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Abstract
Theparanasal sinuses are a groupof hollow spaceswithin the human skull, surrounding
the nose. They are lined with an epithelium that contains mucus-producing cells and
tiny hairlike active appendages called cilia. The cilia beat constantly to sweep mucus
out of the sinus into the nasal cavity, thus maintaining a clean mucus layer within the
sinuses. This process, called mucociliary clearance, is essential for a healthy nasal
environment and disruption in mucus clearance leads to diseases such as chronic rhi-
nosinusitis, specifically in the maxillary sinuses, which are the largest of the paranasal
sinuses. We present here a continuum mathematical model of mucociliary clearance
inside the human maxillary sinus. Using a combination of analysis and computations,
we study the flow of a thin fluid film inside a fluid-producing cavity lined with an
active surface: fluid is continuously produced by a wall-normal flux in the cavity and
then is swept out, against gravity, due to an effective tangential flow induced by the
cilia.We show that a steady layer of mucus develops over the cavity surface only when
the rate of ciliary clearance exceeds a threshold, which itself depends on the rate of
mucus production. We then use a scaling analysis, which highlights the competition
between gravitational retention and cilia-driven drainage of mucus, to rationalise our
computational results. We discuss the biological relevance of our findings, noting that
measurements of mucus production and clearance rates in healthy sinuses fall within
our predicted regime of steady-state mucus layer development.

Keywords Mucus transport · Sinuses · Fluid mechanics · Thin films · Active flows ·
Lubrication

1 Introduction

The human skull contains air-filled cavities around the nose region, called paranasal
sinuses. These are named after the bones in the skull within which they reside:
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frontal, maxillary, ethmoid and sphenoid (Papadopoulou et al. 2021) (see illustration
in Fig. 1a). The sinuses are believed to serve a number of evolutionary and func-
tional purposes, including keeping the skull light and buoyant, imparting resonance to
voice, humidifying inspired air, improving olfaction, absorbing physical trauma and
producing mucus (Blanton and Biggs 1969; Keir 2008).

One role of sinuses is to supply mucus to the nasal cavity, where it plays an impor-
tant role in the respiratory system (Cohen 2006). The sinus interior is lined with an
epithelium which contains two types of cells: (i) goblet cells that secrete gel-forming
proteins called mucin, and, (ii) ciliated cells endowed with active hairlike appendages
called cilia (Fahy andDickey 2010). The epithelium is hydrated through osmosis regu-
lated by ion transport across the epithelial cells (Hill et al. 2022). The secreted mucins
expand drastically upon contacting the hydrated epithelium and form a gel-like fluid
called mucus (McShane et al. 2021). In this way, mucus is effectively produced inside
the sinuses through a combination of mucin-secretion by goblet cells and osmosis-
induced hydration of the epithelium. The typical composition of mucus is: ≈ 97.5%
water, ≈ 0.5% mucin proteins, ≈ 1.1% each of salts and ≈ 0.9% other globular
proteins (Hill et al. 2022). It is a bi-layered viscoelastic fluid consisting of a highly
viscous mucus layer (ML) overlying a periciliary layer (PCL) which itself rests atop
the nasal epithelium (Kaliner et al. 1984; Knowles and Boucher 2002). The PCL has
been classically postulated to be a water-like fluid layer, but more recent investigations
have questioned this gel-on-liquid description, instead proposing that the PCL has a
brush-like structure owing to various secreted mucins and other polymers adhered to
the epithelium (Button et al. 2012). Regardless, the cilia are immersed almost entirely
in the PCL with only their tips penetrating into the ML (Sanderson and Sleigh 1981;
Satir and Sleigh 1990) (see Fig. 1b). They perform coordinated motion in a forward
and recovery stroke such that they push the mucus during the forward stroke but cause
minimal backflow during the recovery stroke; thus, on average, the mucus blanket is
transported along the sinus epithelium (Proctor and Andersen 1982; Satir and Sleigh
1990). The net effect of cilia-induced mucus transport is that the mucus exits the sinus
through an opening called the ostium, and is then directed into the nasopharynx (Beule
2010) (see Fig. 1c). In this way, a fresh mucus layer is always maintained inside a
healthy sinus: being produced continuously at the epithelium, and being cleared out
simultaneously by the beating cilia. This process, of constant production and replen-
ishment of mucus, is referred to as mucociliary clearance (MCC) (Jones 2001).

MCC is a robust process that is responsible for health and defence of the nose,
for example, almost all of the particulate matter of size > 10 μm that we breathe
gets trapped in the mucus and removed before it can cause harm to the underly-
ing tissue (Cohen 2006). Importantly, inhaled bacteria are removed by MCC before
they get time to replicate and become infectious. Any impairment in MCC can cause
mucus build-up inside the sinuses; situations causing excess mucus production (e.g.,
allergen-induced inflammation of the sinonasal mucosa) can impair MCC and lead to
furthermucus build-up in the sinuses. Thesemalfunctions are conducive for bacteria to
colonise the sinuses, leading to the development of bacterial biofilms and subsequent
diseases such as chronic rhinosinusitis (Stevens et al. 2015). It is therefore crucial to
understand the physical factors affecting mucus flow in the sinuses, particularly in the
maxillary sinus, which is the main site for sinus disease (Fokkens et al. 2020).
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Fig. 1 Mucociliary clearance in human sinuses. a Sketch of sinuses and their locations inside the human
skull (Winslow 2012). bi Light microscopy image of the nasal epithelium, showing goblet cells, cilia, the
periciliary layer (PCL) and the mucus layer (ML) (reproduced with permission from Button et al. (2012)).
bii Sketch showing the position of the cilia tips and the interface between the PCL and the ML, for the
gel-on-liquid model. biii Sketch showing the interface between the PCL and the ML, for the gel-on-brush
model (reproduced with permission from Hill et al. (2022)). c The maxillary sinuses as seen on a CT scan
of a human head. The expected direction of mucus flow due to ciliary beating is shown via the thin white
arrows in the left (L) sub-panel. The sinus exit, called the ostium, is marked by the letter “O” in the right
(R) sub-panel (reproduced with permission from Whyte and Boeddinghaus (2019))
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A number of interesting fluid flow phenomena govern the evolution and transport
of mucus inside the maxillary sinus. Firstly, in order to maintain a steady mucus layer
over the sinus walls, there must exist a balance between the rates of mucus production
and mucus expulsion due to transport facilitated by ciliated cells. In fact, the thickness
of the mucus layer–itself an indicator of susceptibility to disease (Olivença et al.
2019)–would depend on the relative rates of mucus production and mucus clearance.
Secondly, since the maxillary sinus ostium is located above the bottom side of the
sinus (Whyte and Boeddinghaus 2019), the flowing mucus must overcome gravity
in order to successfully exit the sinus (see Fig. 1c). Indeed, it has been clinically
postulated that the proclivity of the maxillary sinus to infections is likely due to its
ostium being located against the direction of gravity (Bluestone et al. 2012; Butaric
et al. 2018; Kim et al. 2021). Thirdly, the mucus layer inside the sinus is exposed to
air and can deform due to surface tension, which can then affect its flow.

In this paper, we employ fundamental concepts from fluid mechanics to understand
how the aforementioned physical effects interact with each other and contribute to
maintain a thin mucus layer inside the maxillary sinus. We first propose in Sect. 2 a
model system that includes relevant bio-physical components dictating mucus flow
inside the sinus. The system is comprised of a cavity lined with a fluid-producing
active surface, i.e. the inner surface of the cavity produces mucus, and also drives it
along the cavity with a prescribed tangential velocity which models the mean action
of the cilia on the mucus. In Sect. 3, we derive a nonlinear evolution equation for the
thickness of the mucus film, based on important modifications to classical theories on
thin-film flow (Oron et al. 1997; Craster and Matar 2009; Qin et al. 2020; McKinlay
et al. 2023); this is done for both two-dimensional and three-dimensional cavities. In
Sect. 4, we solve this equation numerically to study the nature of mucus film profiles
inside the model sinus. Specifically, we determine a phase space, defined by the rates
of mucus production and clearance, consisting of two types of solutions: unsteady
solutions corresponding to physical conditions that do not result in successful MCC,
and steady solutions for physical conditions that do result in successful MCC from
the sinus. We rationalise this demarcation between the unsteady and steady solutions
using a physical argument resulting in a scaling relationship in Sect. 5. We show that,
for a prescribed rate ofmucus production, successfulMCC is achieved only if the cilia-
induced mucus flow exceeds a certain threshold; in the process, we identify how this
threshold clearance rate scales with the rate of mucus production. In Sect. 6, we next
discuss the direct biological application of our findings by comparing our predictions
of steady-state conditions in the model sinus (i.e. rates of mucus production and
clearance) to the existing literature on these operating conditions in healthy sinuses.
We finish by a summary of our work in Sect. 7 along with suggestions for future
investigations.
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Fig. 2 Schematics explaining the geometry of the model sinus, a a two-dimensional, circular system, and,
b a three-dimensional, but axisymmetric spherical system. The blue arrows denote the direction of the
effective ciliary slip velocity ∼ U ′

w, the red arrows denote the wall-normal mucus in-flow V ′
w, and the

downward pointing green arrows denote the direction of gravity. The bottom-most point in both the cases–
fromwhere begins the upward motion of the mucus due to cilia action–is marked by a black dot. The mucus
exits the system as soon as it reaches the top: (a) the orange dot in the 2D case, and, (b) the orange circle
in the 3D case. In panel (b) the velocity vectors are shown for only two azimuths, for clarity, but they are
distributed axisymmetrically–around the vertical axis–over the entire sphere surface

