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Abstract
Cytoplasmic streaming, the coherent flow of cytoplasm, plays a critical role in transport and mixing over large scales in eukaryotic cells. 
In many large cells, this process is driven by active forces at the cell boundary, such as cortical cytoskeletal contractions in Drosophila and 
Caenorhabiditis elegans embryos, or intracellular cargo transport in plant cells. These cytoplasmic flows are approximately Newtonian and 
governed by the Stokes equations. In this article, we use lubrication theory—a powerful technique for simplifying the fluid mechanics 
equations in elongated geometries—to derive a general solution for boundary-driven cytoplasmic flows. We apply this framework to 
predict cytoplasmic fluid dynamics and cortical stresses in four systems of biological significance: the Drosophila and C. elegans 
embryos (including pseudocleavage furrow formation), the pollen tube of seed plants, and plant root hair cells. Our results showcase 
the elegance and accuracy of asymptotic solutions in capturing the complex flows and stress patterns in diverse biological contexts, 
reinforcing its utility as a robust tool for cellular biophysics.
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Cytoplasmic streaming, the directed, coherent flow of cytoplasm within cells, enables vital transport and mixing in large biological 
cells. In many elongated cells, active forces at the cell boundary drive this flow, and the governing fluid dynamics equations simplify, 
permitting analytical solutions. By applying this approach, we characterize here the intricate flow patterns and stress distributions 
across four distinct biological systems: fruit fly and roundworm embryos, pollen tube cells, and root hair cells. Our results reveal 
the accuracy and utility of fluid mechanics as a versatile tool in cellular biophysics and point to its potential for explaining complex 
cellular transport phenomena. This work strengthens the role of theoretical modeling in advancing our understanding of active intra
cellular processes.
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Introduction
Cytoplasmic streaming is the coherent bulk flow of cytoplasm, 
commonly seen in large eukaryotic cells. In these cells, passive dif
fusion is too slow to effectively transport cellular constituents 
across long length scales, and streaming provides an active 
advection-based transport mechanism to sustain the cell’s meta
bolic and developmental needs (1). Since the discovery of cytoplas
mic streaming in the 18th century in the green algae Nitella and 
Chara, cytoplasmic flows in plants have been extensively studied 
in the biology and biophysics literature (2–4). In large plant cells, 
cargoes such as vesicles, chloroplasts, and other organelles are ac
tively dragged by molecular motors along intracellular filaments; 
these filaments are typically bundles of actin, but microtubules- 
based transport has also been documented (5). This forcing indu
ces coherent flows of the cytoplasm, which further facilitates 
transport not only by direct advection but also by enhanced 

diffusivity via Taylor–Aris dispersion (6), illustrating the diverse 
physical and fluid dynamical effects at play inside biological cells.

Although most common in plants and algae, cytoplasmic 
streaming occurs also in various other cells, including amebae (7), 

fungi (8), slime moulds (9), and animal oocytes and embryos (10, 

11). In animal embryos, cytoplasmic flows are often driven by the 

cell cortex, a cytoskeletal actomyosin layer at the cell boundary 

which is flexible enough to flow as a fluid and stiff enough to enable 

the cell’s mechanical functions (12, 13). Cortex-driven cytoplasmic 

flows play key roles in early animal development, for instance, in 

the segregation of yolk granules from the rest of the cytoplasm in 

zebrafish zygotes (14, 15). Homogeneous distribution of the numer

ous nuclei obtained via multiple rounds of nuclear division in the 

Drosophila embryo (16, 17) and cell polarization via asymmetric 

transport of PAR proteins (a group of polarity-regulating proteins) 
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and other cellular constituents (18) in the Caenorhabiditis elegans em
bryo both rely on cortical and cytoplasmic flows.

The cytoplasm is a complex and crowded medium, but its be
havior is well approximated as an effective Newtonian fluid over 
the length and time scales at which streaming is observed, a well- 
established modeling assumption supported by rheological data 
(19) as well as particle image velocimetry (PIV) and computational 
studies (16, 20, 21). This makes cytoplasmic flows an ideal subject 
for applying the wealth of fluid dynamical research developed 
over centuries.

However, even with a Newtonian approximation for the bulk 
cytoplasmic fluid, the intricate biomechanical coupling between 
the bulk fluid and the cell boundary often requires complicated 
computational approaches to model in detail (17, 22, 23). 
Nonetheless, simplified models of the active boundary forcing as 
a boundary slip velocity capture the large-scale behavior of the 
bulk cytoplasmic flow and provide valuable biological insight 
(16, 21, 24). When, in addition, the flows are axisymmetric and 
the geometry is sufficiently elongated, the analysis is greatly sim
plified by a long-wavelength approximation, known in the fluid 
dynamics community as “lubrication theory” (25–27), resulting 
in fully analytical solutions.

Although its beginnings and namesake lie in the thin lubricant 
layers in fluid bearings (28, 29), lubrication theory pertains more 
generally to flows in which one length scale is much smaller 
than the others. It is an approximation to the full Navier–Stokes 
equations for Newtonian fluid flow which exploits this disparity 
in length scales. Beyond industrial and engineering applications 
(30), lubrication theory informs fundamental fluid dynamical 
phenomena such as viscous gravity currents, thin liquid films, 
and flows through narrow gaps (31–36), and has applications in 
areas as diverse as geophysics (e.g. lava domes (35), faults (37), 
ice sheets (38, 39)) and biomedicine (e.g. fluid dynamics of the 
eye (40, 41), cartilage and joint lubrication (42)).

Despite the wide applicability of lubrication theory, studies 
which exploit this powerful tool in the context of cytoplasmic 
streaming are few and far between. In this article, we show how 
lubrication theory can be used to characterize axisymmetric cyto
plasmic flows, and the resultant stresses, in elongated cells; we 
thus present analytical expressions for the cytoplasmic flow field 
and cortical stresses, bypassing the need for intensive numerical 
computations. Using as model systems (i) the Drosophila embryo, 
(ii) the C. elegans embryo, (iii) the pollen tube of flowering plants, 
and (iv) plant root hair cells, we demonstrate the versatility and 
accuracy of our approach in characterizing flows and stresses in 
a range of biological cells. The centerline cytoplasmic flows in 
Drosophila embryos are directed from the center towards the poles, 
thus facilitating a symmetric distribution of nuclei. In contrast, 
the unidirectional centerline cytoplasmic flows in the C. elegans 
embryo contributes to the breaking of symmetry. The pollen 
tube features a distinct geometry, and in the root hair cells we 
place a particular focus on helical streaming. Therefore, the four 
problems we examine represent not only biologically but also fluid 
mechanically, distinct systems. Our methods are simple, and yet 
broadly applicable and model cytoplasmic flows with great 
accuracy.

