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The mobility of particles in fluid membranes is

a fundamental aspect of many biological and

physical processes. In a 1975 paper (Saffman PG,

Delbrück M. 1975 Brownian Motion in Biological

Membranes. Proc. Natl Acad. Sci. USA 72, 3111–3113.

(doi:10.1073/pnas.72.8.3111)), Saffman and Delbrück

demonstrated how the presence of external Stokesian

solvents is crucial in regularizing the apparently

singular flow within an infinite flat membrane. In

the present paper, we extend this classical work and

compute the rotational mobility of a rigid finite-

sized particle located inside a spherical membrane

embedded in Stokesian solvents. Treating the particle

as a spherical cap, we solve for the flow semi-

analytically as a function of the Saffman–Delbrück

(SD) length (ratio of membrane to solvent viscosity)

and the solid angle formed by the particle. We study

the dependence of the mobility and flow on inclusion

size and SD length, recovering the flat-space mobility

as a special case. Our results will be applicable to

a range of biological problems including rotational

Brownian motion, the dynamics of lipid rafts, and

the motion of aquaporin channels in response to

water flow. Our method will provide a novel way of

measuring a membrane’s viscosity from the rotational

diffusion of large inclusions, for which the commonly

used planar Saffman–Delbrück theory does not apply.

© 2025 The Authors. Published by the Royal Society under the terms of the
Creative Commons Attribution License http://creativecommons.org/licenses/
by/4.0/, which permits unrestricted use, provided the original author and
source are credited.
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1. Introduction
The mobility of macroscopic inclusions located inside fluid membranes plays a role in many

physical and biological processes, such as the kinetics of liquid domains in giant unilamellar

vesicles [1,2] (figure 1A), the formation of finite-sized compartments in surface monolayers

consisting of multiple chemical components [6,7], the kinetics of colloids adsorbed on liquid

droplets [4] (figure 1B), the rotational diffusion of membrane-bound polymers [5] (figure 1C)

and particles [8], and the postulated motion of aquaporin channels [9–11] in response to

water flow [10] (figure 1D). Biological membranes often display curvature [12], which may

be either intrinsic [13] or the result of stochastic fluctuations, as seen for example in the

‘flicker phenomenon’ of erythrocytes [14]. The prediction of particle mobility therefore requires

formulating a hydrodynamic theory for flows inside curved membranes.

In the absence of shear orthogonal to the membrane [13,15], as in the case of lipid bilayers

[16,17], it is appropriate tomodelmembranes as two-dimensional fluids subject to internal viscous

stresses and embedded within three-dimensional fluids referred to as solvents [15,18–23]. These

solvents are coupled to the membrane by the no-slip and stress-balance boundary conditions

[19,20] which, unlike for a simple fluid–fluid interface, must also account for the membrane

viscous stresses [24–26].As often done,we consider the case ofmembranes that are incompressible

and impermeable to the solvents [21,27].

The presence of the solvents is not only biologically relevant, but also offers a resolution to

the mathematical issues connected with translational mobility in an infinite membrane. Without

solvents, a particle embedded in an infinite flat membrane would not have a well-defined

translational mobility, due to the Stokes paradox [28]. Indeed, the two-dimensional Stokes flow

around a body diverges logarithmically when the force on the body is nonzero, resulting in a

theoretically infinite mobility. A resolution to the paradox was offered by Saffman and Delbrück

in a classical paper [15]. They showed that the coupling to the viscous solvents below and above

the membrane regularizes the problem by introducing a natural cut-off length scale for the

logarithmic divergence, now known as the Saffman–Delbrück length and given by lSD ≡ �∕�,
where � is the two-dimensional membrane viscosity and � is the solvent viscosity [29]. The

features of the flow then strongly depend on the relative magnitude of the Saffman–Delbrück

length and the other length scales in the problem (e.g. local radius of curvature, particle size)

[27,30]. Note that membrane inertia, or the finite size of the membrane, may also be used

to regularize the problem [15]. Saffman and Delbrück’s discovery sparked a flurry of activity

on particle mobility in different biological setups and geometries [19,31], including spherical

[32,33] or tubular [34] membranes. Further studies considered slender [35,36] or active [37]

inclusions, rigid boundaries inside the ambient fluids [6], the effect of membrane deformability

[12,17] and elasticity [38]. Finally, some studies considered the possibility of partial embeddings,

with membrane inclusions protruding into the solvents [39–41]. In all cases, solutions to the

hydrodynamic problem must account for the extreme variability in inclusion size, which may

range from that of a single peptide or lipid (about 10nm in size) to larger bodies such as protein

aggregates [36,42] and liquid domains (0.3–10µm in radius) [2,3,43].