2 Mathematical Model

2.1 Key Biophysical Ingredients

What are the essential ingredients for a minimal model of MCC in the maxillary
sinuses? Firstly, it must consist of a finite-size cavity with an outlet for the fluid
(mucus) to exit. Biologically, these represent, respectively, the sinus and the ostium
(the small opening in the sinus that drains into the nasal cavity). Secondly, there must
be some mechanism for fluid production inside the cavity, to model the continuous
production of mucus in the sinus. Thirdly, there must also be an active mechanism
to continually drive the produced fluid out, modelling the action of the ciliated cells
inside the sinus. In healthy conditions, there exists a steady mucus layer in the sinus,
which is continuously replenished on account of a balance between mucus production
and mucus clearance. This fundamental feature should emerge in our model as a
consequence of the forces governing fluid motion.

2.2 TheMinimal Model: Simplifying Assumptions

Based on this, we can propose a simple model, which includes all the above-
mentioned biophysical effects. For the sinus cavity, we consider two elementary
geometries: a circle and a sphere. The formerwill be used for a planar/two-dimensional
analysis whereas the latter for an axisymmetric/three-dimensional analysis. We treat
the mucus, in this first exploration, as a Newtonian fluid with uniform physical proper-
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ties (viscosity and density). We assume that the mucus is continually produced at the
walls of the cavity and that it enters the cavity normally (i.e. perpendicular to the local
cavity wall) at a constant velocity V ′

w (red arrows in Fig. 2). Without ciliary function,
gravity (green arrows in Fig. 2) would cause the mucus to accumulate inside the cavity
and fill it up. But cilia actively sweep the mucus up along the wall and cause it to exit
the cavity; the effective action of the cilia is thus modelled as an active (or ‘slip’)
tangential velocity of characteristic magnitude U ′

w, prescribed along the walls of the
cavity (blue arrows in Fig. 2). The mucus exits the system at the top through an ostium
which is modelled differently in the two geometries. For the circular geometry, we
model the mucus exit as a discontinuity: once the mucus reaches the top-most point
(orange dot near the top in Fig. 2a) it is removed from the domain. For the spherical
geometry, we truncate the sphere near its top pole to form a small circular opening
from where the mucus exits the domain (orange circle near the top in Fig. 2b). We
will see that this minimal model is sufficient to explain the development of a thin
mucus film inside the sinus (Sect. 6), and will revisit the various assumptions behind
the model when offering perspectives for future work (Sect. 7.3).

2.3 Biologically Relevant Parameter Values

We summarise in Table 1 the values of the various important parameters involved in
the problem; note that the physical properties of the mucus, especially its effective
viscosity and surface tension, can vary over a range of magnitudes, depending on the
general health of the nose (Silberberg 1983;Craster andMatar 2000; Smith et al. 2008).
In humans, themucus develops over the sinus epitheliumas afilmof thickness h′ ∼ 10-
15 μm (Beule 2010). The coordinated beating of cilia moves this mucus layer at an
average rate of 2–25mm/min (Cohen 2006; Beule 2010; Whyte and Boeddinghaus
2019), which means that U ′

w lies in the (large) range 30 to 400 μm/s. To estimate
typical values of the mucus production rate (V ′

w) under steady operative conditions,
we use a mass balance argument along with measurements of geometrical features of
the maxillary sinus. The volume flux coming out of the sinus is

Q′ ∼ h′r ′
oU

′
w ∼ A′

sV
′
w, (1)

where h′ is the height of the mucus film, r ′
o is the radius of the ostium and A′

s is the
surface area of the maxillary sinus. The scaling in the first part of Eq. (1) follows from
the assumption that in a healthy state, the mucus does not flow out through the total
available ostium area (which would be proportional to r ′2

o ), but only coats the inner
surface of the ostium, forming a layer of thickness ∼ h′. The scaling in the second
part of Eq. (1) follows from a mass balance argument that all the mucus secreted from
the surface of the sinus must leave through the ostium. Now, if the volume of the sinus
is V ′

s and its typical length-scale is �′
s, then its internal surface area is,

A′
s ∼ V ′

s/�
′
s. (2)
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Combining Eqs. (1) and (2) yields,

V ′
w ∼ U ′

w

(
r ′
oh

′

V ′
s/�

′
s

)
∼ U ′

w ×
(
O(10−6) − O(10−4)

)
. (3)

To arrive at the number in brackets in Eq. (3), we have used the following values of
the geometric parameters, obtained from measurements on human sinuses: h′ ∼ 10–
15μm (Beule 2010), r ′

o ∼ 1–5 mm (Proctor and Andersen 1982; Kirihene et al. 2002;
Whyte and Boeddinghaus 2019), �′

s ∼ 10–30 mm (Whyte and Boeddinghaus 2019)
and V ′

s ∼ 10–20 cm3 (Cho et al. 2010; Yalcin et al. 2018). An estimate of V ′
w can also

be made by dividing the volumetric rate of mucus production in the nasal epithelium,
by the area of the nasal epithelium. Gizurarson (2015) states that 20–40mL of mucus
is produced per day from around 160cm2 of nasal mucosa; this yields an in-flow
speed of V ′

w ∼ 0.015–0.03 μm/s. A third way to estimate V ′
w is by noting that ciliary

beating causes turnover of the mucus blanket every 20–30min (Lund 1996); so, if the
thickness of the mucus film is 10–15 μm, then V ′

w should be ∼ 5 × 10−3 μm/s.
In our theoretical study, we will cover a broad range of values of

(
U ′
w, V ′

w

)
to reflect

the wide variance in MCC rates across different sinus geometries and physiological
conditions. We note that not all pairs of values of

(
U ′
w, V ′

w

)
would correspond to the

typical conditions inside a healthy sinus. The lowermost values of U ′
w would reflect

MCC in sinuses characterised by extensive cilia loss, whereas the largest values of
V ′
w would be more representative of sinuses with mucosal swelling, a condition which

leads to more mucus secretion (Whyte and Boeddinghaus 2019).

3 Active, Fluid-Producing Thin-Film Equations

The objective of our paper is to identify the physical conditions amenable to main-
tenance of a steady mucus layer inside the model sinus. We thus need to solve the
equations governing mucus flow inside the sinus, and from them, deduce the shape of
the mucus film. Since the typical thickness of the mucus layer h′ ∼ 10–15 μm (Beule
2010) ismuch smaller than the typical length-scale of the sinus �′

s ∼ 10–30mm(Whyte
and Boeddinghaus 2019), the dynamics of mucus flow are governed by classical thin-
film (lubrication) equations (Leal 2007). In this paradigm, the fluid’s velocity normal
to the sinus walls is at least ε = h′/�′

s times smaller than its velocity along the sinus
walls, where ε � 1. Thus, the fluid flow is predominantly tangential to the sinus
walls. In addition, the relative thinness of the mucus layer means that the variation
of fluid velocity along the film is negligible as compared to its variation across the
film. Finally, in the thin-film limit, the fluid pressure varies only along the film, while
staying approximately constant normal to the film. These ideas are mathematically
formalized in Appendices A.1 and B.1.

