inverse of viscosity. Non-dimensionalising as GV

ij ≡ G̃V
ij /η0, the flow

created by a continuous force density f is written as

ui(x) = 1
8πη0

∫ 1

−1
G̃V

ij (x̃ − R̃(ŝ)) fj(ŝ) dŝ, (2.3)

where, up to leading order in the viscosity gradient κ̃ , the Green’s function is given by
(Laumann & Zimmermann 2019)

G̃V
ij (x

′) = 1
η̃(ŝ)

[(
δij

X
+

x′
ix

′
j

X3

)(
1 − κ̃kx′

k
4a η̃(ŝ)

)
+ 1

4η̃(ŝ)

x′
iκ̃j − κ̃ix′

j

aX

]
, X = |x′|. (2.4)

The objective is then to identify a suitable force density f so that (2.3) satisfies (2.2)
along with the no-slip conditions u(s) = u∗(s) along the surface of the body (where u∗(s)
corresponds to the velocity averaged on the cross-section of the body).

The flow field in (2.3) is known to lead to a mathematical singularity if we model
the filament as a line of vanishing thickness (Stokes paradox). To overcome this issue,
the now-classical approach that leads to the results of RFT was proposed in the 1970s
(Batchelor 1970; Cox 1970). The idea is to exploit the slenderness of the filament to match
(2.3) at a point s on the centreline to an inner flow field that corresponds to the flow around
a cylinder of infinite extent and radius b λ̃(s) that satisfies the uniform no-slip condition
u(s) = u∗(s) on its surface. The case of a uniform viscosity field (η = η0) has been solved
in classical work (Batchelor 1970; Cox 1970), and in this paper, we expand on these studies.

Specifically, we follow closely the derivation of Cox (1970) to obtain a solution for f
that depends on the curved shape of the centreline in a constant viscosity gradient. In our
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Slender bodies in viscosity gradients

derivation, we assume that the dimensionless viscosity gradient κ̃ is small with respect
to the spatial change in the length of the body. Since, as we see below, ε needs to be
exponentially small for RFT to be valid (meaning that | ln ε| is an asymptotically large
number), it also follows that |κ̃ | � ε. Moreover, since any spatial deviation of the relative
viscosity η(a R̃)/(η0) along the radial direction away from the body’s centreline (using
the unit radial vector êρ in local polar coordinates along the instantaneous centreline)
is of the order of (κ̃ · êρ)ε, the effects of a spatial change in the viscosity in the radial
direction κ̃ · êρ can be ignored to leading order in the body slenderness. The only relevant
spatial component of the dimensionless viscosity gradient κ̃ therefore acts in the tangential
direction along the centreline itself, i.e. the component κ̃1 = κ̃ · ê1, where ê1 denotes the
local unit vector directed in the tangent to the centreline.

We proceed in evaluating the force density f by computing the leading correction due
to κ̃1 to the inner flow field (§ 2.2) and the outer flow field for a uniform viscosity field
(§ 2.3).

2.2. Inner solution
Following the calculation in Cox (1970), the inner solution ũin is found by focusing on
an arbitrary point s on the surface of the filament s on the surface of the filament. Given
that the filament is slender, on the relevant length scale b, we have b � a and thus the
filament appears locally to be a cylinder of circular cross-section and infinite extent,
as sketched in figure 1. The radius of the cylinder is therefore approximately uniform.
Using dimensionless polar coordinates (ρ̄, θ, x̄1), the surface of the cylinder x̄ can be
parametrised using inner variables as

x̄ = x̄1 ê1 + ρ̄ cos θ ê2 + ρ̄ sin θ ê3, ρ̄ = λ̃(s) + O(ε), x̄1 = s + O(ε), (2.5)

about an orthogonal coordinate system with ê1, ê2 and ê3 directed in the direction of the
tangent, normal and binormal of the centreline at s, respectively. Here, ¯(·) is used to denote
the inner (dimensionless) variables, and we use ˜(·) for the outer (dimensionless) variables.
The inner flow ũin must satisfy (2.2) with the no-slip boundary conditions on the body
surface, i.e.

ũin(x̄) = ũ∗(s). (2.6)

We wish to solve the inner solution up to the leading order correction in κ̃1 for a varying
viscosity gradient. We thus solve for the velocity and pressure fields as expansions ũin =
ũin

0 (κ̃1) + O(ε) and p̃in = p̃in
0 (κ̃1) + O(ε).

At the inner scale, the spatial change in the viscosity at a point x̄ on the surface is of
the order of κ̃1(x̄1 − s) ∼ O(κ̃1ε). Therefore, the leading-order correction to ũin due to
the viscosity change κ̃ is asymptotically smaller than the zeroth-order solution for ũin

0 in a
uniform viscosity field with dimensionless viscosity taken to be η̃s ≡ η̃(R̃(s)) at each point
along the centreline. The leading-order solution for ũin in both ε and κ̃ is thus exactly
the same as that derived by Cox (1970) but with η̃0 (which is equal to unity) formally
interchanged with η̃s.

Re-writing the expression for ũin using the outer variables ρ̃ = ερ̄ and x̃ = εx̄ gives the
inner boundary condition on the outer flow field ũ in the inner limit ρ̃ → 0, up to leading
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order in ε and κ̃1:

ũz = E(ε) ln(ρ̃/λ̃) + ũ∗
1,

ũρ̃ = ũ∗
2 cos θ + ũ∗

3 sin θ + (1 − λ̃2ρ̃−2 − 2 ln(ρ̃/λ̃))(C(ε) cos θ + D(ε) sin θ),

ũθ = −ũ∗
2 sin θ + ũ∗

3 cos θ + (−1 + λ̃2ρ̃−2 − 2 ln(ρ̃/λ̃))(D(ε) cos θ − C(ε) sin θ),

p̃ = 4
ρ̃

(C(ε) cos θ + D(ε) sin θ) + F(ε).

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.7)

Here, C, D, E and F are dimensionless coefficients that depend on ε, still to be determined.

2.3. Outer solution and matching
The calculation of the outer solution, and the matching with the inner solution, is computed
analogously to Cox (1970). The method requires first expanding the coefficients C, D, E
and F from (2.7) to leading order in 1/ ln ε, and then equating each order of the expansion
to the outer flow and pressure field. The expansion of the outer flow field to O((ln ε)−1) is
written formally as

ũ = ũ∞ + ũ(1)/ ln ε. (2.8)

The leading-order terms in (2.7) are first equated with the leading-order velocity ũ∞ −
ũ∗. At O((ln ε)−1), the outer flow field at the point at R̃(s) corresponds to the leading
distribution of point forces as ε → 0. Matching (2.7) to a line distribution of dimensionless
point forces on R̃(s) with density f̃ (s) as ρ̃ → 0 requires the outer force density to be (Cox
1970)

f̃ (s) = 4π η̃s(ũ∞(R̃) − ũ∗(s)) ·
(

I − 1
2

dR̃
ds

dR̃
ds

)
. (2.9)

Here, we have assumed that ê2 lies in the same plane as ê1 and ũ∞(R̃) − ũ∗(s), so that
the unit vectors ê1, ê2, ê3 can be expressed in terms of ũ∞(R̃) − ũ∗(s) and dR̃(s)/ds (Cox
1970).

The flow field ũ(1) can then be obtained as that produced by the distribution of point
forces with density f̃ to leading order, analogously to (2.3). It is thus written as

ũ(1)
i = lim

ρ̃→0

1
2

∫ 1

−1
G̃V

ij
(
x̃′) f̃j(ŝ) dŝ, x̃′ = x̃(s) − x̃(ŝ). (2.10)

The only (but important) difference from the Cox (1970) derivation is with the definition
of the tensor G̃V , where here G̃V accounts for the prescribed viscosity gradient κ̃ , as given
in (2.4).