In this paper, we study the rotational mobility problem semi-analytically in the case of a finite-

sized rigid particle within an incompressible spherical membrane. This is the situation illustrated

schematically in figure 2A. Our primary motivation concerns the rotational motion of particles

embedded in spherical vesicles [44], a situation relevant to the movement of ATP synthase [45],

aquaporin channels [9–11], as well as the Brownian motion of membrane-embedded particles

[46,47], and proteins of arbitrary size [36,42,48]. As we see below, the calculation carried out in the

paper is valid more broadly in all cases where a rigid particle is made to rotate inside a spherical

membrane (or ‘vesicle’), itself embedded in a viscous solvent. Note that our work extends the

work from [27] by allowing the particle to have a size comparable with the membrane.

The structure of the paper is as follows: in §2, we first outline a mathematical model for the

particle-membrane-solvent system and summarize the methodology for solving the resulting

equations. In §3, we focus on the results for the rotational mobility of the particle and the resulting
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Figure 1. Diverse experimental examples of membrane inclusions: (A) Liquid domains (0.3–10µm in radius) in giant
unilamellar vesicles (15–50µm in radius), with darker regions corresponding to higher viscosity [3]. (B) Colloids adsorbed
on the fluid–fluid interfaces of emulsion droplets may be locked together to form a selectively permeable capsule [4].
(C) Semidilute solution of DNA electrostatically bound to a cationic lipid membrane and diffusing in-plane [5]. (D) Schematic
representation of a human aquaporin, which facilitates efficient and specific passive permeation of water and other small
uncharged solutes across the cell membrane. In this paper, we concern ourselves with rigid inclusions only.

membrane flow as a function of the dimensionless parameters governing the problem (§3a) and

on the asymptotic values of the rotationalmobility for scenarios involving a small or large particle,

comparing our findings with the results obtained in previous studies (§3b). We finish with a

summary of our findings and a discussion of potential extensions in §4.

2. Mathematical model

(a) Physical setup
The motivating examples listed in §1 concern the dynamics of a rigid particle inside a spherical

membrane (vesicle). The mathematical setup for our calculation is illustrated in figure 2B. The

membrane forms a sphere of radius Rm surrounded by Newtonian solvents (both inside and

outside) of viscosity �. The particle is modelled as a rigid spherical cap of curvilinear radius

Rp and polar half-angle �p =Rp∕Rm, and its angular velocity is denoted by 
. In the case of an

incompressible, impermeable, Newtonianmembrane [17,20] of viscosity �, our goal is to compute

the total torque exerted on the particle.

In what follows, we describe the three-dimensional space with spherical coordinates xi =
{r, �, �}. We use the standard orthonormal vectors {er, e� , e�} as a local basis in the solvents, and
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Figure 2. (A) Schematic of the experimental system under consideration, the rotation of a particle (orange structure) located
inside a curved lipid bi-layer membrane (dark blue) that is embedded in a viscous solvent on both sides (light blue).
(B) Schematic depiction of themathematical problem.The rigid particle ismodelled as a spherical cap of half-angle� = �p and
curvilinear radius Rp inside a spherical membrane (vesicle) of radius Rm and rotatingwith angular velocity
. Themembrane is
endowedwith spherical polar coordinates�,�with corresponding orthonormal basis vectors e� , e� , and local unit normal n.

{e� , e�} as a local orthonormal basis on the membrane. We assume that the membrane velocity

is purely tangential, and denote the fluid velocities in the membrane and the solvents as v, V±,

respectively. From here onwards, a + superscript denotes the exterior of the membrane, and a −
superscript denotes the interior.