In “Solution for boundary-driven flows in an elongated cell”, 
we present our general mathematical model and derive analyt
ical expressions for the cytoplasmic flow field, streamlines and 
cortical stresses inside an elongated cell in terms of the pre
scribed boundary forcing. In subsequent sections, we focus on 
applications, first addressing cytoplasmic streaming in the 
Drosophila embryo in “Application to Drosophila embryos”. We 

then characterize flows and stresses inside the C. elegans em
bryo in “Application to C. elegans embryos”, reproducing the re
sults of a numerical study (43) with our analytical model, and 
further model cytoplasmic streaming during pseudocleavage. 
In “Solution in an annular domain and application to pollen 
tubes”, we extend our methods to an annular geometry, and 
characterize streaming in pollen tubes, while “Azimuthal flows 
and application to root hair cells” further generalizes our model 
to incorporate axisymmetric azimuthal flows and describes hel
ical streaming in plant root hair cells. We conclude in the 
“Discussion” section by examining the strengths of our model, 
its limitations, and possible generalizations.

Solution for boundary-driven flows in an 
elongated cell
Setup and governing equations
Working in cylindrical coordinates (r, z), we model an elongated 
cell as an axisymmetric domain with a rigid boundary given by 
r = R(z); see Fig. 1.  The inside of the cell is filled with cytoplasm 
modeled as an incompressible Newtonian fluid of dynamic viscos
ity μ and density ρ. A cytoplasmic flow u(r, z, t) is driven by an ac
tive forcing at the boundary in the form of a prescribed 
axisymmetric slip velocity U(z, t) tangential to the cell boundary.

Since most biological cells are small, the relevant velocity 
scale V and length scale R are sufficiently small that inertia 
may be neglected. More specifically, the Reynolds number 
Re : = ρVR/μ, a dimensionless number which characterizes the 
importance of inertial effects relative to viscous effects, is close 
to zero. In the four biological systems we will consider, assum
ing a kinematic viscosity close to that of water, μ/ρ ≈ 10−6 m2/s 
(a lower bound), the Reynolds number ranges from below 10−6 in 
the C. elegans embryo (U ∼ 0.1 µm/s, R ∼ 10 µm) to below 10−4 in 
the Hydrocharis root hair cell (U ∼ 5 µm/s, R ∼ 20 µm). The math
ematical consequence of a negligible Reynolds number is that 
the nonlinear, inertial terms in the Navier–Stokes equations 
which govern the motion of an incompressible Newtonian fluid 
may be neglected. The equation of motion of the cytoplasmic 
flows thus reduces to the incompressible Stokes equations

μ∇2u = ∇p, ∇ · u = 0, (1) 

subject to the boundary condition

u = U(z, t)t(z) (2) 

at the surface r = R(z) of the cell. Here, p is the pressure inside the 
cell and t(z) is the unit tangent vector pointing in the direction of 
increasing z.

Fig. 1. Cytoplasmic flows inside an elongated cell with long axis in the z 
direction and cylindrical radius R(z). Intracellular flows are driven by a 
slip velocity U(z, t) tangential to the cell boundary (schematized as purple 
arrows) which has an axial component U(z, t) (schematized as red arrow).
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Lubrication approximation
We will now exploit the elongated geometry of the cell and sim
plify the system (1) and (2) using lubrication theory. Formally, 
two conditions are necessary for the lubrication approximation 
to be justified quantitatively (26). The first condition is that the 
longitudinal length scale L is much larger than the radial length 
scale R, which implies the intuitive picture of any small cross- 
section of the cell looking like part of a locally straight cylindrical 
pipe. Although this is a formal mathematical requirement, we will 
see below that lubrication theory actually performs surprisingly 
well at moderate elongation. The second condition is that the re
duced Reynolds number, Rer : = ReR/L, is small, allowing us to 
neglect inertia; this holds trivially since the Reynolds number Re 
is already small in all the microscale biological systems consid
ered below.

Under the lubrication approximation, the radial component of 
the Stokes equations simplifies to

∂p
∂r

= 0, (3) 

i.e. there are no radial pressure gradients to leading order. Writing 
u(r, z, t) = u(r, z, t)ez + v(r, z, t)er, the longitudinal component re
duces to

μ
r

∂
∂r

r
∂u
∂r

􏼒 􏼓

=
∂p
∂z
. (4) 

This is therefore pressure-driven pipe flow in a locally cylindrical 
cell geometry. An axisymmetric slip velocity U(z, t) with no azi
muthal component is imposed tangentially to the wall, and the 
longitudinal flow u satisfies the longitudinal component of this 
boundary condition,

u(R(z), z, t) = U(z, t), (5) 

where, crucially, U(z, t) : = U(z, t)t(z) · ez is the z-component of 
Ut(z). This relation between U and Umay be expressed more expli

citly in terms of R as U(z, t) = U(z, t)/
�����������

1 + R′(z)2
􏽱

, where ′ is used to 

denote a derivative with respect to z. Furthermore, mass conser
vation in a closed cell implies that the volume flux through any 
cross-section is zero,

∫ R(z)
0 u(r, z, t)r dr = 0. (6) 

Velocity field
The general solution to Eq. 4 is u = 1

4μ
∂p
∂z r2 + A ln r + B, where A and B 

are integration constants. Regularity at the origin requires A = 0, 
while the unknown pressure gradient ∂p/∂z and the constant B 
are determined by imposing the conditions (5) and (6). This yields 
our solution for the longitudinal flow,

u(r, z, t) = U(z, t) 2
r

R(z)

􏼒 􏼓2

−1

􏼢 􏼣

. (7) 

The radial velocity v is then determined by integrating the incom
pressibility condition, written out in full as

1
r

∂(rv)
∂r

+
∂u
∂z

= 0, (8) 

and using the solution (7) for u we have just determined. The inte
gration constant vanishes by regularity at r = 0, yielding the trans
verse component of the flow as

v(r, z, t) =
1
2

∂U(z, t)
∂z

r 1 −
r

R(z)

􏼒 􏼓2
􏼢 􏼣

+ U(z, t)
dR(z)

dz
r

R(z)

􏼒 􏼓3

. (9) 

We check that v = R′U at r = R, and v therefore satisfies (to leading 
order in R′) the radial component of the slip velocity condition. We 
have thus derived analytical expressions, Eqs. 7 and 9, for both 
components of the cytoplasmic flow field in terms of the boundary 
forcing.