Since we are interested in only the leading-order terms in ε, we can simplify the
tensor G̃V

ij in (2.10) further by noting that in the spatial region of the integrand, we have
1/η̃(ŝ) ≈ (1/η̃s)(1 + κ̃ · (x̃′/2)). Under this assumption, the tensor in (2.4) becomes, to
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leading order in κ̃ and ε,

G̃V
ij (x

′) = 1
η̃s

[(
δij

X′ +
x′

ix
′
j

X′3

)(
1 + κ̃kx′

k
4a

)
+ 1

4

x′
iκ̃j − κ̃ix′

j

aX′

]
+ O(κ̃2, ε). (2.11)

To evaluate the flow from (2.10), we let ũ(1) = J∗ + J , where J∗ denotes the integral
over the singular part of the integrand in (2.10) taken over the region [s − ε, s + ε] (where
ε is an arbitrary number such that ε � 1), and J is the integral on the remaining part of the
line. Since ε � 1, J∗ can be evaluated analytically in the singular region of the integral as

J∗
i = lim

ρ̃→0

η̃s

2
(ũ∞

k (R̂) − ũ∗
k(s))

(
δjk − 1

2
dR̃j

ds
dR̃k

ds

)∫ s+ε

s−ε

G̃V
ij
(
x̃′) dŝ. (2.12)

We can further simplify G̃V in this singular region. Since x̃(ŝ) ≈ ŝê1, we have x̃(s) =
(s, ρ̃ cos θ, ρ̃ sin θ) and x̃(ŝ) = (ŝ, ρ̃ cos θ, ρ̃ sin θ). Recalling that the only contribution in
κ̃ with terms of order greater than ε comes from κ̃ · ê1 = κ̃1, we obtain

G̃V
ij (x

′) = 1
η̃s

[(
δij

X′ +
x′

ix
′
j

X′3

)(
1 + κ̃1x′

1
4a

)
+ 1

4

x′
iκ̃jδ1j − κ̃ix′

jδ1i

aX′

]
+ O(κ̃2, ε). (2.13)

The integral in (2.12) can be evaluated analytically by introducing

M∗
ij = lim

ρ̃→0

∫ s+ε

s−ε

G̃V
ij
(
x̃′) dŝ, (2.14)

with

M∗
xx = 1

η̃s

(
4 ln

(
2ε

ρ̃

)
− 2

)
+ O(εκ̃, ε), (2.15)

M∗
yy = 1

η̃s

(
2 ln

(
2ε

ρ̃

)
+ 2 cos2 θ

)
+ O(εκ̃, ε), (2.16)

M∗
zz = 1

η̃s

(
2 ln

(
2ε

ρ̃

)
+ 2 sin2 θ

)
+ O(εκ̃, ε), (2.17)

M∗
yz = M∗

zy = 2
η̃s

sin θ cos θ + O(εκ̃, ε), (2.18)

M∗
xy = M∗

yx = O(εκ̃, ε), (2.19)

M∗
xz = M∗

zx = O(εκ̃, ε). (2.20)

It is important to note that all integrated terms containing κ̃1 either vanish over the region
[s − ε, s + ε], or are of the order O(εκ̃1). Therefore, J∗ is the same as for the classical case
of a constant viscosity up to order O(εκ̃, ε), but with the addition of the prefactor 1/η̃s for
the varying viscosity.

Since the leading-order contribution of κ̃1 enters only in the non-singular part of the
integral, J , the dimensionless outer flow ũ(1), pressure p̃(1) and force density f̄ (s) can be
expressed in the same way as in Cox (1970) for a uniform viscosity field. Namely, equating
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(2.7)–(2.8) for ρ̃ → 0, one obtains the coefficients in (2.7) to be

C(ε) = 1
ln ε

1
2

(ũ∞
2 − ũ∗

2) + 1
(ln ε)2

1
4

(ũ∞
2 − ũ∗

2)

(
1 + 2 ln

(
2ε

λ̃

)
+ J2

)

+ O((ln ε)−3, κ̃ε(ln ε)−1), (2.21)

D(ε) = 1
(ln ε)2

J3

2
+ O((ln ε)−3, κ̃ε(ln ε)−1), (2.22)

E(ε) = − 1
ln ε

(ũ∞
1 − ũ∗

1) + 1
(ln ε)2

1
2

(ũ∞
1 − ũ∗

1)

(
1 − 2 ln

(
2ε

λ̃

)
− J1

)

+ O((ln ε)−3, κ̃ε(ln ε)−1). (2.23)

The integral J is defined as

Ji = lim
ε→0

η̃s

2

[∫ s−ε

−1
+
∫ 1

s+ε

]
G̃V

ij
(
x̃(s) − x̃(ŝ)

) (
δjk − 1

2
dR̂j

dŝ
dR̂k

dŝ

)(
ũ∞

k (R̂) − ũ∗
k(ŝ)

)
dŝ,

(2.24)

where R̂i = R̃i(ŝ).

2.4. Force distribution
As shown by Cox (1970), the force distribution can be evaluated explicitly from (2.7) and
(2.21)–(2.23) to give

f̄ (s) = 2π η̃s(κ̃)

[
ũ∞ − ũ∗

ln ε
+ J (κ̃) + (ũ∞ − ũ∗) ln (2ε/λ̃)

(ln ε)2

]
·
[

dR̃
ds

dR̃
ds

− 2I

]

+ ũ∞ − ũ∗

2(ln ε)2 ·
[

3
dR̃
ds

dR̃
ds

− 2I

]
+ O((ln ε)−3, κ̃ε(ln ε)−1). (2.25)

Crucially, the only differences between our results and the derivation from Cox (1970) are
that the correction due to the viscosity gradient κ̃ enters through η̃s(κ̃) and J (κ̃).

Finally, with the knowledge of f̄ (s) in (2.25), the total hydrodynamic force F , torque T
and stresslet S are

Fi = aη0U
∫ 1

−1
f̄i(s) ds, (2.26)

Ti = a2η0U
∫ 1

−1
[R̃(s) × f̄ (s)]i ds, (2.27)

Sij = a2η0U
∫ 1

−1
R̃i(s) f̄j(s) + R̃j(s) f̄i(s)] ds, (2.28)

where in the expression for S, we have assumed that the centreline of the slender body is
not deforming with time.
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Slender bodies in viscosity gradients

3. Straight filament in a linear viscosity gradient

To illustrate the effects of spatial variation in the viscosity on a fundamental example,
we now use our modified RFT to estimate the leading-order forces and torques acting on
slender straight filaments held fixed in different external flow fields.

3.1. Uniform flow field
We begin here by focusing on a straight filament of length 2a, which is held fixed in a
uniform flow field u∞ = U1ê1 + U2ê2 with constant viscosity gradient κ̃ . Without loss
of generality, we may assume that the filament is held fixed with R̃(s) = sê1, hence
dR̃/ds = ê1.

3.1.1. Computation of forces and torques
Under this parametrisation, (2.24) becomes

Ji = η̃s

2

[∫ s−ε

−1
+
∫ 1

s+ε

]
G̃V

ij
(
s − ŝ, 0, 0

) ( Ũ1

2
δj1 + Ũ2 δj2

)
dŝ. (3.1)

Here, we have dimensionalised U1 and U2 by a typical speed U. This integral can be
evaluated analytically using

M ij =
[∫ s−ε

−1
+
∫ 1

s+ε

]
G̃V

ij
(
s − ŝ, 0, 0

)
dŝ, (3.2)

and its components are

Mxx = 2
η̃s

(
ln(1 − s2) − 2 ln ε + κ̃1

2
s
)

+ O(εκ̃, ε), (3.3)

Myy = 1
η̃s

(
ln(1 − s2) − 2 ln ε + κ̃1

2
s
)

+ O(εκ̃, ε), (3.4)

Mzz = 1
η̃s

(
ln(1 − s2) − 2 ln ε + κ̃1

2
s
)

+ O(εκ̃, ε), (3.5)

Myz = Mzy = O(εκ̃, ε), (3.6)

Mxy = Myx = O(εκ̃, ε), (3.7)

Mxz = Mzx = O(εκ̃, ε). (3.8)

The integral in (3.1) then becomes

Ji = Ũ1δi1 + Ũ2δi2

4
(2 ln(1 − s2) − 4 ln ε + κ̃1s) + O(εκ̃, ε). (3.9)
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Substituting (3.9) into (2.25) allows us to compute the components of the hydrodynamic
force density as

f̄1 = 2πŨ1η̃s

[
− 1

ln ε
+ 1

2(ln ε)2

(
1 − 2 ln 2 − ln

(
1 − s2

λ̃2

)
− s

κ̃1

2

)]