(b) Mathematical model

(i) Field equations and matching conditions

For an incompressible membrane with a purely tangential velocity field, mass conservation in the

membrane and the solvents takes the form [20,26]

∇ ⋅ v= 0, ∇ ⋅V= 0, (2.1)

where∇,∇ are the gradient operators on themembrane and the solvents, respectively. In order to

avoid infinite stresses, the inner and outer flowsV− andV+ must also satisfy the no-slip condition

on the membrane

V± = v (membrane). (2.2)

Within the framework of continuum mechanics, forces in the membrane and the surrounding

solvents (both assumed Newtonian [17,20]) are described by contravariant stress tensors �, �±
given in an orthonormal vector basis by the constitutive relationships [17,20,27]

�=−pI♯
2
+ �

[
∇v + (∇v)T

]♯
(membrane), (2.3)

�± =−P±I♯
3
+
[
∇V± + (∇V±)T

]♯
(solvents). (2.4)

Here p,P± denote themembrane and ambient pressures,while �, � are themembrane and ambient

viscosities, respectively. A ♯ denotes the index-raising sharp operator [17], and I2 and I3 are the

(1, 1) identity tensors in the membrane and in the solvents.
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Note that in a membrane, unlike in three-dimensional space, stresses correspond to forces per

unit length, rather than per unit area. As a result, [p] =Nm
−1

and [�] =Nsm
−1
, so that lSD = �∕�

has dimensions of length. The physical interpretation of lSD becomes apparent by considering

an area patch of velocity U and size L, comparable with the typical length scale of the flow. The

viscous force exerted by the solvents on the patch scales as fs ∼ �UL, while the force imparted

by the membrane is of order fm ∼ �U. The drag from the solvents therefore dominates when

fs ≫ fm ⇔ L≫lSD and the Saffman–Delbrück length may therefore be thought of, intuitively, as

the cross-over size between two-dimensional membrane dynamics and three-dimensional bulk

dynamics [3,49].

Force balance in the solvents is expressed by the standard Stokes equation ∇ ⋅ �± = 0, or

�∇
2
V± =∇P±. (2.5)

Similarly, we require force balance on every membrane area patch. These forces consist of

membrane in-plane stresses and the traction forces T= (�+ − �−) ⋅ n exerted by the solvents

[17,42]. Force balance then takes the form

divs(�) + T= 0, (2.6)

where divs denotes the surface divergence (see Appendix A). Further decomposing T= � + Tnn,

with � tangent to the membrane, the normal and tangent components of equation (2.6) may be

recast into the following field equations [17,23,25]

�(∇2v + Gv) − ∇p♯ + �= 0, (2.7)

Tn + � ∶K= 0. (2.8)

Here,K is the (covariant) extrinsic curvature tensor,G= det(K) is the local Gaussian curvature and
∇2 is the surface Laplacian. Physically, theGv term in the tangential force balance (2.7) reflects the

fact that membrane shear may occur as a result of streamlines coming together due to curvature.

(ii) Axisymmetric solution

Because the setup is rotationally symmetric, the membrane flow v and the solvent flowsV± must

be everywhere parallel to e�. Indeed, the flow in the solvents cannot have any r or � component

since they must change sign under reflections in a plane containing the z-axis (equivalent to

reversing the sense of rotation of the particle). A similar symmetry argument shows that the

tangential solvent stress � on themembranemust be purely in the � direction, and that the normal

component Tn coincides with the pressure jump across the membrane, i.e. Tn = P− − P+. Finally,

because the only input in this problem is the angular velocity 
, which is a pseudo-vector, by

linearity of the Stokes equations there cannot be any pressure gradients in the membrane or the

solvents. Therefore, the membrane and solvent pressures p and P± must be constants.

On account of these observations, only the azimuthal component of the membrane Stokes

equation (2.7) is non-trivial. Given the identity K=−R−1
m I♭

2
in a spherical membrane with a local

orthonormal basis (with ♭denoting the index-loweringflat operator [17]), the normal force balance

in (2.8) simplifies to

0= Tn + � ∶K

= P− − P+ − R−1
m � ∶ I♭

2

= P− − P+ + 2R−1
m p. (2.9)

Notice that we used the incompressibility condition∇v ∶ I♭
2
= 0 (see equation (2.1)) in the last step.