Under the simplifying assumptions listed above, a classical method may be used to
derive the evolution equation satisfied by the mucus thickness (Leal 2007). One starts
by expressing the (tangential) velocity of the fluid as a superposition of a pressure-
driven flow resulting fromvariations in the height of themucus film, a boundary-driven
flow caused by the cilia-induced tangential velocity imposed along the cavitywalls and
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Table 1 Typical values of mucus properties and flow speeds
(
U ′
w, V ′

w
)
(top) and important dimensionless

numbers (bottom), corresponding to mucociliary clearance in humans (Silberberg 1983; Albers et al. 1996;
Bull et al. 1999; Craster and Matar 2000; Smith et al. 2008; Lai et al. 2009; Hamed and Fiegel 2013;
Chen et al. 2019; Patne 2024). Note that the value of u′

c used to non-dimensionalise
(
U ′
w, V ′

w
)
(and other

quantities) in the main text corresponds to μ = 10−1 kg m−1 s−1 and σ = 0.08 N m−1 (Smith et al. 2008)

Parameter Description Typical value Units

ρ Mucus density 103 kg m−3

μ Mucus viscosity 10−3 to 10 kg m−1 s−1

σ Mucus-air surface tension 0.01 to 0.1 N/m

h′ Mucus film thickness 10 to 15 μm

�′
s Sinus length-scale 10−2 to 3 × 10−2 m

ε = h′
�′
s

Ratio of mucus film thickness to sinus length 10−3 to 10−2 dimensionless

g Gravitational force per unit mass 9.8 m s−2

u′
c = ε2ρg�′2

s
μ Reference velocity scale 10−3 to 104 μm s−1

U ′
w Tangential velocity at the wall 1 to 400 μm s−1

V ′
w Normal velocity at the wall 10−5 to 10−2 μm s−1

Bo = ρg�′2
s

σ Bond number ≈ 12 dimensionless

Uw = U ′
w

u′
c

Normalised tangential velocity 10−1 to 40 dimensionless

Vw = V ′
w

εu′
c

Normalised wall-normal velocity 10−3 to 1 dimensionless

a flow driven due to gravity. This velocity can then be used to calculate the tangential
flux (i.e. flow rate) of mucus, as a function of the local height of the mucus film.
Thereafter, one can use a mass balance argument to relate the rate-of-change of the
mucus film’s height to the tangential mucus flux and the mucus production rate. In this
way, the thin-film analysis allow us to reduce the multiple, coupled, nonlinear partial
differential equations and boundary conditions describing the fluid’s flow-field, into
a single nonlinear, partial differential equation describing the time evolution of the
height of the mucus film (Leal 2007). While the mathematical details of the derivation
of these thin-film equations are shown in Appendices A.1 and B.1, we provide here
the final, dimensionless equations governing the film thickness, in both circular and
spherical geometries.

3.1 Circular Geometry

3.1.1 Governing Equation

In a symmetric system as shown in Fig. 2a, the (dimensionless) thickness of the mucus
film obeys (see Appendix A.1 for details),

∂Hc

∂t
+ ∂Qc

∂θc
= Vw, (4)
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where,

Qc(θc, t) = H3
c

3

[
ε

Bo

∂

∂θc

(
Hc + ∂2Hc

∂θ2c

)
+ sin θc

]
+ uw,θc (θc) Hc(θc, t), (5)

where the sub-script ‘c’ denotes circular geometry. In Eq. (4), Hc(θc, t) is the film
thickness at location θc and time t , Qc (θc, t) is the local, tangential fluid flux and
Vw is the dimensionless normal component of the fluid velocity at the cavity wall.
In Eq. (5), ε = h′/�′

s � 1 is the ratio of the characteristic film thickness h′ to the
characteristic length-scale of the sinus �′

s; Bo is the Bond number, a dimensionless
measure of the importance of gravity as compared to surface tension, in driving the
film (see Appendix A.1). Also, uw,θc (θc) in Eq. (5) is a prescribed tangential velocity
at thewalls of the circle (blue arrows in Fig. 2a), whichmodels the action of the ciliated
epithelium on the mucus; we discuss its functional form in Sects. 3.1.3 and 3.3.

3.1.2 Boundary Conditions

The symmetry of the setup in Fig. 2a means that we just need to solve Eq. (4) over
half the domain, i.e. for 0 ≤ θc ≤ π ; where θc = 0 is the topmost point (orange dot
in Fig. 2a) and θc = π is the bottommost point (black dot in Fig. 2a); the solution for
π ≤ θc ≤ 2π can then be obtained by reflecting the solution for 0 ≤ θc ≤ π about
the (vertical) axis. Symmetry also dictates that the flow-rate must vanish at θc = π ,
which yields the following conditions on uw,θc and Hc:

uw,θc (θc = π) = 0,

∂Hc

∂θc

∣∣∣∣
θc=π

= 0,

∂3Hc

∂θ3c

∣∣∣∣
θc=π

= 0. (6)

The first condition in Eq. (6) needs to be satisfied by design, by choosing a function
uw,θc (θc) that it is odd with respect to θc = π (see Eq. (10), Sect. 3.3). The second and
third conditions follow from symmetry and the condition of continuity of film shape
at θc = π .

3.1.3 Modeling the Ostium

For the circular geometry, we model the ostium as a discontinuity in the fluid velocity
at θc = 0, or equivalently, at θc = 2π . Our choice of a symmetric ciliary wall-slip
that is odd with respect to θc = π (shown qualitatively in Fig. 2a; see also Sect. 3.3),
disrupts the periodicity of a circular geometry at θc = 2π ; in fact, it causes a jump,
such that Qc (θc = 2π) = −Qc (θc = 0). However this is not a problem if we treat
the point θc = 0, 2π as a local sink of fluid flow. Thus, once the action of the wall-slip
causes the fluid to reach θc = 0, 2π , the fluid is instantaneously removed from the
domain/cavity, much like mucus exiting the sinus from its ostium.
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3.2 Spherical Geometry

3.2.1 Governing Equation

For a spherical (but axisymmetric) geometry, the mucus film thickness satisfies (see
Appendix B.1 for details),

∂Hs

∂t
+ 1

sin θs

∂Qs

∂θs
= Vw, (7)

where,

Qs(θs, t) = H3
s sin θs

3

[
ε

Bo

∂

∂θs

(
2Hs + ∂Hs

∂θs
cot θs + ∂2Hs

∂θ2s

)
+ sin θs

]

+uw,θs (θs) Hs(θs, t) sin θs, (8)

where the sub-script ‘s’ denotes spherical geometry. In Eq. (7), Qs(θs, t) denotes the
instantaneous, azimuthally averaged tangential flux at the location θs (i.e. the tangential
flux normal to the dotted line in Fig. 2b, averaged over the coordinate φs). Similar to
Eq. (5), uw,θs (θs) in Eq. (8) is a prescribed tangential velocity at the walls of the
spherical cavity.

3.2.2 Boundary Conditions

In the 3D axisymmetric case, symmetry dictates that we must have at the bottom pole
(at θs = π ),

uw,θs (θs = π) = 0,

∂Hs

∂θs

∣∣∣∣
θs=π

= 0. (9)

Once again the first condition in Eq. (9) needs to be satisfied by a suitable choice of
uw,θs (see Eq. (10), Sect. 3.3). We do not need any other boundary conditions because
the flux Qs vanishes identically, by definition, at the bottom pole (Kang et al. 2016;
Qin et al. 2020).

3.2.3 Modeling the Ostium

In the 3D geometry, the fluid inside the cavity exits through an ostium modelled as
a small, flat hole at the top, as marked by the orange circle in Fig. 2b. Note that it is
essential to truncate the sphere, and we cannot have a discontinuity-based exit from
the top pole of an un-truncated/complete sphere; since for θs = 0 the flow-rate Qs
vanishes identically and so it is (understandably) impossible to exit as the radius of
the orange ring in Fig. 2b tends to zero. In the present work, the radius of the model
ostium is defined by an exit angle θe ∼ sin−1

(
r ′
o/�

′
s

)
(see Fig. 2b), where r ′

o and �′
s

123



Modelling Mucus Clearance in Sinuses: Thin-Film Flow... Page 11 of 33 134

are, respectively, the typical ostium radius and the typical sinus length-scale. Using
the values of r ′

o and �′
s as mentioned in Sect. 2.3, we obtain θe ≈ 5◦ − 20◦.

3.3 Physical Description of the Thin-Film Equations

Physically, Eqs. (4) (2D) and (7) (3D) describe a mass-balance argument: the time-
rate-of-change of film-height at any section (θ, t), is the sum of the net fluid flux
entering the section tangentially (−∂Qc/∂θc in Eq. (4) and − (sin θs)

−1 ∂Qs/∂θs in
Eq. (7)), and the fluid entering the section normally through the boundary, Vw. Then,
Eqs. (5) (2D) and (8) (3D) describe the three contributions to the tangential fluid flux
Q. The first is flow due to gravity, which is the term inside the square brackets that
is proportional to sin θ (θ = θc or θs) in Eqs. (5) and (8). The second is the flow due
to the effective action of the cilia, which is the last term in Eqs. (5) and (8). The third
contribution is the flow due to a surface-tension-driven pressure gradient resulting
from spatial changes in the film’s curvature; this is the term multiplying ε/Bo in the
square brackets.

