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To achieve propulsion at low Reynolds number, a swimmer must deform in a way that is not invariant under
time-reversal symmetry; this result is known as the scallop theorem. However, there is no many-scallop
theorem. We demonstrate here that two active particles undergoing reciprocal deformations can swim collec-
tively; moreover, polar particles also experience effective long-range interactions. These results are derived for
a minimal dimers model, and generalized to more complex geometries on the basis of symmetry and scaling
arguments. We explain how such cooperative locomotion can be realized experimentally by shaking a collec-
tion of soft particles with a homogeneous external field.
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Microorganisms rely on their ability to swim in order to
achieve a variety of biological tasks, including sensing, tar-
geting, or feeding �1�. Well-studied examples include bacte-
ria, spermatozoa, and ciliated protozoa �1–3�. Given the re-
cent advances in the construction of complex colloidal
assembly �4,5� and in the coupling of biological machines to
artificial microstructures �6�, man-made functional mi-
croswimmers are expected to catch up with real microorgan-
isms �7�.

A fundamental challenge in designing artificial mi-
croswimmers lies in the constraints of the so-called scallop
theorem �8�. Since at small scales, or at low Reynolds num-
ber, the Stokes flow equations are linear and time reversible,
swimming can only be achieved by a sequence of shape de-
formations noninvariant under time reversal, or nonrecipro-
cal; the prototypical reciprocal movement is that of a scallop
which opens and closes its shell �Fig. 1�a�, left�. However,
there is no many-scallop theorem �9�, and the sequence of
deformations undergone by a collection of reciprocal swim-
mers is, in general, nonreciprocal �Fig. 1�a�, right�.

In this paper, starting from this simple observation, we
reveal a new mode of locomotion for hydrodynamically
coupled reciprocal active particles. We show that such active
particles can modulate their relative distance by exploiting
hydrodynamic coupling, thereby inducing on each other ve-
locity fields which do not average out to zero and allowing
for collective motion to occur. Such collective motion is
quantitatively different from the more conventional propul-
sion of nonreciprocal swimmers as we emphasize below. In
addition, we show that a set of nonidentical reciprocal active
particles experiences long-range effective interactions which
can either be attractive or repulsive depending on the par-
ticles geometry. These results are demonstrated rigorously
for a pair of force-free reciprocal dimers, and a generaliza-
tion to different geometries is offered on the basis of sym-
metry principles and scaling arguments. Experimentally, we

show that simple elastic particles shaken by a homogeneous
oscillating external field could be exploited to obtain collec-
tive locomotion.

Following the minimal framework introduced by Golesta-
nian and co-workers �10,11�, we consider a collection of pro-
totypical active particles, force-free dimers, for which we
neglect the flow disturbance created by the links joining
them �see Fig. 1�b��. The ith dimer is composed of two bod-
ies, i1 and i2, separated by the time-varying distance �i�t�
=xi2

−xi1
, where x� denotes the position of body �= i1 , i2

along the x axis. The linearity of the Stokes equation implies
that the motion of each body in a dimer is linearly related to
the forces f�, acting on the bodies from all dimers

ẋ� = �
�

H��f�, �1�

where the �H��� are the hydrodynamic mobilities of the bod-
ies ��= j1 , j2�. We assume that each dimer is force-free,
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FIG. 1. �Color online� �a� A body deforming its shape in a re-
ciprocal fashion, such as a scallop, cannot move on average at low
Reynolds numbers �left, �V	=0�, whereas nonreciprocal deforma-
tion leads to net propulsion �right, �V	�0�. �b� Two force-free
dimers interacting hydrodynamically. The dimers are composed of
two solid spheres �more generally, bodies�, of radii �a1 ,a2� and
�b1 ,b2�, have lengths �a�t� and �b�t�, and are separated by the dis-
tance d�t�.
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f i1
+ f i2

=0, and define f i
 f i1
=−f i2

�Fig. 1�b��. The center of
the ith dimer is denoted xi
�xi1

+xi2
� /2.

(a) Single dimer. We first consider the case of an isolated
active dimer, labeled a. In that case, we have ẋa=H��a�fa and

the dimer elongation satisfies �̇a=�a��a�fa. Hence, we have

ẋa=H��a��̇a /�a��a�, which is an exact derivative and there-
fore averages to zero over time, �ẋa	=0, for any periodic
sequence of forces or deformations imposed to the dimer.
This is the scallop theorem.

