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Rate invariance and scallop theorem in viscosity gradients
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Purcell’s scallop theorem states that a swimmer deforming in a fluid at low Reynolds
number cannot undergo a net displacement if its sequence of shapes is symmetric in
time. Motivated by heterogeneous biological environments, here we consider a fluid with
broken translational symmetry where the viscosity of the medium varies spatially. We show
that, in a prescribed and smooth but otherwise arbitrary viscosity field, the swimmer’s
displacement is independent of its deformation rate and thus the scallop theorem continues
to hold. Transport of the viscosity by the flow would therefore be key to enabling reciprocal
locomotion in heterogeneous media.
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Motile biological microorganisms represent a paradigm for the design of microrobots [1,2]. For
example, swimming bacteria such as the well studied Escherichia coli can perform complex tasks
such as self-propulsion, self-replication, and navigation [3]. Swimming algae such as the genus
Chlamydomonas can actively reorient in external fields or under the influence of cues such as light
[4]. However, the natural environment in which these organisms swim imposes physical constraints
that can lead to technical challenges.

Chief among these physical constraints is the time reversibility of the surrounding fluid flow
at low Reynolds number, which is described by the incompressible Stokes equations [5]. Such
reversibility requires microswimmers to deform their shapes in a manner that breaks time-reversal
symmetry; in other words, a movie of the swimming organism needs to be distinguishable from its
version played backwards in time [6]. For example, a microswimmer with a single rigid flapping fin
cannot swim. Body deformations that look the same under such time reversal symmetry are termed
“reciprocal.” The fact that a reciprocal deformation leads to no net locomotion is now known as the
scallop theorem, famously introduced by Purcell in his 1977 lecture “Life at low Reynolds numbers”
[7]. Purcell himself gave an intuitive demonstration of the theorem and detailed mathematical work
has been devoted to it ever since [8–10], including a rigorous proof [11].

In nature, biological organisms break this time-reversal symmetry by deforming their bodies in
a wavelike fashion, thereby indicating a clear direction of time [6]. Prokaryotes such as bacteria
achieve this using the rotation of rigid chiral structures (flagellar filaments), while eukaryotes
actively deform slender filaments (flagella and cilia) [3]. Scientists, often motivated by potential
biomedical applications, have tried to mimic these biological wavelike mechanisms to design
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FIG. 1. Body swimming by deforming its surface, S(t ), in an otherwise unbounded and quiescent fluid with
a prescribed spatially dependent viscosity μ(x) (the background gray scale gradient schematically represents
the variation of viscosity in space). The swimmer moves at each time t with velocity U(t ) and rotates with
angular velocity �(t ). We denote by n the unit vector field normal to the swimmer surface and pointing into
the fluid. Reciprocal deformation of the body is represented schematically by the sequence of shapes which
show the configuration of the swimmer’s body, S(t ), at different times. The deformation is periodic and thus
S(0) = S(T ), with T denoting the period of deformation (the rate of deformation does not need to be constant).

efficient micromachines [2,12–14], for example, by magnetically actuating rotating chiral structures
[15–17], flexible synthetic filaments [18], or by integrating biological and synthetic components
[19–25].

The fabrication of these bioinspired nonreciprocal devices often involves intricate processes.
Fortunately, the scallop theorem only holds under a specific set of conditions and there are several
ways in which its constraints can be escaped [26], which in turn facilitates the design and fabri-
cation of microswimmers [27,28]. Physical mechanisms that allow for swimming under reciprocal
actuation have been proposed including the use of flow and body inertia [11,29–31], hydrodynamic
interactions [32,33], or exploiting nonlinear stresses that arise from non-Newtonian fluid rheology
[34–36].