The results in Eqs. (4) and (5) in 2D (and, Eqs. (7) and (8) in 3D) are extensions
to the classical systems of equations governing thin-film dynamics over curved sub-
strates (Oron et al. 1997; Craster and Matar 2009; Qin et al. 2020; McKinlay et al.
2023), with two important additions: a wall-normal fluid velocity contribution Vw in
Eqs. (4) and (7), and an active tangential slip contribution uw,θc/s

(
θc/s

)
in Eqs. (5)

and (8). In our model, these represent respectively, the production of mucus inside the
sinus, and the sweeping of the mucus toward the ostium by the ciliated cells. In the
limits of uw,θc/s ≡ 0 and Vw ≡ 0, our formulation reduces to the classical (passive)
formulations for cylinders (McKinlay et al. 2023) and spheres (Qin et al. 2020).

As mentioned above, we assume that the mucus enters the system at a uniform rate
Vw, normally at the wall. The spatial distribution of the tangential velocity, uw,θ (θ),
is motivated by the observation that “mucociliary transport begins in the maxillary
sinus as a star, from the bottom of the sinus and moves in various directions towards
the ostium” (Drettner 1980) (see also Fig. 1c). This is modelled, for both Eqs. (5) and
(8), by a hyperbolic tangent function,

uw,θ (θ) = −Uw tanh

(
π − θ

π�c

)
, θ = θc or θs, (10)

such that the tangential slip is zero at the bottom-most point (see the black dots at the
bottom in Fig. 2) and increases to Uw over a relevant length-scale �c, as we move up
along the cavity. In the present work, we set �c = 0.5, for a smooth transition from 0 at
the floor of the cavity, to∼ Uw near the ostium; lower values of �c, quantifying a more
rapid spatial transition, have only a minor, quantitative effect on our main results. We
note that for a circular geometry, this definition of uw,θc (θc) leads to a discontinuity
at θc = 0, 2π , such that uw,θc (θc = 0) = −uw,θc (θc = 2π), but, as explained in
Sect. 3.1.3, this is not a problem because θc = 0, 2π denotes a fluid sink for the 2D
geometry, and hence allows for discontinuity of the wall velocity.
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3.4 Numerical Solution andValidation

We numerically solve Eqs. (4) and (7), with the boundary conditions (6) and (9)
respectively, using a semi-implicit finite-difference method whose details are pro-
vided in Appendices A.2 and B.2. We validate our numerical solution in the limit of
zero mucus production (Vw ≡ 0) and sweeping (Uw ≡ 0), by reproducing classical
results of the drainage of a thin film over a cylindrical (McKinlay et al. 2023) and a
spherical (Qin et al. 2020) substrate, as shown in Figs. 11a and 12a in Appendices A
and B, respectively.

4 SteadyMucus Drainage in Active Fluid-Producing Thin Films

We begin our results with a comment on the dimensionless values of (Uw, Vw),
whose corresponding dimensional values

(
U ′
w, V ′

w

)
were discussed in Sect. 2.3. A

natural velocity scale in the present problem is set by gravity, u′
c = ε2ρg�′2

s /μ (see
AppendixA.1),whereμ is the fluid’s dynamic viscosity,whose range of values is given
in Table 1. This is the characteristic velocity with which a thin film would flow down
a substrate due to gravity alone. In the thin-film analysis, the fluid velocities tangen-
tial and normal to the surface are made dimensionless using u′

c and εu′
c, respectively,

which yields (with ε = 10−3 and u′
c ≈ 10 μm/s; see Table 1):

Uw = μU ′
w

ε2ρg�′2
s

≈ 0.1 to 40,

Vw = μV ′
w

ε3ρg�′2
s

≈ 0.005 to 2. (11)

4.1 Mucus Film Evolution in Two Dimensions

We illustrate in Fig. 3 two representative examples of the time evolution of the (thin)
mucus film in a circular cavity, i.e. in two dimensions. In Fig. 3a (Cartesian plot) and
b (polar plot), the active wall-slip (ciliary action) is not sufficiently strong to push out
the fluid that is being produced in the cavity walls. Hence, the fluid inside the sinus
increases in volume with time and, due to gravity, it accumulates at the bottom. This
results in a progressive increase in the film height at the bottom of the cavity, until the
thin-film approximation breaks down and the situation becomes non-representative
of mucus flow inside sinuses. However, if the magnitude of the tangential slip, Uw,
is increased beyond a threshold, then one does obtain a steady solution, as shown in
Fig. 3c and d. In this case, the active motion (Uw) is sufficiently large to overcome
gravity; it then drives the fluid out of the cavity and balances the local fluid production
(Vw), leading to the development of a thin mucus layer, as is expected inside healthy
sinuses.

For the cases where a steady thin film can be obtained (i.e. whenUw is sufficiently
large), the shape of the film as a function of the wall-slip, is shown in Fig. 4a. As
expected from intuition, larger values of the characteristic slip Uw, result in thinner
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Fig. 3 The two regimes for the time evolution of the thin (mucus) film inside a circular cavity. a, b Time
evolution of the film forUw = 0.10 and Vw = 0.10, for which Eq. (4) does not have a steady solution; panel
(a) is a Cartesian plot, and panel (b) is a polar plot where the film thickness has been magnified 20 times
the actual value, to help visualisation. The profiles evolve from dimensionless time t = 0 (green) to t = 20
(red) in time intervals 
t = 2. c, d Time evolution of the film inside the circular cavity for Uw = 1.02
and Vw = 0.10, for which Eq. (4) reaches a steady solution; panel (c) is a Cartesian plot and panel (d) is
a polar plot where the film thickness has been magnified 1000 times the actual value. The profiles evolve
from dimensionless time t = 0 (green) to t = 5 (red) in time intervals 
t = 0.5. For these set of results,
we considered �c = 0.3

films (for a fixed rate of fluid injection Vw). We can obtain an expression for the exit-
height of the film, Hc(0), in terms of (Uw, Vw) by integrating Eq. (4), ignoring the
contribution from the ε/Bo term (ε/Bo ≈ 8 × 10−5 � 1 throughout the paper; see
Table 1), and noting that in steady state,

∂

∂t

∫ π

0
Hc(θc, t) dθ ≡ dVfilm

dt
= 0,

where, Vfilm is the volume of the mucus film. This yields,

Hc(0) = πVw

Uw tanh(�−1
c )

, (12)
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Fig. 4 Height of steady-state film in the two-dimensional geometry as function of active parametersUw and
Vw. aVariation of the film height for a two-dimensional/circular cavity, as a function of the effective ciliary
clearance speed, Uw, for a fixed mucus injection rate Vw = 0.10. b Steady-state film height normalised
by the rate of mucus injection, Hc(θc)/Vw, for different values of the injection rate; Uw = 5.10 for all the
plots. c Scaling of the film volume, Vfilm, with the injection rate, Vw, and the speed of ciliary clearanceUw,
for low values of the injection rate

a prediction that is indeed confirmed by our numerics, as shown by the circles in
Fig. 4a. Interestingly, Eq. (12) tells us that the steady-state exit-height in our problem
does not depend on the fluid’s properties (via the Bond number Bo = ρg�′2

s /σ ) and
depends only on the specified kinematics through (Uw, Vw, �c). Since it was necessary
to neglect the ε/Bo term in order to arrive at Eq. (12), this means that surface tension
plays a negligible role in film dynamics for the cases where a steady solution exists to
Eq. (4).

In Fig. 4b we next show the normalised steady-state film shape, Hc(θc)/Vw; of
course, such a representation is valid only for Vw 	= 0. It is clear that the average
film-thickness increases monotonically with increasing Vw. For the lower-most values
of Vw considered, the steady-state plots of Hc(θc)/Vw collapse onto each other; this
is true for Vw as low as 10−5. One may then write, Hc(θc) ≈ Vw × f (θc;Uw, �c), for
a large range of mucus production rates: 10−5 ≤ Vw � O(1).

If we postulate that the film volume Vfilm is proportional to the exit height Hc(0),
then based on Eq. (12) we may conclude that the normalised film volume, Vfilm/Vw,
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is inversely proportional to the ciliary slipUw; this is indeed confirmed numerically in
Fig. 4c. We thus obtain a scaling estimate of the amount of mucus maintained inside
the two-dimensional cavity, for rates of mucus injection that admit a steady solution
over a large range of effective ciliary clearance strengths.