(b) Two dimers. We now consider the case of two dimers
�a and b�. Although the dimers are not able to swim when
alone, we show how interactions through the viscous fluid
enable collective motion. We restrain our analysis to wide
and widely separated dimers in an unbounded fluid; if d is
their relative distance, and R the typical size of the bodies in
the dimers, we consider the limit R��i�d for which the
mobilities in Eq. �1� are given by the Green’s function H of
the Stokes equation in the appropriate geometry �12�: H��


H�x�−x�� if ���, H��
H��� �13�. Performing a Taylor
expansion for the dynamics of the four bodies, Eq. �1�, we
obtain at leading order in 1 /d,

ẋa = Mafa − ��xH�xb − xa���bfb, �2a�

ẋb = Mbfb + ��xH�xb − xa���afa, �2b�

�̇a = �a��a�fa + �ab�a�bfb, �2c�

�̇b = �b��b�fb + �ab�a�bfa, �2d�

where we have defined the mobility coefficients associated
with the position and the elongation of each dimer, respec-
tively: Mi= �H�i1�−H�i2�� /2, �ab=�xxH�d�, and �i��i�
=2H��i�−H�i1�−H�i2�. We further restrain our analysis to
small amplitude reciprocal motion of each dimer around the
time average length, �i
��i	 �in all that follows brackets

stand for time average�. More precisely, if we write �i= �̄i
+O�� ,�2� and f i=O�� ,�2�, we keep terms up to O��2� in Eqs.
�2a�–�2d�. We can then compute the average collective and
relative swimming speeds of the dimers, �V	
�ẋb+ ẋa	 /2 and
�V
�ẋb− ẋa	, respectively. To do so, we distinguish the two
ways in which the dimers can be physically actuated.

(c) Force-driven motion. We first consider the case where
the internal forces f i are specified. This is analogous to bio-
logical swimmers possessing force-generating units �the ax-
oneme for eukaryotic cells �14�, the rotary motor for bacteria
such as E. coli �15��. In that case, we assume the internal
force to be known, O���, and time periodic. The force-
displacement relation, Eqs. �2c� and �2d� can then be linear-
ized, and after some straightforward algebra, we obtain

��V	 ,�V /2�=�ab /2��̄aMb�−, + ��̄bMa��fa�fb	. In the case of
spherical bodies in an unbounded fluid, this simplifies to

�V	 = � �̄a�b2 − b1�
b1b2

−
�̄b�a2 − a1�

a1a2

 �fa�fb	

48�2	2d3 , �3a�

�V = � �̄a�b2 − b1�
b1b2

+
�̄b�a2 − a1�

a1a2

 �fa�fb	

24�2	2d3 , �3b�

where we have used the Oseen kernel H�x�=1 / �4�	x�
�x
0�, and H���=1 / �6�	a��, with a� the radius of the
sphere �. The results of Eq. �3� show that, generically, the
scallop theorem breaks down for two active particles inter-
acting hydrodynamically: taken individually, these particles
cannot move, but when interacting through the fluid, they
display collective motion ��V	�0�, and experience an effec-
tive long-range interaction ��V�0�, both of which decay in
space as 1 /d3. The direction and sign of the collective and
relative speeds depend on the geometry and actuation of the

dimers; for sinusoidal forcing f i�t�= f̄ i cos��t+�i�, we have

�fa�fb	= f̄ a f̄b sin��b−�a� /2�, and locomotion occurs if the
two particles are actuated with phase differences.

To emphasize the difference between this collective
swimming mode and the �conventional� propulsion of non-
reciprocal swimmers, we consider a “linked-spheres swim-
mer” �11,16� made of two rigidly connected dimers �d�t� is
kept constant� and obtain �V	=0 at order 1 /d3. This impor-
tant difference reveals that, physically, locomotion of the pair
of dimers occurs primarily because their relative distance is
oscillating in time, and therefore the flow fields seen by each
dimer does not average to zero. Hence fluid-mediated forces
are the crucial ingredient leading to collective locomotion.

(d) Displacement-driven motion. We now assume the se-
quence of deformation of each dimer, �i�t�, to be specified

and time periodic, �i= �̄i+
�i�t�, with 
�i�t�=O���. This is
the relevant limit for �robotic� man-made microswimmers.
We invert the force-displacement relationship, Eqs. �2c� and
�2d�, and after some tedious but straightforward algebra we
obtain locomotion and relative motion at speeds ��V	 , �V