Streamfunction
For incompressible axisymmetric flows, it is often useful to define 

the Stokes streamfunction ψ as u = 1
r

∂ψ
∂r , v = − 1

r
∂ψ
∂z. This formulation 

ensures that incompressibility is automatically satisfied and sim
plifies problems by reducing the governing equations into a single 
equation for ψ. In our case, since we have already determined u 
and v, we may determine ψ by integrating the definition of the 
streamfunction. We thus derive an analytical expression for the 
streamfunction,

ψ(r, z, t) = ∫ r
0r′u(r′, z, t)dr′ = U(z, t)

r4

2R(z)2
−

r2

2

􏼠 􏼡

. (10) 

Noting that streamlines are level curves of ψ, this allows us to eas
ily plot streamlines of the cytoplasmic flow.

Cortical stress
Using our cytoplasmic flow solution, we may now calculate the 
profile of shear stress exerted by the boundary onto the bulk fluid. 
In the context of cortex-driven cytoplasmic flows (14–18), this has 
the direct interpretation as the stress exerted by the cortex onto 
the cytoplasm and is a biophysically important quantity in that 
it informs the active force generation mechanisms in the cell 
cortex.

The hydrodynamic stresses due to a flow field are encoded in 

the Cauchy stress tensor σ : = −pI + μ[∇u + (∇u)T]. Defining the 
normal unit vector to the cortex, pointing away from the cyto

plasm, as n = (er − R′ez)/
��������
1 + R′2
√

, and tangent unit vector as 

t = (R′er + ez)/
��������
1 + R′2
√

, the shear stress σ exerted by the cortex 
onto the cytoplasm is given by σ : = n · σ · t|r=R, which may be ex
panded as

σ =
2μR′(∂rv − ∂zu) + μ(1 − R′2)(∂zv + ∂ru)

1 + R′2

􏼌
􏼌
􏼌
􏼌
r=R
. (11) 

We further use our lubrication solution for u and v to provide ex
plicit expressions for the velocity gradients in the numerator, 
leading to

∂zu|r=R = U′ −
4UR′

R
, (12a) 

∂ru|r=R =
4U
R

, (12b) 

∂zv|r=R = 2U′R′ + UR′′ −
3UR′2

R
, (12c) 

∂rv|r=R = −U′ +
3UR′

R
. (12d) 

These Eqs. 11 and 12 specify the shear stress onto the cortex.
Note that, although lubrication theory is a leading order ap

proximation of an asymptotic expansion in the inverse aspect ra
tio, we have chosen here to keep the denominator unexpanded in 
Eq. 11. This is because the R′2 term is necessary to prevent un
physically large stresses near the poles of the cell, where R′ is 
large. In a strict mathematical sense, we are therefore outside 
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the formal regime of validity of lubrication theory; we will show 
below that this allows our solution to agree quantitatively with 
full numerics.

Summary of analytical model
This concludes our model for cytoplasmic flows in elongated 
cells. Given a cell geometry R(z) and a boundary velocity U(z, t), 
we have now determined analytically the flow field inside the 
cell as well as the cortical stress. Our main results are fully analyt
ical expressions for the cytoplasmic flow field (Eqs. 7 and 9), the 
streamfunction (Eq. 10), and the cortical stress (Eqs. 11 and 12). 
In what follows, we apply these results to cytoplasmic streaming 
in different biological cells, showing that classical fluid mechanics 
provides an accurate description of a complex biological 
phenomenon.

Application to Drosophila embryos
Motivation
We first apply our methods to cortex-driven cytoplasmic flows in 
the syncytial Drosophila embryo, a large, elongated cell which con
tains numerous nuclei in a common cytoplasm. After the oocyte is 
fertilized, the nucleus undergoes 14 rounds of cell division, 
termed “cell cycles.” It has been shown experimentally that cyto
plasmic flows during cell cycles 4 to 6 driven by cortical contrac
tions play a crucial role in spreading the nuclei throughout the 
embryo, and that a uniform nuclear distribution is required for 
proper embryonic development (16). The cortical flows are bidir
ectional and directed from a slightly off-center z-position towards 
the anterior and posterior poles (on the left and right, respectively, 
oriented as shown in Fig. 2a and c). The experimentally measured 
cytoplasmic flows, consisting of four vortices (as visualized in a 
cross-section through the anterior–posterior [AP] axis) which 

push nuclei near the center along the AP axis towards the poles, 
are reprinted from Ref. (16) in Fig. 2a. We have modeled these 
flows in a previous work (44) and demonstrated there that the 
real-life cortical flows enable near-optimal spreading of nuclei. 
We briefly summarize here the results on the cytoplasmic flow 
field as calculated using lubrication theory, as a preliminary dem
onstration of the impact of the analytical modeling approach, and 
further proceed to determine the cortical stress.

Cytoplasmic flows and cortical stresses
The Drosophila embryo is approximately a prolate spheroid of 

semimajor axis L = 270 µm and semiminor axis R0 = 110 µm. 