In the natural environment of many swimming microorganisms, the viscosity of the fluid is
inherently heterogeneous. For example, pathogenic bacteria that infect the human body find them-
selves moving in viscous mucus layers that protect the tissues in the respiratory or digestive tracks
[37–39]. Similarly, many species of coral release mucus continuously, which accumulates at the
surface of the sea and creates an environment of varying viscosity where marine microorganisms
swim [40]. Recent experiments have revealed patchiness and spatial heterogeneity of the viscosity
field around marine microorganisms [41]. Motivated by these scenarios, work has been devoted by
the physics community to the study of microswimmers in viscosity gradients [42–48]. A newly
discovered passive reorientation was shown to manifest across viscosity gradients, without the need
for active sensing but solely governed by hydrodynamics: when the fluid around a swimmer has
a spatially varying viscosity, an imbalance arises between the viscous propulsive force generated
by the swimmer and the resisting viscous drag, which in turn leads to a hydrodynamic torque
and therefore to reorientation. Since the existence of a viscosity gradient breaks the translational
symmetry of the swimmer’s environment and leads to new dynamics, it is natural to ask whether it
could be also exploited to induce self-propulsion under reciprocal motion. In other words, does the
scallop theorem hold in a fluid with spatially dependent viscosity? In this paper, we demonstrate that
the answer is yes. When the fluid has a fixed and smooth, but otherwise arbitrary, viscosity, we show
using an expansion at any order in the deformation amplitude of the body that the displacement of
a periodically deforming body is independent of the rate of deformation and, therefore, that the
scallop theorem continues to hold. In order to exploit heterogeneous environments for locomotion,
transport of the viscosity field by the moving flow would therefore be the key mechanism to enable
reciprocal locomotion.

We consider a deformable body moving in an infinite fluid with variable viscosity at low
Reynolds number (Fig. 1). Assuming a generalized Newtonian fluid, we write the stress tensor
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as σ = −p1 + 2μ(x)E, where μ(x) is the spatially dependent viscosity, p is the dynamic pressure,
and the strain rate tensor is given by E = (∇u + ∇uT )/2, with u the incompressible velocity field
(∇ · u = 0). In the absence of external forces, the velocity field u vanishes at infinity while, on
the swimmer surface S(t ), it is a combination of deformation with prescribed velocity us(t ) and
rigid-body swimming motion with instantaneous linear velocity U(t ) and angular velocity �(t ), so
it satisfies the boundary condition

u|x∈S(t ) = U(t ) + �(t ) × x(t ) + us(t ). (1)

To derive our results, we use the principle of virtual work [49], which requires the use of
an auxiliary flow û0; for this flow, we consider a particle with the same shape, moving in an
incompressible Newtonian fluid with constant viscosity μ0 in rigid body motion with instantaneous
linear and angular velocities Û0 and �̂0. Assuming that both flow problems follow the inertialess
momentum equations, ∇ · σ = 0, we can contract each momentum equation with the other velocity
field, integrate over the whole fluid volume, and use the divergence theorem along with incompress-
ibility and the vanishing of the flows at infinity to obtain the reciprocal identity [49]∫

S(t )
n · σ · û0 dS −

∫
S(t )

n · σ̂0 · u dST = 2μ0

∫
V (t )

(
1 − μ(x)

μ0

)
E : Ê0 dV , (2)

where n denotes the unit normal vector to S(t ) pointing into the fluid (see Fig. 1). By linearity of the
Stokes equations, we may express the stress field in the auxiliary problem in terms of its boundary
conditions Û0 and �̂0 as σ̂0 = �U

0 · Û0 + ��
0 · �̂0, where the tensor fields �U,�

0 only depend on S
[50]. Assuming force- and torque-free motion for the swimmer, Eq. (2) finally allows one to express
[U,�] in terms of the auxiliary problem as [49][

U
�

]
= −M0 ·

[∫
S(t )

(
n · �U

0

)T · us dS∫
S(t )

(
n · ��

0

)T · us dS

]
− M0 ·

⎡⎣∫
V (t )

(
1 − μ(x)

μ0

)
E : �U

0 dV∫
V (t )

(
1 − μ(x)

μ0

)
E : ��

0 dV

⎤⎦, (3)

where M0 is the instantaneous mobility matrix of a rigid body with shape S. Importantly, the
volume integral on the right-hand side of Eq. (3) is a nonlocal term containing information about
U, �, and us; therefore, a closed-form solution for the swimming velocities in terms of the surface
deformation does not appear possible. Nevertheless, as we show below, we can still use Eq. (3) to
demonstrate that reciprocal motion leads to no net displacement.