2 �

=
�̄a�̄b�ab

2�a�b
�

Mb

�b

��b

��b
�−, + �

Ma

�a

��a

��a
��
�b
�̇a	. For spherical bodies in

an unbounded fluid we now have

�V	 = � �̄a�b2 − b1�

�̄b�b1 + b2�
−

�̄b�a2 − a1�

�̄a�a1 + a2�

 9ãb̃�
�b
�̇a	

4d3 , �4a�

�V = � �̄a�b2 − b1�

�̄b�b1 + b2�
+

�̄b�a2 − a1�

�̄a�a1 + a2�

 9ãb̃�
�b
�̇a	

2d3 , �4b�

where we have defined ĩ= i1i2 / �i1+ i2� �i=a ,b�.
Similarly to force-driven motion, the scallop theorem

does not hold for a pair of reciprocal bodies, and locomotion
arises if there is a nonzero phase difference between the de-
formation of each particle. To further stress on the difference
with a nonreciprocal swimmer made of two mechanically
connected dimers, we note that we would obtain in this case
a O�1 /d3� swimming velocity �17�, but with a sign opposite
to that arising from hydrodynamic interactions—Eq.
�4a�—as shown in Fig. 2�d�.

(e) Identical swimmers. In the particular case where the

two dimers are identical �ai=bi, i=1,2, and �̄a= �̄b
��, the
results of Eqs. �3a� and �4a� cancel out. One needs to go to
higher order in the asymptotic expansions to obtain the
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swimming kinematics, which is readily done, and locomo-
tion is obtained at order 1 /d4, with velocities

�V	 =
�2�fa�fb	

16�2	2ãd4 and �V	 =
9ã�2�
�a
�̇b	

4d4 �5�

for force- and displacement-driven motion respectively.
In Figs. 2�a�–2�c� we highlight the main features of the

collective dynamics of a pair of identical dimers in the case
of displacement-driven motion, by integrating numerically
Eqs. �4b� and �5�; results for force-driven motion are similar.
We first show in Fig. 2�a� that, on average, mirror-symmetric
swimmers remain at the same relative distance and swim
collectively with a constant velocity. When the swimmers do
not display mirror-image symmetry, we show in Fig. 2�b�
and 2�c� that they undergo a repulsive or an attractive effec-
tive interaction depending on their relative orientation. The

dimers are separating or approaching at rate ḋ� �1 /d3, and
therefore d��t0� t�1/4; accordingly, the mean speed de-
creases as �V	��t0� t�−1, and the distance traveled by the
swimmers can be arbitrarily �logarithmically� large, ��V	dt
� log�t0� t� �18�. Note that in the case of relative attraction,
a proper description of the near-contact hydrodynamics
would regularize the finite-time singularity displayed in Fig.
2�c�; in an experiment, short-range surface forces �such as

van der Waals� would lead to self-assembly of the two
dimers into a four-spheres nonreciprocal swimmer.

(f) Generalization. The results above demonstrate the
emergence of collective motion and of long-range interac-
tions between two dimers embedded in a viscous fluid. A
generalization of these results can be offered as follows.
Firstly, our far-field results �above Eqs. �3� and �4�� are valid
beyond the spherical-dimer infinite-fluid setup, in particular,
in confined geometries such as Hele-Shaw cells or microflu-
idics systems, and for dimers composed of particles of any
shape.

Secondly, Eqs. �3� and �4� also apply for stochastic fluc-
tuations of the length of each dimer �11,16�, and any corre-
lation between the noisy shaking sources acting on each
dimer is seen to lead to nonzero swimming velocities and
effective interactions between the two active objects.

Thirdly, the 1 /d3 spatial decay of the velocities with the
interdimer distance in Eqs. �3� and �4� could have been an-
ticipated since the locomotion arises from the rectification of
interacting force dipoles decaying as 1 /x2 at long distance
�19�; this scaling argument also holds for any pair of active
particles having a single deformation degree of freedom
aligned with the x axis. In the small deformations limit, we
expect their collective and relative swimming velocities to be
of the form

�V	 � � fa� fb��
n�3

�n

dn , �V �� fa� fb��
n�3

�n

dn , �6�

�V	 � �
�b
�̇a	�
n�3

�n

dn , �V � �
�b
�̇a	�
n�3


n

dn �7�

for force- and displacement-driven motion, respectively, and
where ��n ,�n ,�n ,
n� depend solely on the shape of the par-
ticles �20�. Note from Eqs. �3b�, �4a�, and �4b� that for two
mirror-image particles, �3=
3=0. This result is actually true
at all orders, and two swimmers with mirror-image symme-
try verify �V=0. Indeed the flow and pressure fields induced
by the beating of two mirror-image dimers are invariant un-
der the combination of time-reversal and mirror symmetries.
Consequently, �V, which has the symmetry of a velocity
gradient, transforms into −�V, and therefore �V=0. Simi-
larly, we have �3=�3=0 for identical dimers; this is a con-
sequence of the two �rectified� dipoles having opposite con-
tributions on each dimer, and will generally be true for a pair
of identical particles.