Using the notation in “Solution for boundary-driven flows in an 

elongated cell”, the cell geometry is thus described by

R(z) = R0

�����������

1 −
z
L

􏼐 􏼑2
􏽲

. (13) 

The cortical flows in cell cycles 4 to 6 have a complex spatial and 

temporal dependence, but to a good approximation, may be mod

eled as the product of a time-varying amplitude V(t) and a sinus

oidal spatial profile, U(z, t) = V(t)[ − 1
3 − sin ( πz

L + arcsin 1
3 )] (44). The 

z-component U(z, t) = U(z, t)/
�����������

1 + R′(z)2
􏽱

is plotted in Fig. 2b at the 

contraction peak of cell cycle 6, at which instant V(t) takes a nu

merical value of 0.3 µm/s.
Now that we have specified U(z, t) and R(z), the flow field is ob

tained from Eqs. 7 and 9, and plotted in Fig. 2c; white arrows indi
cating the magnitude and direction of the velocity field are 
superposed onto a color map of the speed. Streamlines are plotted 
in pale yellow in the same figure using our expression for the 
streamfunction (Eq. 10). These results are in good agreement 
with experimental measurements (Fig. 2a).

a b

c d

Fig. 2. Flows and stresses in the Drosophila embryo. a) Experimentally measured cytoplasmic flow in a Drosophila embryo, reproduced from Deneke et al. 
(16) with permission from Elsevier. b) Prescribed cortical flow U(z, t), chosen to closely match experimentally measured cortical flows, plotted against 
longitudinal coordinate z, at the contraction peak of cell cycle 6. c) Cytoplasmic flow field reconstructed using lubrication solution. The velocity is plotted 
as white arrows on a regular grid; the color map indicates speed and pale yellow curves are streamlines. d) Shear stress σ exerted onto cortex, plotted 
against z.
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Importantly, these lubrication results have been validated in 
Ref. (44) against an exact solution using spheroidal harmonics, 
and shown to incur a maximum relative error of 5%, defined for 
each velocity component u and v as the maximum absolute differ
ence between the lubrication and exact solution relative to the 
maximum value attained by the exact solution. This validation il
lustrates the excellent accuracy of our lubrication model com
pared to exact Stokes flow solutions and gives us the confidence 
to further apply this to other biological systems.

We may further use the theoretical model to infer the shear 
stress exerted by the cortex (Eqs. 11 and 12), and plot this stress 
profile in Fig. 2d. The stress is in the same direction as the cortical 
flows and near-cortex cytoplasmic flows, consistent with the 
physical picture of active cortical stresses driving flow. Our model 
therefore provides a simple tool to probe the cortical stress, allow
ing us to circumvent the experimental challenges of direct cortical 
stress measurements and infer the cortical stress from only cor
tical flow measurements. These stresses could, in turn, be used 
to infer biochemical information, such as myosin gradients.

The primary biological function of the cytoplasmic flows is to 
spread the numerous nuclei inside the Drosophila embryo along 
the embryo’s long axis, ensuring the homogeneous nuclear distri
bution necessary for correct embryonic development. In Ref. (44), 
the flow field solutions were further employed in transport simu
lations to show that the biological flows are finely tuned to achieve 
a near-optimal amount of nuclear spreading. If the cytoplasmic 
flows are too weak, the nuclei do not spread adequately away 
from their initial positions near the embryo’s center, and if the 
flows are too strong, an inhomogeneous nuclear distribution re
sults, with nuclei accumulating at the poles. In Ref. (17), numeric
al solution of a more complicated model of the flow was used to 
obtain important biological insight on the gradient of Bicoid, a 
morphogen responsible for organization of anterior development 
in Drosophila (45). By solving transport equations with and without 
flow, the authors refuted the hypothesis (46) that flow might play a 
role in establishing this gradient, and the analytical solutions we 
have developed here may also be used in a similar manner to in
vestigate biological hypotheses. These examples emphasize that 
the value of our model lies not only in its ability to reproduce 
measured or computed flow fields and stresses, but also, equally 
importantly, in the potential of these results and solutions to be 
directly used by the biological community to test specific 
hypotheses.

Application to C. elegans embryos
Motivation
In this section, we apply our model to cytoplasmic flows in the 
C. elegans embryo at the one-cell stage. In this system, the cortical 
flows are roughly unidirectional and directed towards the anterior 
pole, and this drives a cytoplasmic flow which is directed towards 
the posterior pole along the AP axis and towards the anterior pole 
near the cortex (21). These flows help distribute cytoplasmic and 
cortical cellular components asymmetrically and are thought to 
be important for establishing cell polarity (18). In order to under
stand actomyosin dynamics in the cortex and the biophysical ori
gins of these flows, it is important to quantify the cortical stresses.

In a previous work, cortical stresses were inferred by fitting 
cytoplasmic flow solutions from full hydrodynamic simulations 
to experimentally measured values using Bayesian data assimila
tion (43). In what follows, we demonstrate that these flows and 
stresses can be reproduced by our analytical model and a 
least-squares fit, without the need for sophisticated 

computational methods. We then illustrate the robustness of 
our model to cell shapes by characterizing flows when the embryo 
exhibits a partial constriction called a pseudocleavage furrow.

Cell geometry and experimental 
cytoplasmic flows
In Ref. (43), cytoplasmic flows were measured in six embryos. 
Although the embryos are approximately spheroidal, their precise 
shapes are irregular and exhibit natural variation across different 
embryos. The hydrodynamic simulations were performed in a 
spherocylindrical domain (i.e. a cylinder with hemispherical 
caps) whose long axis is 55/13 (≈ 4.23) times its short axis, reflect
ing biological C. elegans embryo dimensions. The positions of the 
velocity data points taken in each embryo were linearly rescaled 
into the same spherocylindrical shape to facilitate the fitting pro
cedure and standardize the shape variation across embryos (see 
Methods in Ref. (43) for details).

Here, we perform a similar rescaling of the six velocity fields re
ported in Ref. (43) into a prolate spheroid of semimajor axis 
L = 27.5 µm and semiminor axis R0 = 13 µm. A spherocylinder 
has a discontinuity in curvature at the sphere-cylinder transition 
and thus introduces an unphysical jump in stress (via a discon
tinuity in the R′′ term in Eq. 12c); we have chosen the smooth 
geometry of a prolate spheroid in order to prevent this artificial 
mathematical singularity. We note, however, that this discon
tinuity is integrable and thus the total force on any section of 
the cortex remains finite even when a spherocylinder is used.

We thus choose to work in a prolate spheroidal cell, and first 
visualize the experimentally measured flows, averaged across 
the six embryos, in Fig. 3a; here, white arrows indicate direction 
and magnitude of the velocity field, and the background color 
map indicates the speed. The grid points at which the velocity 
data in Ref. (43) is taken are irregular and vary across embryos; 
in order to take an average across the embryos, we have bilinearly 
interpolated the experimental data onto a regular Cartesian grid. 
The resulting flow field, as visualized in this 2D cross-section 
through the AP axis, has two vortices centered in the posterior 
(right) half of the embryo.