To establish rate independence in the case of a varying viscosity, we take inspiration from the
Newtonian (i.e., constant viscosity) case, which we solve first. In that limit, μ(x) = μ0 and the
volume integral in Eq. (3) vanishes. The dynamics of the swimmer is then totally determined by the
boundary conditions at its surface as

[
U
�

]
=

⎡⎢⎢⎣
∫

S(t )
M̃U · us dS∫

S(t )
M̃� · us dS

⎤⎥⎥⎦, (4)

where M̃U,� = −M0 · (n · �U,�
0 )T are second-rank tensor fields that depend only on the shape of

the swimmer S(t ).
To proceed, we represent a change of rate of deformation by considering a smooth function g(t )

such that the shape of the swimmer is invariant under the mapping t �→ g(t ), up to a rotation. It is
convenient to consider a separate virtual swimmer that performs the same deformation as the real
swimmer but in a vacuum. Without any material medium to push on, the virtual swimmer does
not translate or rotate, and therefore its shape is invariant under that mapping. Denoting by S̄ the
shape of the virtual swimmer, we thus have S̄(t ) = S̄(g(t )). The real swimmer, on the other hand,
may translate and rotate. Denoting its rotation at time t by R(t ), we can express any point x on
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the swimmer surface S(t ) as x = R(t ) · x̄, where x̄ is on the virtual swimmer surface S̄(t ). Using
coordinates on the virtual swimmer, Eq. (4) then becomes

[
U(t )
�(t )

]
=

⎡⎢⎢⎣R(t )
∫

S̄(t )
MU · ūs dS̄

R(t )
∫

S̄(t )
M� · ūs dS̄

⎤⎥⎥⎦, (5)

where the variables with a bar are expressed on the virtual swimmer. Since the tensors MU,�
only

depend on S̄(t ), which is invariant under the mapping g(t ), we have MU,�
(g(t )) = MU,�

(t ). The
linear and angular velocities of the swimmer are determined by the surface deformation velocity ūs

and since the shapes are prescribed, with S̄(t ) = S̄(g(t )), the velocity of deformation ūs transforms
under g(t ) as ūs(t ) = ūs(g(t ))ġ(t ) (the dot denotes a time derivative). Therefore, under the change
of rate of deformation described by the mapping g, we obtain for the Newtonian case

[
U(t )
�(t )

]
= ġ(t )

⎡⎢⎢⎣R(t )
∫

S̄(g(t ))
MU · ūs dS̄

R(t )
∫

S̄(g(t ))
M� · ūs dS̄

⎤⎥⎥⎦ = ġ(t )

[
R(t ) · R−1(g(t )) · U(g(t ))
R(t ) · R−1(g(t )) · �(g(t ))

]
. (6)

We next show that the rotation matrix R is rate independent. First we recall the kinematic
equation ė = � × e for any unit vector e, from which we can deduce Ṙ = � × R, where the cross
product between the vector � and the matrix R is defined by (� × R)i j ≡ εkai�kRa j , with εi jk the
Levi-Civita pseudotensor and we use the Einstein notation for summation over repeated indices.
From the definition of the determinant, we have

det(R)εi jk = εpqrRpiRq jRrk = εpqrRipR jqRkr = det(RT )εi jk = εi jk, (7)

where the last equality follows from the fact that the determinant of a rotation is det(R) = 1. Using
the fact that the inverse of a rotation is its transpose, i.e., using index notation Rji = (R−1)i j and
thus Ri jRk j = δik , where δi j is the Kronecker delta, we can write

Ṙi j = εpqrRkpRaqRir�kRa j = εp jrRkpRir�k

= Rir[−εr j p(R−1 · �)p] = Rir�r j = (R · �)i j, (8)

where we have defined the tensor �(t ) ≡ −ε · R−1(t ) · �(t ).
Using the chain rule and prime to denote differentiation with respect to g we have

Ṙ(g(t )) = ġR′(g(t )) = ġR(g(t )) · �(g(t )). (9)

Noticing that Eq. (6) implies �(t ) = ġ�(g(t )) we find Ṙ(g(t )) = R(g(t )) · �(t ). Therefore, R(t ) and
R(g(t )) satisfy the same differential equation and, since R(0) = R(g(0)) = 1 (the identity matrix),
we find R(t ) = R(g(t )) for all t . In other words, the orientation of the swimmer is independent of
the rate at which it deforms its body. With this, Eq. (6) implies Ẋ(t ) = U(t ) = ġU(g(t )) = Ẋ(g(t )).
Again, both displacement vectors have the same initial condition, X(0) = X(g(0)); hence X(t ) =
X(g(t )) for all t . Hence both the displacement and orientation of the swimmer are independent of
the rate at which it deforms its body.