+ O((ln ε)−3, κ̃ε(ln ε)−1), (3.10)

f̄2 = 2πŨ2η̃s

[
− 2

ln ε
+ 1

(ln ε)2

(
−1 − 2 ln 2 − ln

(
1 − s2

λ̃2

)
− s

κ̃1

2

)]

+ O((ln ε)−3, κ̃ε(ln ε)−1). (3.11)

Evaluating the total force and torque in (2.26) and (2.27) requires integrating terms
containing η̃s(s) = 1 + sκ̃1/2. Writing the total force F and torque T as asymptotic
expansions, we have

Fi = F(0)
i + κ̃1F(1)

i + O(κ̃2
1 , εκ̃2, εκ̃3), (3.12)

Ti = T(0)
i + κ̃1T(1)

i + O(κ̃2
1 , εκ̃2, εκ̃3). (3.13)

The terms proportional to U1 are, to leading order in O((ln ε)−2), given by

F(0)
1 = aη0U1

[
4π

ln(2a/b) + C1

]
, C1 = −1

2
+ 1

4

∫ 1

−1
ln
(

1 − s2

λ̃2

)
ds, (3.14)

F(1)
1 = aη0U1

[
− π

2(ln (b/a))2

∫ 1

−1
s ln

(
1 − s2

λ̃2

)
ds

]
, (3.15)

T(0)
2 = 0, (3.16)

T(1)
2 = 0, (3.17)

while the terms proportional to U2 are, to leading order in O((ln ε)−2), given by

F(0)
2 = aη0U2

[
8π

ln(2a/b) + C2

]
, C2 = 1

2
+ 1

4

∫ 1

−1
ln
(

1 − s2

λ̃2

)
ds, (3.18)

F(1)
2 = aη0U2

[
− π

(ln (b/a)2

∫ 1

−1
s ln

(
1 − s2

λ̃2

)
ds

]
, (3.19)

T(0)
3 = aη0U2

[
− 2π

(ln (b/a))2

∫ 1

−1
s2 ln

(
1 − s2

λ̃2

)
ds

]
, (3.20)

T(1)
3 = a2η0U2

[
4π

3(ln(2a/b) + C3)

]
, C3 = 1 + 3

4

∫ 1

−1
s2 ln

(
1 − s2

λ̃2

)
ds. (3.21)

Note that in the dimensional calculations above, and in all dimensional expressions to
come, we have replaced ln ε by ln (b/a), so that the geometrical parameters appear
explicitly.

From our results, we see that if the dimensionless cross-section shape λ̃(s) is symmetric
about its centre s = 0, then F(1)

1 , F(1)
2 and T(0)

3 are all zero. Therefore, κ̃1 does not affect
the force F to leading order. For T3, however, there is now a leading-order correction
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Uniform flow U1(a) (b)

(d )(c)

Low

viscosity

Extensional

flow

Rotational

flow

Extensional flow γ·e Rotational flow γ·r

γ·e κ̃1

γ·r κ̃1

U2κ̃1

High

viscosity

Low

viscosity

High

viscosity

Low

viscosity

Force due to η0

Correction force due to κ̃1

Corrected motion of filament

if freely suspended

High

viscosity

Low

viscosity

High

viscosity

2a

U1 U2

Uniform flow U2

Figure 2. Illustration of the leading-order effect on the hydrodynamic forces applied to a filament held fixed in
a prescribed (a,b) uniform, and (c,d) linear flow field. We use (grey) bold arrows to represent the external flow,
and thin arrows to represent the force density applied to the fixed filament; thin black arrows are the forces (or
motion) for a filament in a uniform viscosity field, while thin blue arrows illustrate the correction due to the
linear viscosity gradient, which induces new forces and torques.

proportional to κ̃1. If the particle was freely suspended in the linear flow field U2ê2 at an
orientation R(s) = sê1, then this result is equivalent to the filament slowly rotating with an
angular velocity ω · ê3 ∝ U2κ̃1.

3.1.2. Discussion and physical interpretation
We now provide a physical interpretation for this induced torque (and thus the rotation)
due to a gradient in viscosity, which we illustrate in figures 2(a,b). A filament held fixed in
a uniform (prescribed) flow field with constant viscosity gradient κ̃1 experiences a greater
hydrodynamic force density f̄ in the region where the viscosity is larger than η0, and a
decrease in f̄ in the region where the viscosity is smaller. We use arrows in figures 2(a,b)
to illustrate this change in f̄ : the black (thin) arrows correspond to f̄ generated in the
constant-viscosity case (η0), while the blue (thin) arrows show the additional f̄ induced by
a gradient of viscosity κ̃1. For symmetric shapes with λ̃(−s) = λ̃(s), the effect of κ̃1 on f̄
is to thus create an antisymmetric distribution about the centre s = 0, as a difference with
the symmetric distribution arising in the case of a constant viscosity η0. The antisymmetric
distribution of f̄ results in no torque at leading order when the flow is aligned with the
filament (figure 2a), but an applied torque proportional to κ̃1 when the uniform flow is
perpendicular to the filament (figure 2b). Note that when f̄ is proportional to ê1, the
leading torque distribution is of order O(ε2) (Cox 1971) and is thus subdominant in our
leading expansion with respect to ε. If the filament was torque- and force-free, then instead
of net forces and torques, the viscosity gradient κ̃1 results in an additional rotational or
translational motion, as illustrated by the (thick) blue arrows in figure 2.
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3.2. Linear flow field
After the case of a uniform flow, we now assume that the filament is held fixed in a linear
external flow field, consisting of an extensional flow γ̇e(x1ê1 − (x2/2)ê2 − (x3/2)ê3) and
a rotational flow γ̇r(−x2ê1 + x1ê2).

3.2.1. Computation of forces and torques
Non-dimensionalising γ̇e and γ̇r by a typical shear scale γ̇ , (2.24) becomes

Ji = η̃s

4

[∫ s−ε

−1
+
∫ 1

s+ε

]
G̃V

ij
(
s − ŝ, 0, 0

) ( ˜̇γeδj1 + 2 ˜̇γrδj2

)
s dŝ. (3.22)

Evaluating the integral in (3.22) analytically, one finds to leading order

Ji =
˜̇γeδi1 + ˜̇γrδi2

2

(
s
(

ln(1 − s2) − 2 − 2 ln ε
)

+ κ̃1

4
(s2 − 1)

)
+ O(εκ̃, ε). (3.23)

Substituting Ji into (2.25) gives

f̄1 = ˜̇γeπ

[
− 2s

ln ε
+ s

(ln ε)2

(
3 − 2 ln 2 − ln

(
1 − s2

λ̃2

))]

+ ˜̇γeπκ̃1

[
− s2

ln ε
+ 1

4(ln ε)2

(
1 + s2

(
5 − 4 ln 2 − 2 ln

(
1 − s2

λ̃2

)))]

+ O((ln ε)−3, κ̃ε/ ln ε), (3.24)

f̄2 = ˜̇γrπ

[
− 2s

ln ε
+ s

(ln ε)2

(
1 − 2 ln 2 − ln

(
1 − s2

λ̃2

))]

+ πγ̇rκ̃1

[
− s2

ln ε
+ 1

2(ln ε)2

(
1 + s2

(
1 − 4 ln 2 − 2 ln

(
1 − s2

λ̃2

)))]

+ O((ln ε)−3, κ̃ε/ ln ε). (3.25)

We may then use f̄ to evaluate the leading-order contribution to F in (2.26), T3 in (2.27),
and the stresslet S11 in (2.28), while all other components of T and S are zero to leading
order in ε. At leading order in the viscosity gradient κ̃ , one finds

Fi ≈ F(0)
i + κ̃1F(1)

i , T3 ≈ T(0)
3 + κ̃1T(1)

3 , S11 ≈ S(0)
11 + κ̃1S(1)

11 . (3.26a–c)

In the extensional flow field, the leading terms proportional to the extension rate γ̇e are,
to leading order in O((ln ε)−2), given by

Fe(0)
1 = a2η0γ̇e

[
− π

(ln (b/a))2

∫ 1

−1
s ln

(
1 − s2

λ̃2

)
ds

]
, (3.27)
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Slender bodies in viscosity gradients

Fe(1)
1 = a2η0γ̇e

[
2π

3(ln(2a/b) + Ce1)

]
, Ce1 = −2 + 3

4

∫ 1

−1
s2 ln

(
1 − s2

λ̃2

)
ds, (3.28)