Fitting procedure for cortical flows
Our aim is to determine the cortical flow profile U(z) which, using 
our model, produces cytoplasmic flows that best match experi
mental measurements. We first constrain the functional form 
of U(z) to be a spline interpolation through the 11 points (zi, Ui) 
for i = 1, . . . , 11, with zi = −L + 2L

11 i − L/11 fixed, and the Ui’s to be 
determined. In Ref. (43), the stress exerted by the cortex is 
constrained on physical grounds to be unidirectional, pointing 
from the posterior to the anterior, and to be zero at the poles. 
Using MATLAB’s nonlinear constrained minimization routine 
fmincon.m, we determine for each embryo the values of Ui which 
minimize in a least squares sense, subject to the same cortical 
stress constraint, the error between the experimental measure
ments and the lubrication cytoplasmic flow solution.

Prediction of cytoplasmic flows and stresses
We plot in Fig. 3b the average over the six embryos of the fitted cor
tical velocities U(z) (red solid line), with the shaded area indicating 
±1 SD. We also show in blue the cortical velocity measured experi
mentally in Ref. (43), and see quantitative agreement with our re
sults. The cytoplasmic flow field corresponding to our fitted 
cortical flow (Fig. 3c) matches experiments (Fig. 3a) similarly well. 
Next, we plot the cytoplasmic velocity at the cell’s centerline 
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(Fig. 4a, red) as predicted by our model, against experimental meas
urements in blue; here also, we see that the analytical model is able 
to quantitatively capture the spatial dependence of the centerline 
flow. Although we would not expect a precise match between the 
data and our model due to challenges in imaging flows at this scale 
and inherent biological noise and complexity, our lubrication mod
el is able to capture the important features of the flow.

The main result of this section concerns the inference of cor
tical stresses. We compute the stress profile as predicted from 
our analytical model and plot the result in Fig. 4b; the red solid 
line shows the mean over the six embryos and the shaded area 
the SD. These predictions are superimposed on the numerical 
simulations from Ref. (43), obtained using a combination of 
full Stokes computations and Bayesian inference techniques 
(black dots and error bars). We see that our model agrees 
quantitatively with the cortical stress calculated using full 
numerical approaches. Using our analytical solution and 

MATLAB’s minimization routine, the fitting procedure used to 
produce our results typically takes less than 10 to 20 s for each em
bryo on a standard laptop computer. Our model thus provides an 
effective and inexpensive method to infer cortical stress from flow 
data alone, bypassing computationally intensive simulations and 
the myriad challenges associated with direct experimental stress 
measurements.

Beyond an estimation of cortical stresses, an important topic 
that our flow solution could be used to investigate is the role of 
flow in the localization of membrane-less organelles called germ 
granules (referred to as P granules in C. elegans) in the posterior 
half of the embryo (47). Experimental work showed that this local
ization is caused by dissolution of granule components in the an
terior half and condensation in the posterior region, rather than 
flow-based migration (47). However, a more detailed investigation 
on the interplay between flow and phase change could reveal a 
more nuanced understanding of the role of flow.

a

b

c

Fig. 3. Cytoplasmic and cortical flows in the C. elegans embryo. a) PIV data of cytoplasmic flow field in the C. elegans embryo, measured in Niwayama et al. 
(43), averaged over six embryos. b) Prescribed cortical boundary condition (red), fitted to minimize least square errors with PIV data in the six embryos, 
compared with experimentally measured cortical flows (blue). Shaded area indicates mean ± SD across the six embryos. c) Cytoplasmic flows 
corresponding to this fitted cortical flow. Color indicates flow speed and streamlines are in white; the centerline flow is in the positive z direction.
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Flows in an embryo during pseudocleavage
In this section, we further illustrate a particular strength of our lu
brication model: its applicability to domains with more complex 
geometries. As part of embryonic development, the C. elegans em
bryo undergoes a process called pseudocleavage, in which the 
cortex undergoes contractions and forms a partial constriction 
of the embryo called a pseudocleavage furrow (48). In Fig. 5a, we 
reproduce a microscopy image of a C. elegans embryo during 
pseudocleavage from Supplementary Video 1 of Ref. (43). 
Pseudocleavage has been found to be largely dispensable for nor
mal embryonic development (49), and its biological significance is 
not fully understood, but for instance, it has been shown to be im
portant for convergence of the AP axis towards the geometrical 
axis of the surrounding eggshell when these axes are misaligned 
(50). Cortical and cytoplasmic flows continue to occur in the pres
ence of a pseudocleavage furrow, and we now show how our mod
el can be used to characterize flows in this geometry.

We model the embryo shape during pseudocleavage as a spher
oid of semimajor axis L and semiminor axis R0, with a 
Gaussian-shaped furrow of depth d and characteristic width ℓ, 
centered at a longitudinal position z0,

R(z) = R0 − d exp −
(z − z0)2

2ℓ2

􏼢 􏼣􏼨 􏼩 ��������

1 −
z2

L2

􏽲

. (14) 

The parameters R0, L, z0, d, and ℓ, are chosen as the best fit to the 
experimental image in Fig. 5a. Specifically, we threshold the ex
perimental image into a binary image whose pixels take a value 
of 0 inside the embryo and 1 outside, generate a similar binary im
age using our chosen form of R(z), and determine the parameter 
values which minimize the absolute difference between these 
two images; the resulting fitted shape is seen in Fig. 5b and c.

In the absence of detailed flow measurements during pseudo
cleavage, we prescribe the cortical velocity U(z) determined in the 
previous subsection (and illustrated in Fig. 3b). The corresponding 
cytoplasmic flows (and streamlines) as computed using COMSOL 
Multiphysics 5.6 and our lubrication model are plotted in Fig. 5b 
and c, respectively. Despite the presence of the furrow, the analyt
ical model is in very good agreement with the full numerical simu
lations. We may quantify this by calculating a RMS error of 18%, 
defined as [∫ |usim − umodel|

2 dA]1/2
/[∫ |usim|

2 dA]1/2, where the inte
grals are evaluated over the entire 2D cross-section illustrated in 

Fig. 5b and c. Lubrication is known to be accurate to quadratic error 
in the slenderness, defined loosely for our cell as the ratio of the ra
dial length scale to the longitudinal length scale. Since the relevant 
radial length scale is half the width of the cell (keeping in mind the 
axisymmetry) and the longitudinal length scale is, due to the pseu
docleavage, around half the cell length, the slenderness ratio for 
this system is ∼0.5. This corresponds to an error on the order of 
0.52 = 25%, an order-of-magnitude estimate that is consistent 
with the 18% RMS error calculated above. Despite the pseudocleav
age introducing a new longitudinal length scale which is smaller 
than the embryo length, lubrication theory is able to capture all 
relevant physical features of the flow.