Now, reciprocal motion is defined as one in which the swimmer deforms its body in such a way
that the sequence of shapes it adopts are identical under a time reversal transformation, regardless
of the rate of motion (see Fig. 1). In the case of reciprocal motion the function g(t ) satisfies
g(T ) = g(0) = 0, where T is the period of deformation. Therefore, X(T ) = X(g(T )) = X(0) and
R(T ) = R(g(T )) = R(0). Thus a microswimmer performing a reciprocal motion in a fluid with
homogeneous viscosity undergoes no net translation or rotation; this is Purcell’s scallop theorem
[7,10,11].
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To show that the same result holds in a fluid with a spatially dependent smooth viscosity, we
write the prescribed viscosity field as a Taylor series around the position Xs of a point on the surface
of the swimmer as

μ(x) =
∑

α∈NN
0

1

α!
∂αμ(Xs)(x − Xs)α, (10)

where we have used the multi-index notation for a function f : RN → R. If α = (α1, α2, . . . , αN )
is a multi-index, then we define for any vector x ∈ RN : xα = xα1

1 xα2
2 · · · xαN

N , α! = α1!α2! · · · αN !,
|α| = α1 + α2 + · · · αN , and ∂α f = ∂

α1
1 ∂

α2
2 · · · ∂αN

N f with ∂i f = ∂ f /∂xi.
If we denote by L the typical length over which the viscosity changes and R the typical size of

the swimmer, we may define the dimensionless parameter ε = R/L. In that case, we have ∂αμ ∼
μ0/L|α| = ε|α|(μ0/R|α|), where we take μ0 = μ(Xs) as the reference viscosity. When the viscosity
varies on a length scale larger than the size of the swimmer, i.e., when the swimmer experiences
small relative changes in viscosity over its surface, we have ε � 1 and we can write the viscosity
field in Eq. (10) as an asymptotic expansion μ(x) = ∑

n εnμn(x), where μ|α|(x) = L|α|∂αμ(Xs)(x −
Xs)α/(R|α|α!). Physically, we expect in that case that, at every instant, the swimming velocity will be
close to that of the same reciprocal swimmer moving in a fluid of constant viscosity μ0. We therefore
look at the swimming velocity, the angular velocity, and the strain rate tensor field as asymptotic
expansions in ε, and write U(t ) = ∑

n εnUn(t ), �(t ) = ∑
n εn�n(t ), and E(x, t ) = ∑

n εnEn(x, t ).
We now demonstrate that both Un and �n lead to rate invariant displacement and rotation at all

orders in n. Substituting the expansion in Eq. (3) and comparing the coefficients of the powers of ε

we find at order ε0

[
U0

�0

]
= −M0 ·

[∫
S(t )

(
n · �U

0

)T · us dS∫
S(t )

(
n · ��

0

)T · us dS

]
, (11)

which is the expected solution for a swimmer moving in a fluid of constant viscosity. Higher-order
corrections balance the volume integral in Eq. (3) at each time t as

∞∑
n=1

εn

[
Un

�n

]
= −

∞∑
n=1

n−1∑
m=0

εnM0(t ) ·
[∫

V (t ) AU
n,m dV∫

V (t ) A�
n,m dV

]
, (12)

where the tensor fields AU,�
n,m (n − m � 1) are defined as

AU,�
n,m (x, t ) = μn−m(x)

μ0(x)
Em(x, t ) : �U,�

0 (x, t ). (13)

When comparing the coefficients in the power series on both sides of Eq. (12), care must be
taken because, in principle, the volume V (t ) where the integration is performed varies with the
intensity of the viscosity gradient (since it depends on the swimming motion) and therefore V (t )
implicitly depends on ε. To incorporate this in the calculation, we note that we can obtain the
volume V (t ) through a mapping f : V0(t ) �→ V (t ), where V0(t ) represents the entire space excluding
the volume that the swimmer would occupy in the homogeneous case at every instant in time (see
illustration in Fig. 2). Since the shape of the swimmer is prescribed, V (t ) is thus obtained by a
rigid-body transformation of V0(t ). We label the position of the swimmer in three-dimensional
space using the location X(t ) of a point of interest inside the swimmer and a rotation matrix R(t )
that defines the swimmer’s orientation. Denoting by X0 and R0 the position and orientation when
the swimmer moves in a fluid of constant viscosity, the transformation f that maps V0 into V is
given by f (x) = RR−1