4.2 Mucus Film Evolution Inside a Sphere (Three Dimensions)

We now consider the three-dimensional case and show in Fig. 5 the time evolution of
the mucus film inside the spherical cavity. The parameters in Fig. 5a and b correspond
to the case where Uw is not sufficiently large to overcome gravity and Fig. 5c and d
corresponding to the case where the active flowUw is strong enough that a steady state
can be reached. Both the unsteady and steady-state film shapes in the spherical case
are qualitatively different from the circular case and there is a sharper increase in the
film height (toward the bottom for the unsteady solutions in Fig. 5a and b, and also
toward the top for the steady solution in Fig. 5c and d). In particular, the steady-state
mucus film collects fluid as it develops from the bottom to the top of the cavity; and
since the fluid must exit from a narrow constriction at the top, the film thickens much
more rapidly than in the circular case.

The steady-state exit height, denoted by Hs(θe), is related nonlinearly to (Uw, Vw)

via,

[
−H2

s

3
sin θe +Uw tanh

(
π − θe

π�c

)]
Hs sin θe = Vw (1 + cos θe) , (13)

which can be derived by ignoring the surface tension contribution in Eq. (7) (because
ε/Bo � 1), multiplying its steady version by sin θs and integrating from θs = θe to
θs = π . For Hs(θe) � O(1) and θe � 1, Eq. (13) yields,

Hs (θe) ≈ Vw

Uw tanh
(

π−θe
π�c

) (1 + cos θe)

sin θe
, (14)

which is compared against the numerical results in Fig. 6, where we see that the
analytical prediction best matches the numerical results for the thinner films and a
mismatch occurs mainly when the exit height is not small, Hs(θe) ∼ O(1). For
(Uw = 5.10, Vw = 1.02) in Fig. 6b, Eq. (14) overestimates the exit height because
it ignores the contribution from surface-tension-induced pressure gradients. The latter
become important near the exit, where rapidmucus accumulation results in sufficiently
large gradients in the mucus film thickness, causing surface-tension-driven flows that
reduce the exit height. Note that this role of surface tension is unique to the spherical
geometry and is not seen for the circular geometry. The analytical estimate of the
exit height for the circular geometry (Eq. (12)) also ignored surface tension, but it
matched perfectly with the numerical results for a wide range of (Uw, Vw) (Fig. 4a).
Thus, for the biologically-relevant values listed in Table 1, surface tension effects are
truly negligible for the 2D/circular geometry, but this is not always the case for the
3D/spherical geometry.
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Fig. 5 Time evolution of the film inside the spherical cavity. a, b Case with Uw = 0.10 and Vw = 0.10,
for which Eq. (7) does not have a steady solution; panel (a) is a Cartesian plot, and panel (b) is a polar
plot where the film thickness has been magnified 40 times the actual value, for visualisation purposes. The
profiles evolve from dimensionless time t = 0 (green) to t = 9 (red) in time intervals 
t = 1. c, d Case
with Uw = 1.02 and Vw = 0.10, for which eqn. (7) reaches a steady solution; panel (c) is a Cartesian plot,
and panel (d) is a polar plot where the film thickness has been magnified 500 times the actual value. The
profiles evolve from t = 0 (green) to t = 4.80 (red) in time intervals 
t = 0.4. For these set of results, we
considered �c = 0.5

5 Existence of a Steady Solution

5.1 Phase Space of Solutions

In the previous sub-section, we demonstrated that depending on the relative values
of (Uw, Vw), the mucus film either builds up at the bottom of the cavity, or attains a
steady-state shape wherein the mucus is cleared from the cavity at the same rate that
it is produced at the cavity walls. This was the case both in two and three dimensions.

Using our numerical model, we can systematically vary the two active parameters,
Uw and Vw, and map out the existence of these two different solutions. The results are
shown in Fig. 7a for a circular (2D) cavity and in Fig. 7b for a spherical (3D) geometry
with exit angle θe = 5◦.
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Fig. 6 Height of steady-state film in the three-dimensional geometry as function of active parameters Uw
and Vw. a Film height as a function of the effective ciliary clearance speed,Uw, for a fixed mucus injection
rate Vw = 0.10. b Film height as a function of the mucus injection rate, Vw, for a fixed effective ciliary
clearance speedUw = 5.10. The circles denote the analytical estimate of the exit height, based on Eq. (14)

As expected, a steady solution exists whenever the rate of mucus in-flow (Vw) is
particularly low, or the effective ciliary velocity (Uw) is sufficiently high. The principal
effect of the cavity geometry (circular versus spherical) is reflected in the slightly larger
region of existence of steady solutions for the circular case. However, the general
shape of the boundary demarcating steady and unsteady solutions remains unchanged
between the circular and the spherical case. This suggests that the existence of a
steady solution is due to the same fundamental physics in both geometries, which we
rationalise below.

5.2 Steady vs Unsteady Solutions: Scaling Analysis

We now estimate the relation betweenUw and Vw which defines the boundary between
the steady and unsteady solutions in Fig. 7a and b, i.e. we derive a scaling between
Uw and Vw for which Eqs. (4) and (7) are expected to admit a steady solution.

We start by a sketch of a typical section of the film, shown in Fig. 7c, highlighting the
three relevant velocity scales governing the shape of the mucus film: fluid is produced
at the walls at a rate V ′

w, from where its motion is governed by a competition between
a typical gravitational drainage velocity u′

c and an effective ciliary velocityU
′
w, which

tries to drive the fluid up and out of the cavity. Conservation of mass in the classical
thin-film limit sets the relative scaling of U ′

w and V ′
w as,

U ′
w

�′
s

∼ V ′
w

h′ ,

or, V ′
w ∼ εU ′

w, (15)

where we have used h′/�′
s ∼ ε � 1. Further, we argue that the active (ciliary)

wall-velocity U ′
w must be greater than the characteristic gravitational velocity scale

u′
c = ε2ρg�′2

s /μ, in order to successfully drive the mucus out of the cavity, meaning,
we require
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Fig. 7 Phase space of steady (◦) vs unsteady (×) solutions as a function of (Uw, Vw) for, a the circular
geometry and b spherical geometry with θe = 5◦. The red crosses (×) denote cases where mucus accumu-
lates inside the cavity, whereas the coloured circles (◦) denote cases where a steady mucus layer is formed,
with colours quantifying the steady-state film volume normalised by the initial film volume. The blue line

represents the transition scaling Vw ∝ U3/2
w as predicted by Eq. (18). The black rectangle denotes the

estimated range of values of Uw and Vw for human sinuses in healthy conditions. c Sketch of a magnified
view of the mucus film and the three relevant velocities that govern the evolution of its shape

U ′
w >

ε2ρg�′2
s

μ
. (16)

The scalings in Eqs. (15) and (16) can be combined to yield,

U ′3
w >

ρg�′2
s

μ
V ′2
w , (17)

which can be non-dimensionalised using the appropriate velocity scales in the thin-film
limit (see beginning of Sect. 4 and Eq. (11)) to obtain,

U 3
w > V 2

w or Vw < U 3/2
w . (18)

The resulting scaling Vw ∝ U 3/2
w from Eq. (18) has been plotted in Fig. 7, where

we see that it aligns well with the boundary demarcating the unsteady solutions from
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the steady solutions, for both the circular (Fig. 7a) and the spherical system (Fig. 7b).
Thus, the threshold clearance velocity required to obtain a steadymucus layer, sayU∗

w,
scales as the 2/3rd power of the rate of mucus in-flow, i.e. U∗

w = kV 2/3
w (by inverting

Eq. (18)), where the constant k can be determined from numerical solutions to Eqs. (4)
and (7).

6 Application toMucociliary Clearance in Human Sinuses

Usingour theoreticalmodel,wehave identified thehydrodynamic conditions, specified
by values of (Uw, Vw), under which a steady mucus layer can exist inside the cavity.
Based on the discussions in Sect. 2.3, the operative conditions inside a healthy sinus
correspond to an effective ciliary velocity, U ′

w in the range 30 to 400 μm/s and the
mucus in-flow V ′

w in the range 5 × 10−3 to 3 × 10−2 μm/s. Using the characteristic
velocity scales defined in the beginning of Sect. 4, the dimensionless values of the
operative ciliary velocity and the mucus in-flow rate are thus given by Uw ∼ 1−40
and Vw ∼ 0.5−3. The region of the solution space that lies within this range is shown
as rectangles in Fig. 7a and b. We see that, in general, these values do correspond to
the existence of a steady solution according to our model. We thus postulate that the
primary factors responsible formaintaining a steadymucus layer inside a healthy sinus
are a combination of (i) the rate of mucus flow due to ciliary beating being sufficiently
fast to overcome local gravitational drainage, and (ii) the rate of mucus production
per unit area of the sinus being sufficiently small (as compared to the rate of ciliary
clearance). Diseased conditions, such as excessive cilia loss or mucosal inflammation,
violate one or both requirements, and thus, according to our model, will not lead to
the formation of a thin mucus film over the sinus (Whyte and Boeddinghaus 2019).