The constant membrane pressure therefore acts like a negative tension, imposing a capillary-like

pressure jump.
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For the purpose of solving the non-trivial � component of equation (2.7), we choose to write

the velocity field in a particular form, which simplifies later equations: we let v=Rmv(�) sin(�)e�,
V
± =V±(r, �)r sin(�)e�. In this formalism, the functions v and V± correspond to the fluid’s local

angular velocity about the z-axis, rather than the linear velocity. Substituting this axisymmetric

ansatz into equation (2.7), we obtain the ordinary differential equation

�(v′′ sin � + 3v′ cos �) + Rm�� = 0 �p < � ≤ � (membrane), (2.10)

v≡
 0≤ � ≤ �p (particle). (2.11)

Note that this equation may also be obtained by considering the standard Stokes equation in a

thin spherical annulus, assuming that the thickness-integrated body force balances with external

shear (see Appendix B).

(c) Legendre polynomial expansion
Following the classical squirmer solution [50], we decompose the three flows in a basis of

Legendre polynomials.Writing x ∶= cos �, we usePn(x) to denote to the n-th Legendre polynomial

and P′n(x) its derivative with respect to x. We look for three solutions of the forms [50]

V+ =
∞∑

n=1
cn (

Rm

r
)
n+2

P′n(x) P+ ≡ q0 r>Rm, (2.12)

V− =
∞∑

n=1
cn (

r

Rm

)
n−1

P′n(x) P− ≡ q0 −
2p0
Rm

r<Rm, (2.13)

v=
∞∑

n=1
cnP

′
n(x) p≡ p0 r=Rm, (2.14)

where we accounted for the normal stress jump equation (2.9), the no-slip condition at r=
Rm (2.2), and enforced regularity at both r= 0 and r→∞. Note that, in principle, we should

have three independent sets of expansion coefficients an, bn and cn for each of V+, V−, v in

equations (2.12)–(2.14). However, by the no-slip condition in equation (2.2), all three expansions

must coincide when r=Rm. Because the P
′
n are orthogonal with respect to the inner product,

⟨P′n,P′m⟩ = ∫
1

−1
P′n(x)P′m(x)(1 − x2)dx, (2.15)

the coefficients of all three expansions must be identical.

The set of coefficients cn represent the strengths of rotlet moments of progressively higher

order (rotlet, rotlet dipole, etc.). To see this, let us consider the first few terms of the expansion

(2.12) and list in table 1 (up to multiplicative constants) the corresponding contributions to the

external azimuthal flow component V+ ⋅ e�. Each tabulated singularity is the gradient of the

previous one along the z-axis. A pictorial representation of the flows associated with the first

three moments is provided in figure 3. Intuitively, the far-field flow outside the membrane is

expected to be composed of a contribution from solid-body motion (rotlet), a contribution from

the differing rotations of the particle and the fluid membrane due to external drag (rotlet dipole)

and higher-order singularities capturing how the drag is distributed on the surface.

We will show in what follows that the total torque on the particle is directly captured by the

rotlet strength c1, as would be expected fromphysical intuition. To fully characterize the flows, we

need to determine the coefficients cn. With x= cos � and exploiting orthogonality of the Legendre
polynomials, the force-balance and no-slip equations (2.10), (2.11) and (2.14) can be expressed as
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Figure 3. Flows associated with (A) a rotlet, (B) a rotlet dipole, (C) a rotlet quadrupole located at the origin and oriented along
the z-axis (dashedwhite line). In each case, the flow rotates around the z-axis, so a single slice is plotted corresponding to the xz
plane. The boundaries of the white patches mark the region where the velocity magnitude (infinite at the origin) first exceeds
a set threshold.