Solution in an annular domain and 
application to pollen tubes
Motivation
In this section, we show that our model can be applied to the pol
len tubes. A pollen tube is a long protrusion from a pollen grain 
which transfers sperm cells to the ovary of the receiving plant 
and is another example of a cell in which cytoplasmic streaming 
performs important transport functions (51). It is a long cylindric
al cell with an approximately hemispherical cap. In angiosperms 
(flowering plants), vesicles and other cargo are transported active
ly towards the tip by molecular motors along actin bundles run
ning along the peripheral wall, and away from the tip along a 
central actin bundle (52–54). The consequent fluid flows are 
known as “reverse fountain streaming” and contribute further 
transport via passive advection of cellular constituents. Note 
that the pollen tubes of gymnosperms also exhibit fluid flows; 
they are in the opposite direction to the flows in angiosperms 
and known as “fountain streaming” (51). In the following subsec
tions, we will focus on the pollen tubes of the lily, an angiosperm.

Cell geometry
A schematic representation of actin filament organization and 
active transport of large vesicles along actin bundles in a pollen 
tube is shown in Fig. 6a. Actin filaments are present much more 
densely in the apical region, which prevents the entry of large 
vesicles and larger organelles such as mitochondria (54). Small 
vesicles, which are transported directly to the extreme apex 

a b

Fig. 4. Model predictions for centerline flow and cortical stress in the C. elegans embryo. a) Centerline cytoplasmic flow in the C. elegans embryo as 
calculated from our model (red) and as measured experimentally (blue) in Niwayama et al. (43). b) Tangential cortical stress as calculated from model 
(red) and as computed using simulations and Bayesian inference techniques (black) in Ref. (43). In both panels, shaded areas indicate mean ± SD across 
the six embryos.
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(and do not reverse direction at the subapex like the large vesicles 
illustrated) do populate the actin-dense region (54). Consistent 
with this picture, we reproduce in Fig. 6b a fluorescence micro
graph of a lily pollen tube in which vesicles are stained in green 
and mitochondria in red (55), and we see a clear division between 
the apical region and the shank region.

Motivated by this setup, we consider the cytoplasmic flow in an 
annular domain of inner radius R0(z) and outer radius R1(z). We 
model the entrainment of cytoplasm due to active transport of 
molecular cargoes along the actin bundles as prescribed tangen
tial slip velocities along both walls. We denote the z-components 
of the slip velocities at the inner and outer walls by U0(z, t) and 
U1(z, t), respectively. We derive in the next section a cytoplasmic 
flow solution applicable to general annular geometries and slip 
velocities. Subsequently, we focus on the pollen tube geometry 
by taking R1(z) to be a spherocylinder to specify the overall shape 
of the pollen tube and using an exponential curve for R0(z) to mod
el the separation between the cytoplasm in the shank region and 
the actin-dense apical region/central actin bundle.

Cytoplasmic flow solution in an annular geometry
Assuming that the growth rate of the tube is negligible relative to 
the typical vesicle speed, and that cytoplasmic flows into or out of 
the dense tip region are sufficiently small that there is zero vol
ume flux of cytoplasm in the solution domain, it is straightforward 
to solve the longitudinal component of Stokes’ equations in the 
annular domain, subject to the prescribed velocity boundary con
ditions at the inner and outer walls, to determine the longitudinal 
component u(r, z) of the flow field,

u(r, z, t) = G(z, t)[r2 − R1(z)2] + A(z, t) ln
r

R1(z)
+ U1(z, t), (15) 

where A(z, t) and G(z, t) satisfy

R2
0 − R2

1 ln
R0

R1

􏼒 􏼓

−
1
4

(R2
0 − R2

1)2 1
4

R2
0 1 − 2 ln

R0

R1

􏼒 􏼓􏼔 􏼕

−
1
4

R2
1

⎛

⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎠

G

A

􏼒 􏼓

=
U0 − U1

1
2

U1(R2
0 − R2

1)

⎛

⎝

⎞

⎠.

(16) 

a

b

c

Fig. 5. Cytoplasmic flows in the C. elegans embryo during pseudocleavage. a) Microscopy image of a C. elegans embryo during pseudocleavage, reproduced 
from Supplementary Video 1 in Niwayama et al. (43). b, c) Cytoplasmic flow field and streamlines in embryo as computed numerically using COMSOL 
Multiphysics 5.6 (b) and our lubrication model (c) with geometry fitted to that in (a).
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Should one wish to account in more detail for the growth of a pol
len tube, the velocity boundary conditions may be appropriately 
modified and the no-flux condition relaxed, although we do not 
consider this level of detail in the current study.

Similarly to before, the radial component of the velocity, 
v(r, z, t), may next be calculated by integrating the incompressibil
ity condition ∇ · u = 0. This time, the integration constant is deter
mined by requiring v to satisfy the slip velocity condition at one of 
the walls. Since the prescribed slip is tangential to the cell surface 
which itself is, in general, locally not parallel to the longitudinal 
axis, there is a radial component of the slip boundary condition. 
For ease, we apply this radial boundary condition v(r = R1) = 
U1(z, t)R′1(z) at the outer wall, and the slip velocity condition at 
the inner wall is then necessarily satisfied by integrating the in
compressibility condition. We therefore obtain

v(r, z) = −G′(z, t)
r3

4
−

rR1(z)2

2
+

R1(z)4

4r

􏼢 􏼣

−
A′(z, t)

4
r 2 ln

r
R1(z)

− 1
􏼒 􏼓

+
R1(z)2

r

􏼢 􏼣

+ G(z, t)R1(z)R′1(z) +
A(z, t)R′1(z)

2R1(z)
−

U′1(z, t)
2

􏼔 􏼕

r −
R1(z)2

r

􏼢 􏼣

+
U1(z, t)R′1(z)R1(z)

r
.