It is estimated that it takes 20–30min to replenish the mucus film during MCC,
although this time varies significantly, even in healthy individuals (Lund 1996). We
may use our model to compute the time t ′r taken to reach the steady-state from an ini-
tially small film height, Hs(t = 0) = 10−3, for values of (Uw, Vw) that fall within the
physiological range outlined in Fig. 7b. This is illustrated for three cases in Fig. 8 and
that time is seen to vary from t ′r ≈ 6 min (when (Uw ≈ 40, Vw ≈ 2)) to t ′r ≈ 160 min
(when (Uw ≈ 1, Vw ≈ 0.1)). For (Uw ≈ 10, Vw ≈ 1), values that lie in the middle
of the physiological range, we obtain t ′r ≈ 20 min. Thus, in addition to predicting
the healthy operating conditions, our model is also able to approximately recover the
typical mucus turnover rates observed in humans, under normal conditions.

An important geometric factor that affects mucus transport out of the sinuses is
the size of the sinus opening, or the ostium. By varying θe in our 3D model, we can
obtain further insight on the influence of the ostium size on mucus clearance. Typical
ostium diameters range from 2–10mm (Proctor and Andersen 1982; Kirihene et al.
2002; Whyte and Boeddinghaus 2019), which means that for a characteristic sinus
length-scale �′

s ∼ O(1) cm (Whyte and Boeddinghaus 2019), the exit angle θe ranges
from 5◦-20◦. The solution space for θe = 5◦ is compared with that for θe = 20◦ in
Fig. 9.We see that there do exist instances in the (Uw, Vw) spacewhere the fluid/mucus
does not get cleared from the cavity with the narrower opening but it does get cleared
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Fig. 8 Time-evolution of film volume until steady state is reached, for three values of the pair (Uw, Vw).
The steady-state is considered to have been reached when the absolute rate of change of film volume falls
below a threshold,

∣∣V̇film(t)
∣∣ ≤ 10−5. The dimensional time at which the steady-state is reached, denoted by

t ′r , is indicated for each case. Note that the horizontal axis shows the dimensionless time; the characteristic
time-scale is given by �′

s/u
′
c ≈ 17 min

from the cavity with a larger opening; these are identified in Fig. 9 by the filled red
squares (representing results for θe = 5◦) which coincide with the empty green circles
(representing results for θe = 20◦). Overall, however, an increase in the ostium radius
is seen to cause only a modest change in the nature of the solution space.

Interestingly, diseased sinuses appear to be accompanied by other pathologies such
as nasal polyps, which are benign, painless growths in and around the sinuses that
obstruct mucociliary clearance by blocking the ostium. This condition can be treated
by surgically removing the polyps, unblocking the ostium and restoring smoothmucus
flow out of the sinuses. Ourmodel also hints at the efficacy of polyp-removal surgeries:
it shows that an increase in the size of the ostium from θe = 5◦ to θe = 20◦ (see Fig. 2b)
doubles the maximum value of the mucus production rate, say Vw,max, for which a
steady mucus layer can exist inside the cavity. For example, Fig. 9 shows that, for
Uw ≈ 2, Vw,max ≈ 0.2 when θe = 5◦ but it increases to Vw,max ≈ 0.5 when θe is
increased to 20◦. Similar 2-fold increments in Vw,max can be seen for other values of
Uw as well, whenever θe is increased from 5◦ to 20◦.

7 Conclusion and Perspectives

7.1 Summary of Modelling

We considered in this paper the problem of thin-film fluid flow inside circular (2D)
and spherical (3D) cavities, as a model for active mucociliary clearance (MCC) in
the maxillary sinuses. Building on classical work for passive thin films, we derived
a new nonlinear, partial differential equation for the time evolution of a thin film of
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Fig. 9 Effect of varying ostium size, quantified by the exit angle θe (see Fig. 2b), on the solution space
in 3D model. Empty symbols are used to denote the solution type for the case with the broader exit angle
(θe = 20◦) whereas filled symbols denote the solution type for the case with the narrower exit angle
(θe = 5◦). There exists a small range (between the thin dash-dotted line and the thick dashed line) where
solutions for θe = 5◦ (filled red squares) are unsteady but the solutions for θe = 20◦ (empty green circles)
are steady

fluid (mucus) that is released from the walls of a cavity (sinus) and driven, against
gravity, toward an exit (ostium) by ciliary pumping, which is modelled as a prescribed
tangential velocity at the cavity walls (active slip). Numerical solutions to this equa-
tion reveal two different behaviours in the long term: the mucus can either build up
progressively at the bottom of the cavity or be cleared out at the same average rate with
which it is produced, leading to the formation of a thin, steady film lining the cavity.
These two regimes are demarcated on a phase-space of solutions (see Fig. 7a in 2D
and b in 3D) defined by the rate of mucus production (denoted, in dimensionless form,
as Vw) and the rate of mucus clearance by cilia (Uw, in dimensionless form). The fate
of the mucus is decided by the relative magnitudes of Uw and Vw. Using a scaling
analysis based on physical arguments, we showed show that the threshold clearance
velocity required to obtain a steady mucus layer scales as 2/3rd power of the rate of
mucus in-flow, i.e. the line separating the steady and unsteady solutions in Fig. 7a and
b is given by Uw = kV 2/3

w , with a constant k that depends on the system geometry.

7.2 Summary of Biological Relevance

Biologically, mucus is produced in the sinuses at a rate V ′
w ∼ 0.005 to 0.03 μm/s, due

to hydration of mucins secreted by goblet cells. The cilia push this mucus out of the
sinuses with a velocity in the range U ′

w ∼ 30 to 400 μm/s. For typical values of the
physical properties of mucus (see Table 1), the intrinsic gravitational drainage/settling
velocity is u′

c ∼ 10 μm/s. These values correspond to a healthy sinus, and hence they
must lead to emergence of a steady state in our model system. This is indeed the case,
most notably for the larger values of U ′

w, as shown in Fig. 7. Our theoretical model
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thus captures the essential physical ingredients responsible for successful mucociliary
clearance, particularly in themaxillary sinus, where it is known that the ciliamustwork
against gravity to deliver mucus to the nasal cavity (Bluestone et al. 2012; Butaric et al.
2018; Whyte and Boeddinghaus 2019; Kim et al. 2021).

7.3 Model Extensions

Our model uses many assumptions, which could be relaxed in future studies. Firstly,
the ostium of the maxillary sinus isn’t always located at the highest point in the cavity
and is often located on a medial wall (Whyte and Boeddinghaus 2019). In terms of the
present model, this would amount to a rotation of the gravity vectors shown in Fig. 2,
leading to loss of axisymmetry in the spherical case. When the ostium is not located
symmetrically as shown in Fig. 2b, one can develop and solve a non-axisymmetric
thin-film equation for the time evolution of the film height as a function of the polar (θs)
and azimuthal (φs) angles. This would require a conceptually straightforward, albeit
numerically cumbersome, extension of the current work; where a key step would be
to identify the form of the ciliary slip, uw,θs (θs, φs) (see Eq. 8).

Secondly, we treat the mucus as a single Newtonian fluid, whereas in reality it
is a bi-layered, viscoelastic and shear-thinning fluid (Knowles and Boucher 2002;
Button et al. 2012). The non-Newtonian rheology of the mucus will cause it to react
differently to the ciliary slip than a Newtonian (purely viscous) fluid. These effects
may significantly change the structure of the thin film equations (Eqs. (4)–(8)), hence
the shape of the mucus film inside the cavity and likely the phase-space of solutions
in Fig. 7.

Thirdly, the maxillary sinus has a very complex geometry that isn’t fully captured
by any one regular shape. It is often described to be pyramidal, and characterised
by geometrical features such as recesses and protrusions (Whyte and Boeddinghaus
2019). Hence, an investigation of the influence of the actual sinus shape onMCCmust
extend the current work to cavities containing one or more of these features. Initial
progress along this direction can be made for shapes that are small deviations from
a sphere/circle, but analysis for more realistic shapes would necessitate the use of
extensive computations.