Table 1. Velocity field corresponding to each expansion coefficient in equation (2.12). The coefficient cn+1 corresponds to a
rotlet 2n-pole, obtained by differentiating the rotlet flow n times with respect to z.

coefficient velocity interpretation

c1 r−2 sin � rotlet
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c2 r−3 sin 2� rotlet dipole
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c3 r−4(5 cos2 � − 1) sin � rotlet quadrupole
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

⋮ ⋮ ⋮
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(see Appendix C)

(n + 1)(n + 2)
(2n + 1)(2n + 3)

cn+1 −
n(n − 1)

(2n − 1)(2n + 1)
cn−1 =

1

2
∫

1

−1
Pn(x)v(x)(1 − x2)dx n≥ 0, (2.16)

(1 − x2)v′′(x) − 4xv′(x) = "
2�p

∞∑

n=1
(2n + 1)cnP′n(x) x< xp, (2.17)

v(x) ≡ 
 x≥ xp. (2.18)

Here, xp = cos �p. Furthermore, " = 2�Rp∕� is the ratio between thewidth of the particle,Rp =Rm�p,
and the Saffman–Delbrück length,lSD = �∕� [31]. The coefficient appearing on the right-hand side

of equation (2.17) is thus given by "∕2�p =Rm∕lSD, the ratio between the radius of curvature of

the membrane and the Saffman–Delbrück length.

Finally, note that the membrane velocity v has magnitude ‖v‖ =Rm|v|(1 − x2)1∕2. We may thus

allow singularities in v(x) at x=±1 provided that the velocity is continuous, i.e.

v(x)(1 − x2)1∕2 continuous. (2.19)

Therefore, the flow is fully determined by equations (2.16)–(2.19). These equations also show that

the dimensionless flow v∕
 is only a function of two dimensionless parameters, " and �p.

(d) Rotational mobility
The rotational mobility is obtained by computing the total torque Gpez exerted on the particle to

maintain the rotation. This torque must balance the drag exerted by the solvents on the top and

the bottom of the particle, as well as the in-plane drag on the particle’s edge due to themembrane.

As shown inAppendixA, however, the total torque on the particle’s edge is precisely equal to the
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total torque on the membrane with �p ≤ � ≤ �. We deduce that Gp must balance the total viscous

torque on the particle-membrane assembly caused by the solvents. In other words

Gp =−2�R3
m ∫

1

−1
��(1 − x2)1∕2dx

= 2��R3
m

∞∑

n=1
(2n + 1)cn ∫

1

−1
P′n(x)(1 − x2)dx. (2.20)

All terms in the integral above vanish except the first one, leading to

Gp = 8��c1R3
m, (2.21)

and thus all information about the torque is embedded in the rotlet coefficient c1, as expected.

In the rest of the paper, we will write the drag using a standard normalization in terms of the

particle radiusRm�p asGp ≡ 8��
R3
m�3p�R, thereby introducing the dimensionless drag coefficient

�R(", �p) = 
−1�−3p c1.

3. Rotational mobilities and membrane flow
The dimensionless drag coefficient �R is a function of two dimensionless parameters: " = 2�Rp∕�
(ratio of particle size and the Saffman–Delbrück length [27]) and the dimensionless particle

half-angle �p.

(a) Numerical results
We solve the problem by truncating all sums at n= k for some finite k and then computing the

solutions to equations (2.16)–(2.19) semi-analytically. We first solve equation (2.17) for v(x) in
terms of the expansion coefficients cn, and obtain a set of coupled, linear algebraic equations

for c1, … , ck from equations (2.16) and (2.18). These can then be solved to find c1, and hence

�R (equation (2.21)). Numerically, we see that the number of modes required to attain a given

accuracy diverges as �p → 0. We henceforth use k= 100 for �p ≥ 0.4, k= 200 for 0.2≤ �p < 0.4 and
k= 300 for �p < 0.2. These values of k ensure that, in the limit � → 0, we recover the mobility of

a rotating spherical cap with a relative error no larger than 2% (see §3b(ii)). With the coefficients

known, we can evaluate the flow in themembrane and in both solvents, and deduce the rotational

mobility of the particle.