0 · (x − X0) + X. Expanding X and R in powers of ε as X = ∑
n εnXn and
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e(0)

e0(t)

x0

e(t)

xX0

X

f(x0)

S(t = 0)

S0(t)

S(t)

R0

R

FIG. 2. Schematic representation of the map f (x) in Eq. (14). The shape of the swimmer in the constant
viscosity case is denoted by S0(t ), while S(t ) denotes the shape of the swimmer when it moves in a viscosity
gradient. Similarly, the displacement and rotation of the swimmer in each case is denoted by {X0, R0} and
{X, R}, respectively. The unit vector e(t ) = R(t ) · e(0) denotes the orientation of the swimmer at time t . The
gray shades represent the partial approximations of the mapping f in powers of ε.

R = R0(1 + ∑
1�n εnRn), we have explicitly

f (x) = x +
∞∑

n=1

εn

⎡⎢⎣R0RnR−1
0 · (x − X0) + Xn︸ ︷︷ ︸

fn

⎤⎥⎦. (14)

Denoting by x0 the position of a point in the fluid in the volume V0, we can now evaluate the integrals
on the right-hand side of Eq. (12) using the mapping f to change the volume of integration back to
V0(t ) as ∫

V (t )
AU,�

n,m (x, t ) dV =
∫

V0(t )
AU,�

n,m (f (x0), t )|J| dV0, (15)

where J = ∇x0 f (x0) is the Jacobian matrix of the map f . Since f is a rigid body motion, it conserves
volume and hence |J| = 1. Using this, we can formally Taylor expand the integrand in Eq. (15) as∫

V (t )
AU,�

n,m (x, t ) dV =
∫

V0(t )
AU,�

n,m (x0, t ) dV0 + ε

∫
V0(t )

f1(x0) · ∇AU,�
n,m (x0, t ) dV0

+ ε2
∫

V0(t )

(
f2(x0) · ∇AU,�

n,m (x0, t ) + 1

2
f1(x0) · ∇∇AU,�

n,m (x0, t ) · f1(x0)

)
dV0

+ · · · ≡
∞∑

�=0

ε�

∫
V0(t )

AU,�
n,m,�(x0, t ) dV0. (16)

We have introduced the integrands AU,�
n,m,� relevant at order ε� and defined in V0. We now use Eq. (16)

to evaluate the corresponding integrals in Eq. (12). Expanding the sums in m and � and carefully
collecting all the terms with the same powers of ε, we obtain that the corrections to the linear and
angular velocities at order n are given by[

Un

�n

]
= −

n−1∑
m=0

n−m−1∑
�=0

M0(t ) ·
[∫

V0
AU

n−�,m,� dV0∫
V0
A�

n−�,m,� dV0

]
. (17)
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We can now prove that the corrections to the linear and angular displacements are rate indepen-
dent at all orders. We start by considering the first-order correction to the swimmer’s velocities,
given by [

U1(t )
�1(t )

]
= −M0(t ) ·

[∫
V0
AU

1,0,0(x0, t ) dV0∫
V0
A�

1,0,0(x0, t ) dV0

]
, (18)

with

AU,�
1,0,0(x0, t ) =

(
μ1(x0)

μ0

)
E0(x0, t ) : �U,�

0 (x0, t ). (19)

Since M0 and �U,�
0 depend only on the instantaneous shape of the swimmer, they are invariant

under the transformation t �→ g(t ). The strain rate tensor, on the other hand, transforms as E0(t ) =
ġE0(g(t )), by linearity on U0 and us. To determine how the viscosity transforms, we note that x0 does
not depend on the rate of deformation since it is labeled with respect to the position of the swimmer
in the homogeneous case, which is rate independent; therefore, μ1(x0) is invariant under the
mapping t �→ g(t ). We thus get for the integrands in Eq. (18) that AU,�

1,0,0(x0, t ) = ġAU,�
1,0,0(x0, g(t ));

hence [U1,�1](t ) = ġ[U1,�1](g(t )), which leads to [X1, R1](t ) = [X1, R1](g(t )) for all t . The
displacement and orientation of the swimmer are therefore rate independent at first order in the
viscosity variations.