The agreement between our predictions of steady-state operating conditions in
sinuses and existing estimates of mucociliary clearance rates (Fig. 7b), shows that our
model successfully captures the key physicalmechanism responsible for uninterrupted
mucus flow in the sinuses, and is thus encouraging. However, the simplicity of our
model can restrict certain quantitative comparisons with real systems, for example,
on aspects related to spatial variation of the film shape and the total volume of mucus
contained in the film. Thus, further investigations of mucociliary clearance in sinuses
are warranted to fully explore the appropriate physical conditions required to maintain
healthy sinuses.
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Appendix A: 2D/Circular System

See Fig. 10

Fig. 10 Sketch of the dimensional coordinate system used to describe a the circular cavity/sinus, and, b
the spherical cavity/sinus. The black, solid arrow identifies the walls (black circle) and the blue, dotted
arrow identifies the free surface (blue curve) of the fluid/mucus. Note that panel (a) is a planar/2D geometry
(0 ≤ θc ≤ 2π), whereas panel (b) is a section of an otherwise 3D geometry (θe ≤ θs ≤ π); see also Fig. 2

A.1 Derivation of the Thin-Film Equation

Thefluid flow inside the sinus is dominated by viscous forces (i.e. the inertia of the fluid
is negligible), and hence is governed by the Stokes equations and the incompressibility
condition (i.e. continuity equation) (Leal 2007). For the 2D/circular system, we will
work in polar coordinates

(
r ′, θc, z′

)
. Since we are interested in a planar flow, the

z′-component of the velocity and all derivatives with respect to the z′-coordinate are
identically zero, i.e. u′

z ≡ 0 and also ∂( )/∂z′ ≡ 0.
The system geometry is described in Fig. 10a, where the walls of the cavity/sinus

are at r ′ = �′
s and the free surface of the fluid/mucus film is at r ′ = �′

s−H ′
c (θc, t). The

starting point for deriving Eq. (4) is to non-dimensionalise the equations governing
fluid flow in polar coordinates using the following reference scales:

r ′ = �′
s (1 − εY ) ,

H ′
c = ε�′

sHc,

u′
θc

= u′
cuθc ,

u′
r = εu′

cur ,

t ′ = �′
s

u′
c
t,
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p′ = ε−2μuc
�′
s
p. (A1)

In the above, ε = h′/l ′s � 1 is a small parameter defined as the ratio of the typical
thickness of the mucus film to the typical length-scale of the sinus. The coordinate Y
is a local stretched coordinate normal to the boundary; Y = 0 denotes the cavity wall
and Y = Hc denotes the free surface of the fluid. Note that the reference scales defined
above correspond to the classical thin-film approximation over curved substrates (Oron
et al. 1997; Craster and Matar 2000; Leal 2007). Note also that we have purposely
defined a generic velocity scale u′

c, to show how the velocity scale emerges naturally
from the equations governing fluid flow.

After the governing equations are rendered dimensionless using (A1), we identify
the dominant balance in each equation by retaining only the leading order terms, i.e. the
terms in each equation with the lowest powers of ε. This yields the continuity equation
in the thin-film limit,

− ∂ur
∂Y

+ ∂uθc

∂θc
= 0, (A2)

the dimensionless r ′-momentum (or, Y -momentum) equation in the thin-film limit,

∂ p

∂Y
− ε3

ρg�′2
s

μu′
c
cos θc = 0, (A3)

and the dimensionless θc-momentum equation in the thin-film limit,

− ∂ p

∂θc
+ ∂2uθc

∂Y 2 + ε2
ρg�′2

s

μu′
c
sin θc = 0. (A4)

Eq. (A4) provides the characteristic velocity scale,

u′
c = ε2

ρg�′2
s

μ
, (A5)

that we employ in all our derivations. Using this scale, Eqs. (A3) and (A4) simplify
to:

∂ p

∂Y
∼ O(ε) ≈ 0, (A6)

and,

− ∂ p

∂θc
+ ∂2uθc

∂Y 2 + sin θc = 0. (A7)

The system in Eqs. (A2), (A6) and (A7) is supplemented by: (i) boundary conditions
(BCs) for the fluid velocity

(
uθc , ur

)
at the walls of the circle, (ii) BCs for the fluid
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stress at the free surface of the thin film, and, (iii) a kinematic boundary condition
relating the fluid’s velocity at the free surface to the film deformation. The first of
these set of BCs is given by:

uθc

∣∣
Y=0 = −Uw tanh

(
π − θc

π�c

)
, (A8a)

ur
∣∣
Y=0 = −Vw, (A8b)

where,

Uw = μU ′
w

ε2ρg�′2
s

, Vw = μV ′
w

ε3ρg�′2
s

. (A9)

In the absence of surface tension gradients and any externally imposed stresses, the
tangential stress in the fluid vanishes at the free surface:

∂uθc

∂Y

∣∣∣∣
Y=Hc(θc,t)

= 0, (A10)

whereas the normal fluid stress undergoes a jump due to surface tension:

p
∣∣
Y=Hc(θc,t)

− pa = −ε2
σ

μu′
c

{
1 + ε

(
Hc + ∂2Hc

∂θ2c

)}
, (A11)

= − 1

Bo

{
1 + ε

(
Hc + ∂2Hc

∂θ2c

)}
,

where pa is the (uniform) air pressure in the cavity and σ is the surface tension of
the air-fluid interface. In Eq. (A11), the term within {} is the (in-plane) film curvature
at the angular position θc as a function of the film thickness Hc, and Bo = ρg�′2

s /σ

is the Bond number, which is a dimensionless measure of the relative importance of
gravity and surface tension in driving the film. Finally, we have the kinematic boundary
condition, relating the (leading order) fluid velocity at the free surface to the rate of
deformation of the film:

ur
∣∣
Y=Hc(θc,t)

= −∂Hc

∂t
− uθc

∂Hc

∂θc
. (A12)

One can solve Eq. (A7) subject to Eq. (A8a), and Eq. (A10) to obtain the following
expression for the tangential fluid velocity:

uθc (θc,Y , t) =
(

∂ p

∂θc
− sin θc

) (
Y 2

2
− Y Hc(θc, t)

)
−Uw tanh

(
π − θc

π�c

)
,

(A13)
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where the pressure gradient ∂ p/∂θc can be calculated using Eqs. (A6) and (A11) as:

∂ p

∂θc
= − ε

Bo

∂

∂θc

(
Hc + ∂2Hc

∂θ2c

)
. (A14)

We can integrate Eq. (A2) from Y = 0 to Y = Hc (θc, t), and use Eqs. (A8b), (A12),
(A13), and the Leibniz integration rule:

uθc

∂Hc

∂θc
+

∫ Hc(θc,t)

0

∂uθc

∂θc
dY = ∂

∂θc

∫ Hc(θc,t)

0
uθc(θc,Y , t) dY , (A15)

to arrive at the final thin film equation for circular geometry given in the main text’s
Eq. (4),

∂Hc

∂t
+ ∂Qc

∂θc
= Vw, (A16)

where,

Qc(θc, t) =
∫ Hc(θc,t)

0
uθc(θc,Y , t) dY = H3

c
3

[
ε
Bo

∂
∂θc

(
Hc + ∂2Hc

∂θ2c

)
+ sin θc

]
(A17)

−Uw tanh
(

π−θc
π�c

)
Hc(θc, t).

A.2 Description of the Numerical Method

We solve Eqs. (A16) and (A17) numerically using a semi-implicit finite-difference
scheme. We first expand Eq. (A16) and write it as:

∂Hc

∂t
+ f c4 [Hc, t]

∂4Hc

∂θ4c
+ f c3 [Hc, t]

∂3Hc

∂θ3c
+ f c2 [Hc, t]

∂2Hc

∂θ2c
+ f c1 [Hc, t]

∂Hc

∂θc

+ f c0 [Hc, t] Hc (θc, t) = Vw, (A18)

where,

f c4 [Hc, t] = ε

Bo

H3
c

3
,

f c3 [Hc, t] = ε

Bo
H2
c

∂Hc

∂θc
,

f c2 [Hc, t] = ε

Bo

H3
c

3
,

f c1 [Hc, t] = H2
c sin θc + ε

Bo
H2
c

∂Hc

∂θc
−Uw tanh

(
π − θc

π�c

)
,

f c0 [Hc, t] = H2
c

3
cos θc −Uw

d

dθc

{
tanh

(
π − θc

π�c

)}
. (A19)
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Due to geometric symmetry (see Fig. 2a), Eq. (A18) is solved over the half-domain
0 ≤ θc ≤ π . We discretise Eq. (A18) in space (i.e. the θc derivatives) using second-
order accurate finite difference approximations, and in time using an explicit Euler
discretisation. The spatial discretisations are forward-and backward-biased at θc = 0
and θc = π , respectively. To obtain Hc (θc, tn+1), the functions fi [Hc, t] are evalu-
ated at the (previous) time-step tn , whereas the derivatives of Hc are evaluated at the
desired/present time-step tn+1. The numerical simulations are initialised by prescrib-
ing a uniform initial thickness Hc (θc, t = 0) = 0.1.