We first illustrate in figure 4 the dimensionless magnitude of the membrane velocity, ‖v‖∕Rm

and angular velocity ‖v‖∕Rm
 sin �, as well as the dimensionless magnitude of the ambient

flows ‖V±‖∕Rm
 for two representative choices of the parameters " and �p: " = 0.05, �p = 0.4 (A–
B) and " = 5, �p = 1.1 (C–D). These values were inspired by experiments with phase-separated

giant unilamellar vesicles [3]. Taking the representative values Rp ∼ 1–10µm, lSD ∼ 10–103 µm [3]

provides the estimate 10−3 ≤ " ≤ 10. In all cases: (i) the particle does rotate like a rigid body, as

prescribed (i.e. with constant angular velocity); (ii) the rotational velocity also vanishes at both

the north and south pole, as imposed by regularity; and (iii) the external velocity field decays

like a rotlet, i.e. as O(r−2). Outside the cap, the velocity profile has an internal maximum when

"∕2�p=Rm∕lSD ≪ 1 (i.e. in the limit of a very viscous membrane), by analogy with a rotating solid

sphere [32] (figure 4A,B). Mathematically, this limit corresponds e.g. to sending � →∞ for fixed

�p. Quantitatively, note that sending "∕2�p → 0 turns (2.17) into

(1 − x2)v′′ − 4xv′ = 0 (3.1)

for −1≤ x≤ xp, whose only regular solution is v≡
. In this limit, the flow in figure 4A therefore

approaches rigid-body motion, corresponding to a perfect sine wave. This effect is particularly

evident in the angular velocity plot, which remains fairly close to 1 throughout. Conversely, when
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A

C

B
B

DCD

Figure4. Flowswithin themembraneand the solvents for different inclusion sizes and relative Saffman lengths" = 2Rp∕lSD .
(A) Normalized flow in themembrane for " = 0.05,�p = 0.4 (blue line) and its relative solid-bodymotion component (purple
line). Inset: three-dimensional plot of themembrane velocity field. (B) Illustration of solvent flow (iso-magnitude) for the same
values of ", �p as (A); since the setup has rotational symmetry, we only plot the magnitude of the azimuthal flow component
of the ambient flows in the plane y = 0. Thewhite circles represent themembrane, with radial ticksmarking the particle edge.
(C), (D) Same as (A), (B) with parameters " = 5, �p = 1.1.

"∕2�p ≳O(1), the membrane flow is seen to decay monotonically (figure 4C,D), and the angular

velocity is substantially smaller than for rigid-body motion.

Next, we study the dependence of the torque exerted on the particle on the two relevant

dimensionless parameters, " and �p. The results are displayed in figure 5A, where we plot the

torque Gp applied on the particle to maintain the rotation as a function of the particle half-angle

�p, non-dimensionalized by the torque Gm exerted on a rigid sphere of radius Rm rotating with

the same angular velocity. The chosen parameter values, �p ≥ 0.1 and 0.1≤ " ≤ 100, correspond

to a membrane viscosity of 10−10 Nsm
−1 ≲ � ≲ 10−6 Nsm

−1
for a 50µm vesicle, a range covering

typical values for giant unilamellar vesicles [3].

As expected, the normalized torque Gp∕Gm → 1 as �p →� since, in this limit, the particle

covers the entirety of the vesicle, making the membrane completely rigid. Conversely, the torque

vanishes for a small particle (�p → 0). For a given particle size and solvent viscosities, the applied

torque increases with the Saffman–Delbrück length lSD, as a larger lSD corresponds to a more

viscous, and hence more rigid, membrane. This effect is more obvious for larger values of

�p as the membrane’s angular velocity, which is nearly constant due to the small azimuthal

shear, has less room to vary. Finally, in figure 5B we explore a different definition of particle
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A B

Figure 5. Dependence of the exerted torque on the particle size and the membrane viscosity: (A) torque Gp exerted on the
particle to maintain rotation (non-dimensionalized by the torque Gm on a rigid sphere of radius Rm rotating with the same
angular velocity in a solvent with viscosity �) as a function of the half-angle �p of the particle, for a range of values of
the modified viscosity ratio " = 2�Rp∕� = 2Rp∕lSD . For a fixed particle size, the torque increases for larger lSD (i.e. for
decreasing "). (B) Torque Gp exerted on the particle to maintain rotation non-dimensionalized by the torque G̃m exerted on a
rigid sphere (radius Rm, ambient viscosity�) rotating at themodified rate
 − c1 (i.e. the difference between
 and the rigid
motion of the membrane).

mobility [19], defined in the frame co-rotating with the rigid-body motion of the membrane.