Se(0)
11 = a3η0γ̇e

[
− 4π

3(ln(2a/b) + Ce2)

]
, Ce2 = −3

2
+ 3

4

∫ 1

−1
s2 ln

(
1 − s2

λ̃2

)
ds,

(3.29)

Se(1)
11 = a3η0γ̇e

[
π

2(ln (b/a))2

∫ 1

−1
s3 ln

(
1 − s2

λ̃2

)
ds

]
. (3.30)

Similarly, in the rotational flow field, the leading terms proportional to the rotation rate γ̇r
are given by

Fr(0)
2 = a2η0γ̇r

[
− 2π

(ln (b/a))2

∫ 1

−1
s ln

(
1 − s2

λ̃2

)
ds

]
, (3.31)

Fr(1)
2 = a2η0γ̇r

[
4π

3(ln(2a/b) + Cr1)

]
, Cr1 = −1 + 3

4

∫ 1

−1
s2 ln

(
1 − s2

λ̃2

)
ds, (3.32)

Tr(0)
3 = a3η0γ̇r

[
8π

3(ln(2a/b) + Cr2)

]
, Cr2 = −1

2
+ 3

4

∫ 1

−1
s2 ln

(
1 − s2

λ̃2

)
ds, (3.33)

Tr(1)
3 = a3η0γ̇r

[
− π

(ln (b/a))2

∫ 1

−1
s3 ln

(
1 − s2

λ̃2

)
ds

]
. (3.34)

Here, the superscripts e and r have been added to highlight the contribution to F , T3 and
S11 from the extensional (γ̇e) and rotational (γ̇r) flow fields, respectively.

3.2.2. Discussion and physical interpretation
Here also, if the cross-sectional shape λ̃(s) is symmetric about the centre s = 0, then Fe(0)

1 ,
Se(1)

11 , Fr(0)
2 and Tr(1)

3 are all zero. Therefore, the presence of a viscosity gradient induces
a force acting on the filament proportional to κ̃1(γ̇eê1 + γ̇r ê2). If the particle was freely
suspended, then this result is equivalent to there being a small drift velocity proportional
to γ̇eê1 + γ̇rê2, as illustrated for both the rotational flow in figure 2(c) and the extensional
flow in figure 2(d). Similar to the case of a uniform flow field, the effect of κ̃1 on a filament
with λ̃(−s) = λ̃(s) held fixed in a linear flow field is to induce an additional symmetric
contribution to f̄ , compared to the antisymmetric contribution in a constant viscosity η0.
The components of f̄ due to η0 and κ̃1 are sketched in figure 2 with black and blue arrows,
respectively. The new symmetric contribution of f̄ creates a new force due to κ̃1 given to
leading order in (3.28) and (3.32).

3.3. Sedimentation
The linearity of the incompressible Stokes equations leads to a set of linear relationships
between the stress, and therefore the force and torque, exerted on a fixed body and
the rotational and translational motion of a freely suspended body in an external linear
flow field, with the linear coefficient being referred to as the ‘resistance coefficient’
(Kim & Karrila 2013). The leading force, torques and stress given in (3.14)–(3.21) and
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High viscosity

Low viscosity

U sed

α

θ

mg

ê2 ê1
êx

êy

Figure 3. Sketch of a filament settling under the action of gravity (side view); the filament is oriented at an
angle θ from the vertical and sediments instantaneously at angle α to the vertical.

(3.27)–(3.34) can be used to obtain the leading resistance coefficients acting on the
filament. Assuming a symmetric cross-section with λ̃(−s) = λ̃(s), we have

λ1 = F(0)
1 /U1, λ2 = F(0)

2 /U2, λr = κ̃1Fr(1)
2 /γ̇r (3.35a–c)

and

L2 = κ̃1T(1)
3 /U2, Lr = Tr(0)

3 /γ̇r, (3.36a,b)

where F(0)
1 , F(0)

2 , T(1)
3 , Fr(1)

2 and Tr(0)
3 are given in (3.14), (3.18), (3.21), (3.32) and (3.33),

respectively.
We can now use these resistance coefficients to examine the sedimentation of a straight

filament under the action of gravity. This set-up is illustrated in figure 3. The lab frame is
set in a Cartesian coordinate system spanned by the unit vectors (êx, êy, ê3). We assume
that the filament is aligned at an angle θ from the gravitational field, has weight −mgêy,
and is settling with an orientation α from the vertical. The fluid has a constant viscosity
gradient, which, in the lab frame, is set as κ̃ = κ̃xêx + κ̃yêy so that the dynamics occurs
in the (êx, êy) plane. In a constant viscosity field, a filament settles without rotating and
with a uniform drift orientation given by tan α = (λ1/λ2) tan θ (Taylor 1967; Guyon et al.
2015).

In the case of a viscosity gradient, the sedimentation velocity U sed and the angular
velocity Ωsed ê3 are found by balancing the hydrodynamic forces with gravity, and by
applying the zero-torque condition, as appropriate for a freely suspended filament. The
resulting balances are written in the body frame along the three basis vectors

ê1 : mg cos θ + λ̃1Used
1 = 0, (3.37)

ê2 : mg sin θ + λ̃2Used
2 + λ̃rΩ

sed = 0, (3.38)

ê3 : LrΩ
sed + L2Used

2 = 0. (3.39)
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Solving (3.37)–(3.39) to leading order in κ̃1 and in ln (a/b) in the lab frame gives

Ωsed = mg
16πa2η

ln
(a

b

) (
κ̃x sin θ + κ̃y cos θ

)
sin θ, (3.40)

Used
x = − mg

8πaη
ln
(a

b

)
cos θ sin θ, (3.41)

Used
y = − mg

8πaη
ln
(a

b

)
(1 + cos2 θ). (3.42)

We see that the impact of the viscosity gradient κ̃ is to create a non-zero angular rotation
Ωsed (which is therefore zero in the case of a constant viscosity). We further observe that
Ωsed = 0 at a critical angle for which tan θc = −κ̃y/κ̃x. It is straightforward to show that
θc is stable if and only if κ̃1 acts in the direction opposite to the gravitational field (i.e. if
κ̃y > 0). Indeed, for θc to be stable, we need (dΩsed/dθ)|θ=θc < 0. But

dΩsed

dθ
= mg

16πa2η
ln
(a

b

)
cos2 θ(κ̃x tan θ + κ̃y(1 − tan2 θ)). (3.43)

Evaluating this expression at θ = θc gives

dΩsed

dθ

∣∣∣∣
θ=θc

= − mg
16πa2η

ln
(a

b

)
cos2 θc

(
1 + κ̃2

y

κ̃2
x

)
κ̃y, (3.44)

which is negative if and only if κ̃y > 0.

3.3.1. Filament orientation
The effect of the viscosity gradient κ̃ on θ can be shown explicitly by integrating (3.40) to
obtain the angle θ(t). With an initial condition θ0 ≡ θ(0), we obtain

θ(t) =

⎧⎪⎪⎨
⎪⎪⎩

acot (cot θ0 + Kκ̃xt) , K = − mg
a2η

ln(a/b)

16π
, if κ̃y = 0,

atan2
(

κ̃y,

(
κ̃y

tan θ0
+ κ̃x

)
exp

(
Kκ̃yt

)− κ̃x

)
, otherwise.

(3.45)

Here, we have introduced the two-argument arc-tangent function atan2(x, y), which returns
the angle of the complex number x + iy. Note that the prefactor K is the contribution to
mgL2/(κ̃1(L2λr − Lrλ2)) at leading order in ln(ε) and κ̃1.

With the result in (3.45), we see that as t → ∞, the exponential in (3.45) vanishes if
and only if κ̃y > 0 and thus θ → θc, as predicted above; otherwise, θ → π or θ → 0.
We illustrate an example of the orientation dynamics in figure 4 using the parameters
κ̃x = −κ̃y = 0.01 (solid black line) and κ̃x = κ̃y = 0.01 (dashed red line), and an initial
condition θ0 = π/2. For κ̃y = −0.01, θc = −κ̃y/κ̃x ≡ π/4 is unstable. For all values of
θ0 /= θc, the filament always rotates away from θc to align itself in the direction of gravity.
This is seen in figure 4, where as t → ∞, the filament rotates away from θc towards θ = π.
For κ̃y = 0.01, however, θc = 3π/4 is stable. Therefore, θ → θc as t → ∞ for all initial
orientations.