Fourthly, beyond the one-dimensional models considered
in this paper, we expect all types of reciprocal motion, in-
cluding those with three-dimensional shape deformation, and
with nontrivial relative orientation, to display collective mo-
tion induced by hydrodynamic interactions. Finally, although
we have emphasized locomotion in this paper, our results
could be extended to the dual problem of pumping fluid by
anchored bodies.

(g) Soft swimmers. We now turn to a discussion of the
experimental realization of these ideas. Actuating a collec-
tion of active particles with out-of-phase conformational
changes is difficult, and it would be preferable to devise a
framework where an homogeneous external field could pro-
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FIG. 2. �Color online� Dynamics of identical dimers interacting
hydrodynamically. Units are chosen so that 
�a�t�=cos�t�, 
�b�t�
=sin�t�. �a� Mean displacement, ��Vdt	, for two mirror-images po-
lar dimers �a1�a2, solid line�; mean displacement for two mirror-
images apolar dimers �a1=a2, dash-dotted line�; mean distance,
��Vdt, between the two dimers �polar and apolar cases, dashed
line�. �b� Mean displacement �solid line� and mean separation dis-
tance �dashed line� for two identical polar dimers pointing in the
same direction. �c� same as �b� but for dimers pointing in the op-
posite direction; note the change in the sign of the dimer-dimer
effective interaction. �d� Comparison between the swimming speed
of two active dimers and a single swimmer made of two rigidly
connected dimers �constant d�. In all figures, the lengths �a and �b

oscillate with the same amplitude and frequencies, and a relative

phase of � /2. In the chosen units, �̄a= �̄b=10, �d�t=0=100, a1=3,
a2=3 /2 for the polar dimers and a1=a2=2 in the apolar case.
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duce directed locomotion. We show below that this is theo-
retically possible if the particles are soft: indeed, since soft
particles in a viscous fluid possess relaxation times, different
particles will naturally react to an external shaking with
phase differences, and locomotion will ensue. Practical ex-
amples of soft-particle actuation could include bending of
magnetic filaments by magnetic fields �7�, temperature or
light actuation of liquid-crystal elastomers �21,22�, or self-
sustained chemical reactions for swelling of gels �23�.

We thus consider a pair of force-free apolar and identical
dimers �radius a, average length �� subject to a homogeneous
external shaking. We write f i= fshake+ f i

relax, for i=a ,b, where
the force fshake is externally produced and the same for each
dimer �homogeneous forcing�. The force f i

relax is the internal
�elastic� response of the dimer, and we write f i

relax=ki
�i,
where ki is the dimer stiffness; in that case, the intrinsic
dynamics of each active particle is characterized by a relax-
ation time scale �i=3�	a /ki. Assuming a monochromatic
shaking fshake= f0 cos��t� for simplicity, integration of Eqs.
�2c� and �2d� leads to collective motion with speed

�V	 = � ��a − �b���2�a�b�
�1 + �2�a

2��1 + �2�b
2�
 �2f0

2

16�2	2d4a
, �8�

and �V=0 by �geometrical� symmetry. We see that, under
homogeneous forcing, the only condition necessary to obtain
locomotion is �a��b. Locomotion always occurs in the di-
rection of decreasing relaxation time, i.e., the stiff dimer is
pulling the soft one; optimal locomotion occurs when the
system is actuated with frequency ����a�b�−1/2 and when
the ratio of relaxation times is large.

A final relevant example is the case where one dimer is
purely passive, i.e., its elongation is not coupled to the ex-
ternal field. Specifically, we assume dimer a to be actively
shaken, with fa

shake= f0 cos��t�, while dimer b is passive, and
fb

shake=0. In that case, the beating of the passive dimer arises
from the hydrodynamic interactions with the active dimer,
and its amplitude is a function of the distance d. Collective
motion arises with speed

�V	 = − � �2�a�b

�1 + �2�a
2��1 + �2�b

2�
 3�a�4f0
2

32�2	2d7 , �9�

and the active particle is seen to “pull” the passive one even
if the two dimers are geometrically and mechanically identi-
cal.

(h) Perspective. Using a simple model, we have shown in
this paper how two bodies with reciprocal deformation can
exploit hydrodynamic interactions to obtain collective loco-
motion and effective long-range interactions. Can one expect
large scale directed motion, coarsening, or ordering to occur
in suspensions of reciprocal active particles? Although such
cooperative effects have already been demonstrated for
coupled active �but non-self-propelled� particles in several
different contexts �24–26�, the generalization of our results
to a large number of active particles remains an open chal-
lenge.

Note added. Recently, we became aware of a study sub-
mitted by Alexander and Yeomans on a similar problem �27�.
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