In particular, we plot the torque on the inclusion non-dimensionalized by the torque G̃m on a

rigid sphere (radius Rm) rotating with angular velocity 
 − c1 in the same solvents, where c1
corresponds to themembrane’s solid-bodymotion. The ratioGp∕G̃m is larger when themembrane

is more viscous (smaller "), as this impedes differential rotation between the membrane and the

particle. The relative torque in figure 5B also blows up for large inclusions (� →�) as shearing
the membrane becomes increasingly hard. A co-rotating drag coefficient may then be defined as

�̃R = (
 − c1)−1�−3p c1. In terms of the free mobility, �̃R = (1 − c1∕
)−1�R, implying that the two

coefficients differ when the solid-body rotation of the membrane is significant (i.e. for sufficiently

large lSD or large inclusions).

(b) Asymptotic results
Our setup contains three inherent length scales, namely the curvilinear particle radius Rp, the

membrane radius Rm and the Saffman–Delbrück length lSD, with corresponding dimensionless

ratios Rp∕Rm = �p and lSD∕Rm = 2�p∕". To understand the interactions between the various length
scales, we now analyse two asymptotic limits, with results summarized in figure 6. First, in §3b(i),

we consider the limit of a small particle (Rp∕Rm ≪ 1 or �p ≪ 1) of varying Saffman–Delbrück

length, or equivalently of varying ". In this case, we observe a transition from planar mobility

[31] to spherical mobility as the membrane becomes more and more viscous (lSD →∞). We

then address the limit of a particle of size comparable with the membrane, i.e. Rp ∼Rm (§3b(ii));

we demonstrate that, in the limit of small Saffman–Delbrück length (lSD ≪Rp or " ≫ 1), the

hydrodynamic effects of the membrane are negligible and the particle experiences the same drag

as a rotating spherical cap in an unbounded fluid [51]. As the Saffman length increases, the torque

instead becomes the same as on a rotating rigid sphere (see figure 5).

(i) Small particle limit: Rp∕Rm≪ 1

Firstly, we consider a particle that is much smaller than the membrane and compare the

numerically calculated mobility with the planar value [31]. Experimentally, this limit is

appropriate for smaller inclusions, such as membrane-bound proteins andmicrospheres [18]. It is
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Figure 6. Asymptotic behaviour of rotational drag coefficient,�R(", �p), in the limits of small and large particles. (A) Small
particle limit, Rp ≪ Rm (or �p ≪ 1) for many values of " = 2Rp∕lSD (numerics run with �p = 0.1, k = 300), with details
in §3b(i). The numerical values of �R (red circles) are compared with (1) the solid-body motion limit �R ∼ �−3p , (3) the
asymptotic behaviour�R ∼ "−1 (solid black line), (4) the analytical prediction from figure 3 in [31] (dotted black line) and (5)
the asymptotic behaviour�R ∼ 4∕3� for a rotating disc [28] (dashed black line). Region (2) marks the transition between
the three-dimensional mobility in (1) and the nearly planar mobility in (3). (B) Plot of the dimensionless membrane velocity
(� ≥ �p) for a small particle (�p = 0.1) and representative values of " for each region: (1) " = 10−4, (2) " = 10−3, (3)
" = 10−2, (4) " = 2, (5) " = 20. (C) Small Saffman–Delbrück length limit,lSD ≪ Rp ∼ Rm (or�p∕" ≪ �p, 1), with details
in §3b(ii). Numerical results (0.1≤ �p ≤ 3.1 and" = 200, red circles) are comparedwith the analytical solution for a spherical
cap (solid black line) [51].
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common in the literature to infer the membrane’s viscosity by measuring the diffusion coefficient

of such inclusions and relating it to the viscosity as in Saffman’s planar theory [15,29]. We will

show below that, in the rotational case, such approximation is appropriate as long as � is not

too large. As the Saffman–Delbrück length is varied from small values (highly viscous solvents)

to large values (highly viscous membrane), five distinct asymptotic regions emerge (figure 6A),

which we set out to explain below.