If κ̃x = 0 and κ̃y > 0, then the filament always rotates towards θ = π/2, regardless
of its initial condition, thus aligning perpendicular to the gravitational field with time.
Otherwise, for κ̃y < 0, the filament rotates in the opposite direction, towards θ = 0 for
0 ≤ θ0 < π/2, or towards θ = π for π/2 < θ0 ≤ π, thus aligning in the direction of
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κ̃y = 0.01

κ̃y = –0.01π

5π /6

2π /3

π /2

100 101 102 103 104

θ

(mg/a2η)t
Figure 4. Rotation of a settling filament with aspect ratio b/a = 10−4 under a constant viscosity gradient
with κ̃x = 0.01, and κ̃y = 0.01 (dashed red line) or κ̃y = −0.01 (solid black line), as predicted by (3.45).

κ̃y = –0.01

κ̃y = 0.01

κ̃y = –0.01

κ̃y = 0.01

π

π /2

0

100 101 102 103 104

θ

(mg/a2η)t
Figure 5. Rotation of a filament settling under the action of gravity in a viscosity gradient with κ̃x = 0, and
κ̃y = 0.01 (dashed lines) and κ̃y = −0.01 (solid lines), for θ0 = 5π/8 (black lines) and θ0 = 3π/8 (red lines),
as predicted by (3.45).

gravity with time. An example of this rotation for θ0 = 5π/8, 3π/8 and κ̃y = ±1 is
illustrated in figure 5.

If θ0 = π/2, then the sign of κ̃x determines in which direction the particle rotates: if
κ̃x > 0, then the particle rotates towards θc or θ = π; otherwise, θ decreases towards θc or
θ = 0. An example of this dependency is shown in figure 6 for κ̃y = 0 and κ̃x = ±0.01.
For κ̃x = 0.01, θ(t) → π, and for κ̃x = −0.01, θ(t) → 0, as expected.

3.3.2. Drift orientation
We focus next on the drift of the filament. Denoting by x(t) and y(t) the time-varying
coordinates of the filament, the drift orientation angle α is the solution to tan α = x(t)/y(t).
To find α, we can solve (3.41)–(3.42) explicitly to compute the trajectory of the filament.
Two cases have to be considered separately, depending on the value of κ̃y.
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κ̃x = 0.01

κ̃x = –0.01

10010–2 102 104 106

π

3π /4

π /2

0

π /4

θ

(mg/a2η)t
Figure 6. Rotation of a filament settling under the action of gravity in a viscosity gradient with κ̃y = 0, and
κ̃x = 0.01 (dashed red line) and κ̃x = −0.01 (solid black line), as predicted by (3.45). (The filament has aspect
ratio b/a = 10−4.)

When κ̃y /= 0, we obtain to leading order in κ̃ and ln ε the trajectory

x(t) − x(0) = −4
κ̃xκ̃yKa

κ̃x
2 + κ̃2

y
t

+ a
κ̃2

x + κ̃2
y

(
2κ̃y (arctan(K2) − π/2 + θ0) + κ̃x ln(K1)

)
, (3.46)

y(t) − y(0) = 2(2κ̃2
x + κ̃2

y )Ka

κ̃2
x + κ̃2

y
t

+ a
κ̃2

x + κ̃2
y

(
2κ̃x (π/2 − θ0 − arctan(K2)) + κ̃y ln(K1)

)
, (3.47)

where

K1 =
(
κ̃x tan θ0 + κ̃y

)2 e2Kκ̃yt − 2
(
(tan θ0)

2 κ̃2
x + κ̃xκ̃y tan θ0

)
eKκ̃yt

κ̃2
y
(
(tan θ0)

2 + 1
)

+ (tan θ0)
2(κ̃2

x + κ̃2
y )

κ̃2
y
(
(tan θ0)2 + 1

) , (3.48)

K2 = eKκ̃yt κ̃x sin θ0 + eKκ̃yt κ̃y cos θ0 − κ̃x sin θ0

sin θ0 κ̃y
. (3.49)

As t → ∞, the displacement of the filament tends to the limit behaviour

x(t) − x(0) ≈

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

κ̃xκ̃ymg
4π(κ̃2

x + κ̃2
y )ηa

ln
(a

b

)
t + bx, if κ̃y > 0,

a
(

κ̃y

(
π sign

(
κ̃x

κ̃y
+ cot θ0

)
− π

2
+ θ0

)
+ κ̃xK4

)
2(κ̃2

x + κ̃2
y )

, if κ̃y < 0,

(3.50)

963 A24-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

33
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.336


C. Kamal and E. Lauga

y(t) − y(0) ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− (2κ̃2
x + κ̃2

y )mg

8π(κ̃2
x + κ̃2

y )ηa
ln
(a

b

)
t + by, if κ̃y > 0,

− 3 mg
8πηa

ln
(a

b

)
t + cy, if κ̃y < 0,

(3.51)

where

bx =
a
(

2κ̃y

(
θ0 − arctan

(
κ̃x

κ̃y

)
− π

2

)
+ κ̃xK3

)
2(κ̃2

x + κ̃2
y )

, (3.52)

by =
a
(

2κ̃x

(
π

2
− θ0 + arctan

(
κ̃x

κ̃y

))
+ κ̃yK3

)
2(κ̃2

x + κ̃2
y )

, (3.53)

cy =
a
(

2κ̃x

(
π

2
− θ0 − π

2
sign

(
κ̃x

κ̃y
+ cot θ0

))
+ κ̃yK4

)
2(κ̃2

x + κ̃2
y )

(3.54)

and

K3 = ln

(
(κ̃x

2 + κ̃y
2)(tan θ0)

2

κ̃y
2 ((tan θ0)2 + 1

)
)

, K4 = ln

( (
κ̃x tan θ0 + κ̃y

)2
κ̃y

2 ((tan θ0)2 + 1
)
)

. (3.55a,b)

The drift orientation angle α simplifies considerably in the limit t → ∞, and it is seen
to depend on the sign of κ̃y. If the viscosity gradient acts in the direction opposite to the
gravitational field (κ̃y > 0, viscosity decreasing with depth), then both x(t) and y(t) vary
linearly with t as t → ∞: the displacements of x(t) and y(t) are of the form ait + bi as
t → ∞, where ai and bi are constants for i = x, y, respectively. The ratio between the
linear coefficients, ax/ay, is then used to determine the limit value α → αc as t → ∞ as

tan αc = lim
t→∞ tan α = ax

ay
≡ − 2κ̃xκ̃y

κ̃2
y + 2κ̃2

x
. (3.56)

In the long-time limit t → ∞, the filament tends therefore towards a steady state where
it translates with a fixed deflection angle αc. This asymptotic result is reminiscent of the
uniform viscosity behaviour where the filament does not rotate and sediments at a constant
deflection angle whose value is set by the filament orientation. The maximum deflection
angle, in that case, has magnitude α ≈ 19.5◦ obtained for θ ≈ 54.7◦ in the case of an
asymptotically slender filament (Taylor 1967; Guyon et al. 2015). The crucial difference
brought to the viscosity gradient is that now the values of θc and αc can be tuned by varying
the ratio κ̃y/κ̃x.

If now κ̃y < 0 (i.e. when the viscosity increases with depth), then as t → ∞, the filament
aligns in the direction parallel to the gravitational field and it falls vertically. As a result,
the filament drifts over a finite amount in the êx direction with a drift orientation α ∝ 1/t
as t → ∞. The total drift displacement in the êx direction, given in (3.50), depends on
the time required for the filament to reorientate parallel to the gravitational field, which
depends on κ̃x, κ̃y and θ0. This result is similar to the sedimentation of a ribbon torus
(Koens & Lauga 2017), which also reorientates in a direction parallel to the gravitational
field. For the case of the ribbon, the total drift in the êx direction depends on the angle
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Figure 7. Displacement (a, b) of the filament in figure 4 settling under a constant viscosity gradient with

κ̃x = 0.01, and κ̃y = 0.01 (dashed red line) or κ̃y = −0.01 (solid black line), as predicted by (3.46) and (3.47).

between the plane of the ribbon and its centreline normal vector, whereas here the total
drift of the filament depends on the imposed viscosity gradient κ̃ .