(17) 
We may further show that the streamfunction is

ψ =
G(z, t)

4
R1(z)2 − r2
􏽨 􏽩2

+
A(z, t)

4
2r2 ln

r
R1(z)

􏼒 􏼓

− r2 + R1(z)2
􏼔 􏼕

+
U1(z, t)

2
r2 − R1(z)2
􏽨 􏽩

. (18) 

Cytoplasmic flow prediction
To the best of our knowledge, no complete measurements of the 
cytoplasmic flow field in a pollen tube are available in the litera
ture, although vesicle transport has been measured in varying lev
els of detail (55, 56). Using the vector map of organelle movement 

reported in Ref. (55), we take the approximate transport speeds 
along the peripheral and central actin bundles as 0.2 µm/s and 
0.4 µm/s, respectively—specifically, we set the tangential veloci
ties along the inner and outer boundaries to these constant val
ues. The same work reports a typical value of 8.3 µm for the 
radius of the pollen tube. We illustrate our model geometry, and 
the predicted cytoplasmic flows (Eqs. 15, 16, and 17), in Fig. 6c. 
These flows may be used in transport equations to study transport 
phenomena in pollen tubes, for instance, of calcium ions. The 
simplicity of the final results illustrates the predictive power of 
this modeling approach and may be refined upon availability of 
more detailed experimental measurements.

Azimuthal flows and application to  
root hair cells
Motivation
Thus far, we have considered cytoplasmic flows with no chiral 
component and seen how our results can be used to model several 
distinct cells. In this section, we further generalize our model to 
incorporate azimuthal flows, thus allowing us to characterize a 
wider range of biological systems.

Root hairs are long cylindrical extensions from root epidermal 
cells, which greatly increase the surface area of the plant root sys
tem and thus facilitate nutrient acquisition, anchorage, and mi
crobe interactions (57). Similar to pollen tubes, plant root hair 
cells contain thin actin bundles at the cell periphery and thick 
transvacuolar actin bundles at the centerline which transport 
vesicles and other organelles (58), and exhibit reverse fountain 
streaming in the cytoplasm-dense region towards the tip (59). 
The plant hormone auxin plays important roles in plant growth 
and development (60), including the regulation of cytoplasmic 
streaming, and has been reported to enhance cytoplasmic 
streaming at low concentrations and inhibit it at high concentra
tions. In order to understand the mechanisms behind this inhib
ition of cytoplasmic streaming, Tominaga et al. (61) studied root 
hair cells of the aquatic plant Hydrocharis, subjected to high 

a b c

Fig. 6. Cytoplasmic flows in the pollen tube. a) Schematic showing organization of peripheral and central actin bundles in a pollen tube, and active 
transport of large vesicles along the actin bundles, redrawn from Zhang et al. (54). b) Fluorescence micrograph of a lily pollen tube, with vesicles stained in 
green and mitochondria in red, reproduced from Bove et al. (55). Mitochondria do not enter the apical region, thus highlighting the small vesicles in the 
apex and illustrating the division between the apical and shank region. Scale bar is 5 µm. c) Cytoplasmic flow field predicted by our model. White arrows 
indicating velocity vector field are overlaid onto a color map of flow speed.
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concentrations of the synthetic auxin, naphthalene acetic acid 
(NAA). This acidification disrupts the organization of actin fila
ments, thus inhibiting cytoplasmic streaming, but the cell recov
ers to a normal reverse fountain streaming state several hours 
after removal of NAA. Intriguingly, the authors report a state of 
helical cytoplasmic streaming during recovery, in which the per
ipheral actin bundles are helically (rather than longitudinally) ori
ented and the central bundles have not yet recovered; these 
empirical observations are illustrated in Fig. 7a.

In what follows, we will illustrate how our analytical model can 
also be used to characterize this NAA-induced helical streaming. 
Although the experimental study concerns the inhibition of cyto
plasmic streaming in vitro via NAA treatments, acidification of the 
cytoplasmic via auxin influxes also occurs physiologically (61), 
and we expect our results to be more generally relevant beyond 
this specific in vitro setting. Helically oriented actin arrays are 
also naturally found in healthy root hair cells of some species 
such as Arabidopsis (62), and corresponding helical streaming is 
expected to occur.

Cytoplasmic flow model
We return to the geometry of an elongated cell with one boundary 
described by R(z), but first consider solely an axisymmetric azi
muthal wall velocity of the form W(z, t)eθ, where eθ is the 

azimuthal basis unit vector in cylindrical polar coordinates 
(r, θ, z). We note that

u(r, z, t) =
W(z, t)r

R(z)
eθ (19) 

is the lubrication solution for the resultant flow. This represents 
solid body rotations of each “slice” of the cell. We work with this 
cylindrical (rather than annular) geometry, since the central actin 
bundles in the root hair cells remain disrupted while helical 
streaming occurs.

Since Stokes flows are linear in the boundary conditions, we may 
now derive the lubrication solution for a more general driving wall 
velocity of the form U(z, t) = U(z, t)t(z) + W(z, t)eθ (where t is the unit 
tangent vector with zero azimuthal component) as the superpos
ition of this purely azimuthal flow, Eq. 19, with the solution derived 
in “Solution for boundary-driven flows in an elongated cell” for a 
tangential slip velocity with no azimuthal component (7) and (9). 
In other words, provided the problem is axisymmetric, our model 
is now able to also characterize chiral cytoplasmic flows.