A.3 Validation of the Numerical Method

We validate our numerical implementation in the limit Uw = Vw = 0, by comparing
our results to existing solutions for the height of a thin film draining on the outer
surface of a cylinder (McKinlay et al. 2023). We emphasise that this comparison
can be made because the governing equation for our problem (where the film can be
thought as developing inside a cylinder) is exactly the same as the problem where
the film develops outside the cylinder. This is true even if gravity acts in opposite
directions (with respect to the substrate normal extending into the fluid) depending on
whether the film develops inside or outside the cylinder. The reason being, in the thin-
film limit, the influence of gravity normal to the substrate is generally sub-dominant
to leading order in ε = h′/�′

s (see Eqs. (A3), (A5) and (A6)) (Ashmore et al. 2003;
Lopes et al. 2017). The time evolution of a thin film draining passively (under the
influence of gravity) outside/inside a cylinder–for a specific Bond number–is shown
in Fig. 11a, and the agreement between our results and those of McKinlay et al. (2023)
validates our numerical method.

In addition to validating our numerical scheme in a limiting case, we confirm
the resolution independence of the results provided in the main text. Towards this,
we numerically solve Eq. (A18) for increasing resolutions Nθ (i.e. the number of
discretised points at which the film height Hc is computed) and notice negligible
change in the steady-state solution; some examples are provided in Fig. 11b.

Appendix B: 3D/Spherical System

B.1 Derivation of the Thin-Film Equation

For the spherical geometry, we work in spherical coordinates
(
r ′, θs, φ

)
. Since we are

interested in an axisymmetric flow, the φ-component of the velocity and all derivatives
with respect to the φ-coordinate are identically zero, i.e. u′

φ ≡ 0 and ∂( )/∂φ ≡ 0. The
derivation of the thin-film equation for the spherical geometry follows similar steps
as that discussed for the circular case, and we provide here the main (dimensionless)
equations required for deriving Eq. (7). The continuity equation is given by,

− ∂ur
∂Z

+ 1

sin θs

∂

∂θs

(
uθs sin θs

) = 0, (B20)
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Fig. 11 aComparison between the finite-difference solution in the 2D case, Eq. (A16) (withUw = Vw = 0)
in the present work and the numerical solution of McKinlay et al. (2023) (see their Fig. 2) for the drainage
of a thin film over a circular cylinder, at dimensionless times t = 1, 10, 100, 1000. The symbols denote
numerical solutions of McKinlay et al. (2023) and the solid lines denote our solutions. The Bond number
for these film profiles is such that ε/Bo = (π2 − 8)/(8π) ≈ 0.07439. b Convergence of the numerical
solution to Eq. (A18) for different numbers of grid points Nθ , shown for two different values of (Uw, Vw)

the r ′-momentum equation is,

∂ p

∂Z
= ε cos θs ∼ O(ε) ≈ 0, (B21)

where Z , just like Y in the circular case, is a local stretched coordinate normal to the
walls of the spherical cavity, such that Z = 0 denotes the cavity walls and Z = Hs
denotes the free surface of the fluid (Fig. 10b). The θs-momentum equation is given
by,

− ∂ p

∂θs
+ ∂2uθs

∂Z2 + sin θs = 0. (B22)

The boundary conditions for the velocities
(
uθs , ur

)
at Z = 0 are, just as in the circular

case:

uθs

∣∣
Z=0 = −Uw tanh

(
π − θs

π�c

)
, (B23a)

ur
∣∣
Z=0 = −Vw, (B23b)

where, (Uw, Vw) were defined before in Eq. (A9).
The tangential stress boundary condition is:

∂uθs

∂Z

∣∣∣∣
Z=Hs(θs,t)

= 0, (B24)
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whereas the normal fluid stress condition is:

p
∣∣
Z=Hs(θs,t)

− pa = − 1

Bo

{
2 + ε

(
2Hs + ∂Hs

∂θs
cot θs + ∂2Hs

∂θ2s

)}
, (B25)

where, again, the term within {} is the film curvature at the angular position θs as a
function of the film thickness Hs. We also have the kinematic boundary condition as:

ur
∣∣
Z=Hs(θs,t)

= −∂Hs

∂t
− uθs

∂Hs

∂θs
. (B26)

Following exactly the same steps as in the circular case, we obtain the following
expression for the fluid velocity,

uθs (θs, Z , t) =
(

∂ p

∂θs
− sin θs

)(
Z2

2
− ZHs(θs, t)

)
−Uw tanh

(
π − θs

π�c

)
,(B27)

where, now the pressure gradient is derived from Eq. (B25) as,

∂ p

∂θs
= − ε

Bo

∂

∂θs

(
2Hs + ∂Hs

∂θs
cot θs + ∂2Hs

∂θ2s

)
. (B28)

Integrating Eq. (B20) from Z = 0 to Z = Hs (θs, t), and using Eqs. (B23b), (B26),
(B27), and the Leibniz integration rule:

uθs sin θs
∂Hs

∂θs
+

∫ Hs(θs,t)

0

∂

∂θs

(
uθs sin θs

)
dZ = ∂

∂θs

∫ Hs(θs,t)

0
uθs(θs, Z) sin θs dZ ,

(B29)

we obtain the final thin film equation for spherical geometry given in the main text,

∂Hs

∂t
+ 1

sin θs

∂Qs

∂θs
= Vw, (B30)

where,

Qs(θs, t) = H3
s sin θs

3

[
ε

Bo

∂

∂θs

(
2Hs + ∂Hs

∂θs
cot θs + ∂2Hs

∂θ2s

)
+ sin θs

]

−Uw sin θs tanh

(
π − θs

π�c

)
Hs(θs, t). (B31)

B.2 Details of the Numerical Method

The numerical method is identical to that used for circular geometry, except that the
domain extends from 0 < θe ≤ θs ≤ π (see Fig. 2b). We do not repeat the details of
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Fig. 12 Comparison between the finite-difference 3D solution to Eq. (B30) (with Uw = Vw = 0, θe = 0)
in the present work and the numerical solution of Qin et al. (2020) (see their Fig. 2) for the drainage of
a thin film over a sphere, at dimensionless times t = 1, 10, 100. The symbols denote numerical solutions
of Qin et al. (2020) and the solid lines denote our solutions. The Bond number for these film profiles is
such that ε/Bo = 1/24. b Convergence of the numerical solution to Eq. (B32) for different numbers of
discretization grid points Nθ , shown for two different values of (Uw, Vw)

the numerical method and provide here just the expanded form of Eq. (B30):

∂Hs

∂t
+ f s4 [Hs, t]

∂4Hs

∂θ4s
+ f s3 [Hs, t]

∂3Hs

∂θ3s
+ f s2 [Hs, t]

∂2Hs

∂θ2s
+ f s1 [Hs, t]

∂Hs

∂θs

+ f s0 [Hs, t] Hs (θs, t) = Vw, (B32)

where,

f s4 [Hs, t] = ε

Bo

H3
s

3
,

f s3 [Hs, t] = ε

Bo

(
2H3

s

3
cot θs + H2

s
∂Hs

∂θs

)
,

f s2 [Hs, t] = ε

Bo

(
−H3

s

3
cot2 θs + H2

s cot θs
∂Hs

∂θs

)
,

f s1 [Hs, t] = H2
s sin θs + ε

Bo

{
H3
s

(
cot3 θs

3
+ cot θs

)
− H2

s
cos 2θs
sin2 θs

∂Hs

∂θs

}

−Uw tanh

(
π − θs

π�c

)
,

f s0 [Hs, t] = 2H2
s

3
cos θs −Uw tanh

(
π − θs

π�c

)
cot θs −Uw

d

dθs

{
tanh

(
π − θs

π�c

)}
.

(B33)
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B.3 Validation of the Numerical Method

We validate our numerical solution in the limit Uw = Vw = 0 and θe = 0, by
comparing our solution to existing results for the height of a thin film draining on the
outer surface of a sphere (Qin et al. 2020). As in the 2D case, it is important to note
that this comparison is possible because, in the thin-film limit, the governing equation
for our problem (where the film develops inside a sphere) is the same as the problem
where the film develops outside the sphere. The comparison–for a prescribed Bond
number–is shown in Fig. 12a, and the agreement between our results and those of
Qin et al. (2020) validates our numerical method. The convergence of the solution to
Eq. (B32) with respect to the resolution of spatial discretization (i.e. the number of
points Nθ at which Hs is computed), is shown in Fig. 12b.
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