We illustrate in figures 7(a,b) examples of the two different types of trajectories obtained
as a function of the sign of κ̃y; animated versions of the long-time behaviour are provided
in the supplementary material (movies 1 and 2) available at https://doi.org/10.1017/jfm.
2023.336. After sufficient time, we see that when κ̃y = −0.01, x(t) tends to a constant and
y(t) varies linearly with time (solid black line), whereas both x(t) and y(t) vary linearly
with time for κ̃y = 0.01 (dashed red line), in agreement with the theory. At small time, in
comparison, the trajectories are almost identical for κ̃y = −0.01 and κ̃y = 0.01. This result
is because the trajectories depend on the orientation of the filament to leading order, which
is identical for these given examples in the limit t → 0.

We note that a different solution exists in the special limit where κ̃y = 0, i.e. when the
gradient in viscosity is purely horizontal. In that case, the displacement of the filament is
given to leading order in κ̃ and ln ε by

x(t) − x(0) = a ln
(∣∣K2κ̃2

x t2
(
1 − cos2 θ0

)+ 2Ktκ̃x cos θ0 sin θ0 + 1
∣∣)

κ̃x
, (3.57)

y(t) − y(0) = − mg
4πηa

ln
(a

b

)
t − a (2 arctan (cot θ0 + tKκ̃x) − 2θ0 + π)

κ̃x
. (3.58)

As t → ∞, this displacement tends to

x(t) − x(0) = a ln(t)
κ̃x

+ a ln
(∣∣K2κ̃2

x
(
1 − cos2 θ0

)∣∣)
κ̃x

, (3.59)

y(t) − y(0) = − mg
4πηa

ln
(a

b

)
t − a

κ̃x
(π − π sign(κ̃x) − 2θ0) . (3.60)

If θ0 = 0 or θ0 = π, then the filament falls vertically without drifting in the êx direction.
Otherwise, as t → ∞, the filament slowly drifts in the êx direction with a drift proportional
to ln(t)/κ̃x. Therefore, the deflection angle varies as α ∝ ln(t)/t, which slowly decays to
zero as t → ∞. Examples of the displacement for κ̃x = ±0.01 are shown in figures 8(a,b),
with an animated version of the long-time behaviour provided in the supplementary

963 A24-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

33
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.336
https://doi.org/10.1017/jfm.2023.336
https://doi.org/10.1017/jfm.2023.336


C. Kamal and E. Lauga

(x
(t)

 −
 x

(0
))

/a

−
(
y(

t) 
−

 y
(0

))
/a

κ̃x = –0.01

κ̃x = 0.01

2000

1000

0

–1000

–2000

10–2

10–2

100

100

102

102

104

104

106

106 10–2 100 102 104 106

(b)(a)

(mg/a2η)t (mg/a2η)t
Figure 8. Displacement (a, b) of the filament in figure 6 settling under the action of gravity in a viscosity
gradient with κ̃y = 0, and κ̃x = 0.01 (dashed red line) and κ̃x = −0.01 (solid black line), as predicted by (3.57)
and (3.58).

material (movie 3 for κ̃x = 0.01). At long time, y(t) − y(0) is the same for both κ̃x = ±0.01
since the linear term in y(t) is independent of κ̃x to leading order.

4. Toroidal filament in a linear viscosity gradient

4.1. Uniform flow field
After the straight configuration, we now consider the case of a toroidal filament of uniform
cross-section (λ̃(s) = 1) held fixed in a linear flow field u∞ = U1ê1 + U2ê2 in a fluid with
a constant viscosity gradient κ̃ . The (dimensionless) centreline of the toroidal filament is
parametrised in polar coordinates as R̃(θ) = cos θ ê1 + sin θ ê3 for s = θ ∈ [θ0, θ0 + 2π].
Using this notation and dimensionalising U1 and U2 by a typical speed U, (2.24) becomes

J1 = lim
ε→0

Ũ1η̃s

4

∫ θ+2π−ε

θ+ε

[(2 − sin2 θ̂ )G̃V
11(x

′
1, 0, x′

3) + sin θ̂ cos θ̂ G̃V
13(x

′
1, 0, x′

3)]dθ̂ ,

(4.1)

J2 = lim
ε→0

Ũ2η̃s

2

∫ θ+2π−ε

θ+ε

G̃V
22
(
x′

1, 0, x′
3
)

dθ̂ , (4.2)

J3 = lim
ε→0

Ũ1η̃s

4

∫ θ+2π−ε

θ+ε

[(2 − sin2 θ̂ )G̃V
13
(
x′

1, 0, x′
3
)+ sin θ̂ cos θ̂ G̃V

33
(
x′

1, 0, x′
3
)
]dθ̂ ,

(4.3)

with

x′
1 = cos θ − cos θ̂ , x′

3 = sin θ − sin θ̂ . (4.4a,b)

Evaluating these integrals analytically to leading order in κ̃ and ε gives

J1 = Ũ1

[
1
2 sin2 θ − ln ε + 2 ln 2 + 2

3 κ̃1 cos θ + 1
2 κ̃3 sin θ

]
+ O(εκ̃, ε), (4.5)
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J2 = Ũ2

[
2 ln 2 − ln ε + 1

2 (κ̃1 cos θ + κ̃3 sin θ)
]

+ O(εκ̃, ε), (4.6)

J3 = Ũ1

[
−sin(2θ)

4
+ 1

2
κ̃1 sin θ − 1

3
κ̃3 cos θ

]
+ O(εκ̃, ε). (4.7)

Substituting (4.5)–(4.7) into (2.25) allows us to compute the dimensionless force density
components

f̄1 = 2πŨ1η̃s

[
A

ln ε
+ B

(ln ε)2 + O((ln ε)−3, κ̃ε(ln ε)−1)

]
, (4.8)

f̄2 = 2πŨ2η̃s

[−2
ln ε

− 6 ln 2 + κ̃1 cos θ + κ̃3 sin θ

(ln ε)2

]
+ O((ln ε)−3, κ̃ε(ln ε)−1), (4.9)

with

A =
(

1 + 1
2 (κ̃1 cos θ + κ̃3 sin θ)

)
(sin2 θ − 2), (4.10)

B = −1
2

(
1 + 1

2 (κ̃1 cos θ + κ̃3 sin θ)
)

(9 ln 2 + 1 + cos (2θ) + 3 ln 2 cos (2θ))

− 1
24 (κ̃3 (sin (3θ) + 13 sin θ) + κ̃1 (cos (3θ) + 31 cos θ)) . (4.11)

The results for the net force and torque F and T (in dimensional form), written in
increasing order of κ̃ , are

Fi = F(0)
i + F(1)

i + · · · , Ti = T(0)
i + T(1)

i + · · · . (4.12a,b)

The terms proportional to U1, up to order O((ln ε)−2), are given by

F(0)
1 = aη0U1

[
6π2

ln(2πa/b) + CT1

]
, CT1 = 1

3
− ln

(π

4

)
, (4.13)

F(1)
1 = 0, (4.14)

T(0)
2 = 0, (4.15)

T(1)
2 = κ̃3a2η0U1

[
5π2

4 (ln(2πa/b) + CT2)

]
, CT2 = 16

15
− ln

(π

4

)
, (4.16)

while those proportional to U2, up to order O((ln ε)−2), are written as

F(0)
2 = aη0U2

[
8π2

ln(2πa/b) + CT3

]
, CT3 = − ln

(π

4

)
+ 1

2
, (4.17)

F(1)
2 = 0, (4.18)

T(0)
3 /κ̃1 = −T(0)

1 /κ̃3 = 0, (4.19)

T(1)
3 /κ̃1 = −T(1)

1 /κ̃3 = a2η0U2

[
2π2

ln(2πa/b) + CT4

]
, CT4 = 3

2
− ln

(π

4

)
. (4.20)

Similar to the straight filament, we see that the leading-order effect of the viscosity
gradient is to exert a torque on the toroidal filament proportional to either κ̃1 or κ̃3.
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Figure 9. Sketch of the leading force distribution applied to a toroidal filament held fixed in a uniform flow
field at selected orientations. The bold (grey) arrows represent the flow field, and the thin arrows represent the
force density due to this flow field. Black (thin) arrows are the leading forces due to η0, and the blue and red
arrows show the corrections due to κ̃1 and κ̃3, respectively.