To proceed and show that the rate independence of displacement and orientation is valid at
all orders n, we use mathematical induction. Rate independence has been demonstrated already
for n = 0, 1, so let us assume it is valid for all orders n � k (k is an integer with k � 1) and
show that rate independence is satisfied at order k + 1. Since fn(x0) = R0RnR−1

0 · (x0 − X0) + Xn,
we know by the induction hypothesis that fn(x0) is invariant under the transformation t �→ g(t )
for n � k. As argued in the n = 1 case, the tensors M0 and �U,�

0 are rate independent, and by
the induction hypothesis so are the viscosity fields μn for n � k. By induction the strain rate
tensors transform as En(t ) = ġEn(g(t )) for all n � k. We next observe that the field AU,�

k+1−�,m,�

(m � k, � � k − m) is a sum of terms that are linear in the strain rate tensors En for n � k
and that it only depends on the mapping fn(x0) for n � k. We thus obtain that under a change
of rate AU,�

k+1−�,m,�
(x0, t ) = ġAU,�

k+1−�,m,�
(x0, g(t )), which implies that the linear and angular ve-

locities transform as [Uk+1,�k+1](t ) = ġ[Uk+1,�k+1](g(t )). Therefore, rate invariance is valid at
order n = k + 1 and by the induction property it is valid at all orders in the viscosity field. The
displacement and rotation of a swimmer undergoing prescribed surface deformation is therefore
invariant under the time transformation t �→ g(t ). As a consequence, for reciprocal swimming we
find [X, R](T ) = [X, R](g(T )) = [X, R](0), and therefore the scallop theorem holds in a spatially
dependent (but prescribed) viscosity field.

Quantifying the physical constraints that lead to the scallop theorem is important for the under-
standing of biological locomotion and the design of artificial microswimmers. In particular, it is
crucial to precisely identify the mechanisms susceptible to suppress the constraints of the theorem.
Here, motivated by recent experimental work [42–48], we asked if breaking the translational
symmetry of space by allowing the viscosity of the environment to vary in space is sufficient to
achieve reciprocal propulsion. We showed that in a prescribed, but arbitrary, viscosity profile the
strong condition of rate invariance holds, and therefore so does the scallop theorem.

Naively, this result may appear counterintuitive, since a body undergoing reciprocal action
experiences different viscosities during the first and second half of its deformation cycle. However,
the key point is that for a given viscosity profile the flow is still instantaneously reversible. This
property of the flow ensures that rate invariance, and the scallop theorem, hold for the constant
viscosity case, even in the presence of rigid boundaries [10]; we conjecture that this will also be the
case in the inhomogeneous-viscosity case.

Throughout our analysis, we assumed that the relevant length scale of viscosity variations, L, was
smaller than the typical size of the swimmer, R. This is a reasonable assumption for a viscosity field
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that depends on the evolution of a solute concentration C, or on the temperature field T , that diffuses
as the swimmer self-propels. Our proof can be extended to show that, for such a viscosity field, both
rate independence and the scallop theorem still hold, as long as the Péclet number vanishes and the
viscosity field satisfies Laplace’s equation [strictly speaking, it is C or T that satisfy the Laplace
equation, associated with a constitutive relationship μ(C) or μ(T ); when C or T vary slowly it is
acceptable to assume a linear relationship and therefore ∇2μ = 0].

There are, however, biological relevant scenarios in which the viscosity changes abruptly, i.e.,
over a length scale smaller than the size of the swimmer. For example, this is the case for the
gut bacterium Helicobacter pylori, which is able to move through the mucus layer that covers the
stomach. Recent experiments on low-Re swimmers moving through sharp viscosity gradients [48]
revealed that advection plays a significant role in the swimming behavior. Further exploration of the
finite-Péclet case will therefore be needed for locomotion through steep viscosity interfaces.

The implication of our work for the design of one-degree-of-freedom swimmers is notable. In
order to exploit heterogeneous environments, advection of the viscosity field is therefore key, and it
is the only mechanism that could enable reciprocal locomotion. A key question to uncover will
then be if the breakdown of the scallop theorem is continuous with the Péclet number or if a
finite amount of advection will be required to enable net locomotion—a topic that is reminiscent
of the questions raised a decade ago on the impact of fluid inertia on reciprocal swimming [26].
So far viscosity advection has been ignored in the investigation of viscotactic mechanisms. Since
locomotion problems associated with finite-Péclet number transport abound in biology, from the
dynamics of infectious bacteria to the transport of plankton in the oceans, a key question for future
work is the role of viscosity advection in the natural world.
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