Cytoplasmic flow predictions
We now apply this solution to helical streaming in root hair cells. 
We model the cell geometry R(z) as a cylinder with a hemispheric
al cap. Although a spherocylinder has a discontinuity in R′′(z), this 

a

c

b

d

Fig. 7. Cytoplasmic flows in the root hair cell. a) Micrograph of actin filaments (white) in a root hair cell undergoing helical streaming, reproduced from 
Tominaga et al. (61) with permission from OUP. b) Spherocylindrical model geometry, and prescribed wall velocity illustrated as dark blue arrows. c, d) 
Cytoplasmic flow field reconstructed using lubrication solution, illustrated in a cross-section through the longitudinal axis (c) and in a circular 
cross-section perpendicular to the longitudinal axis viewed from the base (d). In each figure, grayscale arrows indicate in-plane velocity with speeds 
color-coded according to the horizontal color bar while the background color map indicates out-of-plane component of flow, with positive values (yellow) 
indicating flow into the plane.
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is not a problem here since we proceed to calculate only the lead
ing order lubrication flow, and in particular, not the boundary 
stress. Along the cylindrical region, we impose an obliquely ori

ented slip velocity Ut − 1
2Ueθ. The magnitude and direction of the 

azimuthal component are chosen to emulate the experimental 
helical actin organization illustrated in Fig. 7a. Vesicles are re
leased in the tip region via exocytosis, and we therefore expect 
the flow forcing at the tip to be zero. Thus, we set the slip velocity 

in the apex to be R(z)
Rcyl

(Ut(z) − 1
2Ueθ), a scaling of the slip velocity in 

the cylindrical shank region by the ratio R(z)
Rcyl 

of the local radius 

R(z) in the apex to the radius Rcyl of the cylindrical region. The 

model cell geometry and the imposed wall velocity are illustrated 
in Fig. 7b. We further choose a numerical value U = 5 µm/s, a typ
ical value of the helical streaming velocity measured in Ref. (61).

In Fig. 7c, we plot the flow field we predicted in a cross-section 
through the longitudinal axis. The in-plane components (arrows, 
color-coded according to speed, see horizontal color bar) show re
verse fountain streaming (which occurs naturally without helical 
forcing) and are superposed on a color map of the out-of-plane, i.e. 
azimuthal, component. In Fig. 7d, we further illustrate the same 
cytoplasmic flow field in a different cross-section, now perpen
dicular to the longitudinal axis and through the cylindrical region. 
The arrows illustrating in-plane flow in this cross-section (see 
horizontal color bar) now emphasize the azimuthal flows result
ing from the helical actin organization, and the out-of-plane color 
map shows the reverse fountain streaming component. These re
sults again illustrate the predictive power of our analytical model
ing approach, including for the case of 3D helical flows.

Discussion
Summary
In this article, we have used lubrication theory to derive a general 
solution for boundary-driven cytoplasmic flows in elongated cells. 
We have then applied this framework to predict cytoplasmic fluid 
dynamics (and, where relevant, cortical stresses) in four biologic
ally relevant systems: the Drosophila and C. elegans embryos (in
cluding pseudocleavage furrow formation), the pollen tube of 
seed plants, and plant root hair cells. Provided the flows are axi
symmetric, our analytical lubrication solution is applicable even 
when an azimuthal component is present, and our model there
fore comprehensively addresses axisymmetric flows in elongated 
cells. By comparing our results with experiments and numerical 
simulations, we have shown that lubrication theory is a powerful 
tool to characterize cytoplasmic streaming; our results therefore 
showcase the elegance and accuracy of fundamental asymptotic 
solutions of the equations of fluid mechanics in capturing com
plex flows and stress patterns in a biological context.

Modeling limitations
Although lubrication theory is strictly only valid asymptotically in the 
limit of highly elongated cells, we obtain surprisingly accurate results 
even for moderate aspect ratios. Lubrication theory is known, empir
ically, to work unexpectedly well outside its formal domain of applic
ability, and we see here that the case of boundary-driven cytoplasmic 
flows is no exception. To rationalize this, we note that classical lubri
cation theory is the leading order truncation of an asymptotic expan
sion in which the next term is second order in the inverse aspect ratio; 
in other words, our model incurs a quadratic error.

This points to the obvious limitation of our approach: the mod
el requires the wall velocity U(z, t) and the geometry R(z), or more 

precisely, their second (spatial) derivatives, to vary on length 
scales significantly larger than the radial length scale. While 
this is a formal mathematical requirement, it can be relaxed in 
practice to some extent, as we demonstrated above. Clearly, this 
cannot be pushed too far, and for instance, we cannot accurately 
model flows inside spherical cells with lubrication theory. On the 
other hand, other well-established mathematical methods are 
available for solving Stokes’ equations in spherical geometries 
(63). Although beyond the scope of the current article, higher- 
order terms in the lubrication expansion of Stokes’ equations 
(64) provide a promising avenue to improve the errors stemming 
from the requirement of slowly varying U(z, t) and R(z).

Another strong assumption of the models outlined here is the 
requirement of axisymmetry (i.e. no azimuthal dependence), 
which allows the work to be analytically tractable by effectively 
reducing the number of dimensions by one. The model could be 
generalized to nonaxisymmetric flows, but at the cost of more 
cumbersome algebra, with flows in each cross-section having to 
be solved in the form of infinite series-like solutions.

Outlook
Although we have focused on flows driven by tangential velocities 
along fixed walls, extensions of this fundamental framework point 
to exciting directions. For instance, our framework may be gener
alized to incorporate moving walls and wall-normal velocity 
boundary conditions. Indeed, lubrication solutions have been 
used to investigate peristaltic flows in the lumen of slime moulds 
(9) and the hydrodynamics inside actively contracting endoplas
mic reticulum tubules (24). A more general long-wavelength solu
tion with boundary conditions accounting for both tangential and 
normal wall motions could be used to investigate more dynamic
ally complex problems, such as embryos in the early stages of 
cell division (65). Our approach may also be generalized to incorp
orate coupling between the cytoplasm and force generators at the 
cell boundary, as has been done computationally, for instance, in a 
two-fluid model of cytoplasmic streaming in the Drosophila embryo 
(17) and with active gel theories of the cell cortex (22, 23). We be
lieve our model offers a fundamental framework to build on and 
investigate the biomechanics of these active boundary forcings.

In this article, we have illustrated that marrying even funda
mental fluid mechanics with problems in developmental biology 
and plant science reveals a broad range of applications. We 
have developed an analytical model to accurately characterize 
fluid flows, a fundamental component of the various transport 
processes ubiquitous in biology, and our methods are therefore 
of interest to physicists and biologists alike investigating such 
transport phenomena in diverse biological settings. We are opti
mistic that the simplicity and accuracy of our model make it easily 
applicable beyond the four model systems we have investigated, 
and we thus hope to further inspire collaboration between biolo
gists and modelers, and experimentalists and theoreticians, in 
the broad field of biophysics and biomechanics.
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