By symmetry of the toroidal filament, the leading torque due to a uniform flow U3ê3 is
equal to −T(1)

2 U3κ̃1/(U1κ̃3), where T(1)
2 is given in (4.16).

In figure 9, we provide sketches to illustrate the effect of a viscosity gradient κ̃ on
the force and torques exerted on the toroidal filament. The viscosity gradient leads to an
antisymmetric force density f̄ , creating a viscous torque. The direction of this torque acts
either in the tangential direction of the surface of the toroidal filament or in the normal
direction to the plane in which the toroidal filament lies.

4.2. Rotational flow field
We now assume that the external flow u∞ is rotational. Specifically, we write it as the sum
of two rotational flows γ̇3(−x2ê1 + x1ê2) and γ̇2(−x3ê1 + x1ê3). Non-dimensionalising γ̇1
and γ̇2 by a shear scale γ̇ , (2.24) becomes

J1 = lim
ε→0

˜̇γ2η̃s

4

∫ θ+2π−ε

θ+ε

G̃V
11
(
x′

1, 0, x′
3
) (

cos2 θ̂ sin θ̂ − sin θ̂ (2 − sin2 θ̂ )
)

+ G̃V
13
(
x′

1, 0, x′
3
) (

cos θ̂ (2 − cos2 θ̂ ) − cos θ̂ sin2 θ̂
)

dθ̂ , (4.21)

J2 = lim
ε→0

˜̇γ3η̃s

2

∫ θ+2π−ε

θ+ε

G̃V
22
(
x′

1, 0, x′
3
)

dθ̂ , (4.22)

J3 = lim
ε→0

˜̇γ2η̃s

4

∫ θ+2π−ε

θ+ε

G̃V
33
(
x′

1, 0, x′
3
) (

cos θ̂ (2 − cos2 θ̂ ) − cos θ̂ sin2 θ̂
)

+ G̃V
31
(
x′

1, 0, x′
3
) (

cos2 θ̂ sin θ̂ − sin θ̂ (2 − sin2 θ̂ )
)

dθ̂ . (4.23)
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To leading order in κ̃ , one then finds

J1 = ˜̇γ2

[
− sin θ

(
2 ln 2 − 3

2 − ln ε
)

+ 1
6 (κ̃3 cos 2θ − κ̃1 sin 2θ)

]
, (4.24)

J2 = ˜̇γ3

[
cos θ (2 ln 2 − 2 − ln ε) + 1

12 (κ̃1(cos 2θ − 3) + κ̃3 sin 2θ)
]
, (4.25)

J3 = ˜̇γ2

[
cos θ

(
2 ln 2 − 3

2 − ln ε
)

+ 1
6 (κ̃1 cos 2θ + κ̃3 sin 2θ)

]
. (4.26)

Substituting the expressions for Ji into (2.25) gives, to leading order in κ̃1, the force density
with components

f̄i = 2πη̃s( ˜̇γ2(δi1 + δi3) + ˜̇γ3δi2)

[
Ai

ln ε
+ Bi

(ln ε)2 + O((ln ε)−3, κ̃ε(ln ε)−1)

]
, (4.27)

for i = 1, 2 and 3, with constants given by

A1 = − sin θ(sin2 θ − 2) − sin θ cos2 θ, (4.28)

B1 = B11(sin2 θ − 2) − B12 sin θ cos θ − 1
2 sin θ, (4.29)

A2 = −2 cos θ, (4.30)

B2 = 3 cos θ (1 − 2 ln 2) + 1
6 (κ̃1(3 − cos 2θ) − κ̃3 sin 2θ) , (4.31)

A3 = cos θ(cos2 θ − 2) + sin2 θ cos θ, (4.32)

B3 = B12(cos2 θ − 2) − B11 sin θ cos θ − 1
2 cos θ, (4.33)

B11 = −3
2 sin θ (2 ln 2 − 1) + 1

6 (κ̃3 cos 2θ − κ̃1 sin 2θ) , (4.34)

B11 = 3
2 cos θ (2 ln 2 − 1) + 1

6 (κ̃1 cos 2θ + κ̃3 sin 2θ) . (4.35)

The results for F and T (in dimensional form), in increasing order of κ̃ , are

Fi = F(0)
i + F(1)

i + · · · , Ti = T(0)
i + T(1)

i + · · · . (4.36a,b)

The terms proportional to γ̇3 are, to leading order O((ln ε)−2), given by

Fγ̇3(0)

2 = 0, (4.37)

Fγ̇3(1)

2 = a2η0γ̇3κ̃1

[
2π2

ln(2πa/b) + CT5

]
, CT5 = −5

2
− ln

(π

4

)
, (4.38)

T γ̇3(0)

3 = a3η0γ̇3

[
4π2

ln(2πa/b) + CT6

]
, CT6 = −3

2
− ln

(π

4

)
, (4.39)

T γ̇3(1)

3 = 0. (4.40)
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.
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1(–x3ê2 + x2ê3)

ê3
ê1

ê2

ê1

ê2

ê3
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Force due to η0
Correction force due to κ̃1
Correction force due to κ̃3

Figure 10. Sketch of the leading force and torque applied to a toroidal filament held fixed in a rotational flow
field. The thin arrows represent the force density, and the bolder (grey) arrows represent the external flow field.
Black (thin) arrows are the leading hydrodynamic forces due to a constant viscosity η0, and the blue and red
(thin) arrows represent the force corrections due to the gradients κ̃1 and κ̃3, respectively.

Similarly, the terms proportional to γ̇2 are, to leading order O((ln ε)−2), given by

Fγ̇2(0)

1 = 0, (4.41)

Fγ̇2(1)

1 = −a2η0γ̇2κ̃3

[
π2

ln(2πa/b) + CT7

]
, CT7 = −7

3
− ln

(π

4

)
, (4.42)

Fγ̇2
3 /κ̃1 = −Fγ̇2

1 /κ̃3, (4.43)

T γ̇2(0)

2 = a3η0γ̇2

[
4π2

ln(2πa/b) + CT6

]
, CT6 = −2 − ln

(π

4

)
, (4.44)

T γ̇2(1)

2 = 0. (4.45)

Here, the superscripts ( )γ̇3 and ()γ̇2 have been added to highlight the contributions to
F and T from the rotational flow fields proportional to γ̇3 and γ̇2, respectively. Similar
to the straight filament, the effect of κ̃ is to create a leading force acting on the toroidal
filament proportional to −γ̇2κ̃3êx + γ̇3κ̃1êy + γ̇2κ̃1êz. A sketch is provided in figure 10 to
illustrate this effect. A new symmetric contribution to f̄ is induced by κ̃ . In addition, by
symmetry of the toroidal filament for u∞ = γ̇1(−x2ê3 + x3ê2), one obtains Fγ̇1

2 /(γ̇1κ̃3) =
−Fγ̇3

2 /(γ̇3κ̃1).

4.3. Sedimentation
We finally consider the sedimentation dynamics of the toroidal filament. If we constrain
the motion of the settling filament in the (êx, êy) plane, then its governing equations are
the same as in (3.37)–(3.38) but with λ̃1, λ̃2, λ̃r, L2, Lr interchanged for the equivalent
resistance coefficients for the toroidal geometry. At leading order in ln(a/b), the velocity
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of the settling toroidal filament becomes then

Ωsed = mg
16πa2η

ln
(a

b

) (
κ̃x sin θ + κ̃y cos θ

)
sin θ, (4.46)

Used
x = − mg

24πaη
ln
(a

b

)
cos θ sin θ, (4.47)

Used
y = − mg

24πaη
ln
(a

b

)
(3 + cos2 θ). (4.48)

We see that the velocity of the toroidal filament is similar to that of the settling straight
filament (see (3.40)–(3.42)), up to a change in prefactors. Therefore, θ(t) is the same as
that given in (3.45) but with K becoming the toroidal value KT given by

KT = − mg
a2η

ln(a/b)

16π
. (4.49)

Similarly to the case of a straight filament, if there exists a viscosity gradient in the
direction opposite to the gravitational field, then the toroidal filament aligns at an angle
with tan θc = −κ̃y/κ̃x as t → ∞. Otherwise, it aligns in the direction of the gravitational
field itself. Moreover, for an initial orientation θ0 = π/2, the direction at which the
filament rotates depends on the sign of κ̃x: a toroidal filament has a positive angular
velocity if κ̃x > 0, causing it to rotate towards θ → π, and a negative angular velocity
if κ̃x < 0, inducing rotation in the opposite direction towards θ → 0.

The difference with the straight filament lies in the direction and speed at which the
toroidal filament settles. In the limit t → ∞, one finds explicitly

x(t) − x(0) ≈

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

κ̃xκ̃ymg
12π(κ̃2

x + κ̃2
y )ηa

ln
(a

b

)
t + bT

x , if κ̃y > 0,

a
(

κ̃y

(
πsign

(
κ̃x

κ̃y
+ cot θ0

)
− π

2
+ θ0

)
+ κ̃xK4

)
3(κ̃2

x + κ̃2
y )

, if κ̃y < 0,

(4.50)

y(t) − y(0) ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− (4κ̃2
x + 3κ̃2

y )mg

24π(κ̃2
x + κ̃2

y )ηa
ln
(a

b

)
t + bT

y , if κ̃y > 0,

− mg
6πηa

ln
(a

b

)
t + cT

y , if κ̃y < 0,

(4.51)

where

bT
x =

a
(

2κ̃y

(
θ0 − arctan

(
κ̃x

κ̃y

)
− π

2

)
+ κ̃xK3

)
3(κ̃2

x + κ̃2
y )

, (4.52)

bT
y =

a
(

2κ̃x

(
π

2
− θ0 + arctan

(
κ̃x

κ̃y

))
+ κ̃yK3

)
3(κ̃2

x + κ̃2
y )

, (4.53)

cT
y =

3a
(

2κ̃x

(
π

2
− θ0 − π

2
sign

(
κ̃x

κ̃y
+ cot θ0

))
+ κ̃yK4

)
κ̃2

x + κ̃2
y

, (4.54)

with the coefficients K3 and K4 defined in (3.51).
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Therefore, when κ̃y > 0, the toroidal filament drifts with an orientation

lim
t→∞ tan α ≈ −2κ̃xκ̃y

3κ̃2
x + 4κ̃2

y
. (4.55)

If instead κ̃y < 0, then the toroidal filament drifts a finite amount in the êx direction until
it becomes aligned in the direction of the gravitational force, where it falls without any
drift in the êx direction; the size of the drift is given in (4.50). Here, the total drift in the êx
direction for the toroidal filament is 2/3 of the equivalent drift for a straight filament.

Note that the displacements given in (4.50) and (4.51) are not valid in the singular case
where κ̃y = 0. In this case, the displacement of the toroidal filament is obtained as

x(t) − x(0) = a ln
(∣∣(KT)2κ̃2

x t2(1 − cos2 θ0) + 2KTtκ̃x cos θ0 sin θ0 + 1
∣∣)

3κ̃x
, (4.56)

y(t) − y(0) = − mg
6πηa

ln
(a

b

)
t − a

(
2 arctan

(
cot θ0 + tKT κ̃x

)− 2θ0 + π
)

3κ̃x
. (4.57)

As t → ∞, this displacement tends to

x(t) − x(0) = 2a ln(t)
3κ̃x

+ a ln
(∣∣(KT)2κ̃2

x (1 − cos2 θ0)
∣∣)

3κ̃x
, (4.58)

y(t) − y(0) = − mg
6πηa

ln
(a

b

)
t − a

3κ̃x
(π − π sign(κ̃x) − 2θ0) . (4.59)

Again, we see that the finite drift of the toroidal filament in both the êx and êy directions is
2/3 of that obtained for a straight filament.

5. Discussion

In this paper, motivated by recent biophysical studies on the motion of active particles
and organisms in fluids with heterogeneous viscosity fields, we addressed the dynamics
of slender filaments in a fluid with linearly varying viscosity. Specifically, we derived the
leading-order correction to resistive-force theory (RFT) due to a small viscosity gradient
in the limit ε � |κ̃ | � 1, where ε is the aspect ratio of the slender filament, and κ̃ is the
dimensionless gradient in viscosity. The leading-order solution to the force density f over
the arc length s of the slender body is identical to the classical RFT (Cox 1970) up to
the local viscosity coefficient (which now contains a uniform viscosity gradient) and the
integrand vector ‘J ’, which corresponds to the integrand of a line distribution of point
forces over R(s) in the corresponding viscosity gradient flow field.

We have then used the modified RFT to evaluate the leading effects of κ̃ on the force
and torques applied to (i) a slender filament and (ii) a toroidal filament held fixed in
uniform and rotational flow fields. The effect of κ̃ on the filament is to increase fi/U∞

i
in the region of higher viscosity, and decrease fi/U∞

i in the lower region of viscosity, thus
creating generically an antisymmetric contribution to fi/U∞

i . The magnitude and direction
of the antisymmetric contribution of fi/U∞

i are proportional to κ̃1, i.e. the direction of
the viscosity gradient parallel to R(s). As a result, a filament in a uniform flow field
U∞ = U1ê1 + U2ê2 experiences a torque T ê3 ∝ κ̃1U2, and a filament in a rotational or
extensional flow field U∞ = γ̇ex1ê1 + γ̇rx1ê2 experiences a force F ∝ γ̇eκ̃1ê1 + γ̇rκ̃1ê2.
The effect of κ̃ on the toroidal filament held fixed in the (ê1, ê3) plane is similar to
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the straight filament, except that the toroidal filament experiences leading effects from
a viscosity gradient in both the ê1 and ê3 directions. For example, a toroidal filament held
fixed in a uniform flow field (U1, U2, U3) experiences a leading torque T3/κ̃1 = −T1/κ̃3 ∝
U2 and T2 ∝ κ̃3U1 − κ̃1U3.

Finally, we have used our results for the force and torque distributions acting on the
straight and toroidal filaments to estimate their trajectories under the action of gravity
when their sedimentation is confined to the (êx, êy) plane. We found that the effects of a
viscosity gradient on both filaments are similar: κ̃ causes the straight body to rotate with
an angular velocity proportional to κ̃1, or proportional to either κ̃1 or κ̃3 for the torus. The
effect of κ̃ in the direction parallel to the gravitational field −gêy is as follows. Suppose that
κ̃y is directed in the direction opposite to the gravitational field. In that case, the filaments
rotate towards a stable orientation tan θc = −κ̃y/κ̃x, where they drift at a finite angle α

that depends on κ̃y, κ̃x and the shape of the slender body. Otherwise, the filaments rotate to
align parallel to the gravitational field. For a filament initially aligned perpendicular to the
gravitational force field, the direction of rotation depends on κ̃x, and the rate of rotation
depends on both κ̃x and the shape of the slender body.

The impact of a viscosity gradient can be compared to the classical dynamics of a
filament in a uniform viscosity field. In that case, a straight filament settles without rotating
and with a maximum drift orientation αc ≈ −19.5◦ obtained for the critical orientation
θc ≈ −54.7◦ (Taylor 1967; Guyon et al. 2015). This result is similar to what we obtained
for the long-time motion of both the straight and toroidal filaments when κ̃y acts in the
direction opposite to the gravitational field. The difference is that now the values of the
αc and θc can be tuned by varying the components κ̃x and κ̃y of the viscosity gradient.
These results suggest that viscosity gradients provide a new means to control the drift
and orientation of slender particles in flow without having to tune their shape (Koens &
Lauga 2017). Note that since the angular velocity of the filaments scales with the viscosity
gradient, in the limit of weak gradient considered theoretically here, the time scales for
reorientation are asymptotically large. Further numerical and experimental work will be
needed to characterise how sharp gradients in viscosity affect the motion of slender bodies.

Beyond the dynamics of passive filaments addressed in this paper, we expect our results
to be relevant to the transport of active particles in complex fluids (Li, Lauga & Ardekani
2021). Recent studies have reported experimentally the manner in which heterogeneous
viscosity fields affect the locomotion of flagellated algal swimmers (Coppola & Kantsler
2021; Stehnach et al. 2021) or cells with slender shapes (Takabe et al. 2017). The
theoretical predictions in this paper will enable future work to characterise how the waving
motion, or rotation, of slender filaments is affected by local changes in viscosity, thereby
enabling the study of locomotion in fluids with heterogeneous viscosity fields.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.336.
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