Rigid rotation (1) When lSD is large (figure 6A, region (1)), the membrane rotates rigidly to

minimize dissipation (figure 5) [27,32]. The torque on the cap is therefore approximately 8��
R3
m,

and therefore �R ∼ �−3p . This regime occurs when the torque associated with rigid rotation of the

whole vesicle ismuch less than the torque associatedwith non-zeromembrane shear. Importantly,

this regime is not captured by the planar Saffman theory, which assumes the membrane to be at

rest far from the inclusion.

Transition (2) and two-dimensional limit (3) As the Saffman–Delbrück length is reduced, the

membrane begins to experience shear from the particle. For lSD ≫Rp, the drag from the solvents

is negligible on the scale of the particle and the local flow is purely two-dimensional [49]. The

particle mobility is in this case �R ∼ "−1, the same as a disc in an infinite two-dimensional fluid

without any solvents, a problem that is not subject to Stokes paradox (figure 6A, region (3))

[28,29,31]. The transition region (2) between the previous two regimes therefore occurs when

"−1 ∼ �−3p , signifying that regime (1) corresponds to " ≪ �3p , or equivalently lSD ≫R3
m∕R2

p. Region

(3) instead corresponds to �3p ≪"≪ 1, or Rp ≪lSD ≪R3
m∕R2

p. Region (2) is physically significant as

the inclusion ceases to feel the effect of the membrane’s geometry (dominant in (1)) and the flow

becomes local, rendering the mobility nearly planar (region (3)).

The asymptotic behaviour in region (3), corresponding to �3p ≪"≪ 1 orRp ≪lSD ≪R3
m∕R2

p, can

be recoveredmathematically by noting that the local flow varies on the length scale of the particle

[32], since the solvents are negligible within a distanceO(lSD) of the particle. Therefore, the torque
is caused predominantly by the in-plane membrane shear, implying that

�R ∼
1

8��
R3
m�3p

∫
2�

�=0
R2
mer × � ⋅ e� sin �pd� =

v′(xp)(1 − x2p)2

2"�2p

. (3.2)

To proceed, we need to determine v around the particle. Since the flow varies on an angle �p, by
locally writing x= 1 − �2pX with X=O(1), from equation (2.17)

(1 − x2)v′′(x) − 4xv′(x) = O(Rmv∕lSD)

⇒ Xv′′(X) + 2v′(X) = O(R2
pv∕RmlSD) ∼ 0

⇒ v= A

X
+ B,

(3.3)

where in (equation (3.3)) we exploited the fact that R2
pv∕lSDRm ≪ v. Notice that the torque

associated with the solid-body motion B is ∼ �BR3
m, while the torque on the particle is Gp ∼ �R2

pv.

Equating these, we obtain B∼ lSDR2
pv∕R3

m, which is much less than v in region (3). Setting B= 0 at

leading order, the boundary conditions are v=
 on x= 1 − �2p∕2 + O(�4p), i.e. v(X= 1∕2) = 
. This
yields A=
∕2, giving the inner solution

v= 

2X

=

(1 − x2p)
2(1 − x)

. (3.4)

This is indeed analogous to the flow around a spinning cylinder in a flat, solvent-free membrane

(v∼ d−2 with d= sin �∕ sin �p). We deduce that, as xp → 1,

v′(xp)(1 − x2p) ≈
1

2

(1 + xp)2 ≈ 2
, (3.5)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

08
 S

ep
te

m
be

r 
20

25
 



13

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A

481:20240473
...........................................................................................................

Table 2. The drag coefficient (�R) of a small particle (Rp∕Rm ≪ 1) as the Saffman length lSD is varied shows five different
asymptotic behaviours. Investigation of the limitslSD ≫ R3m∕R2p ,lSD ∼ R3m∕R2p andlSD =O(Rp) represents an extension
of the results in [18] for a point-like particle (Rp = 0).

asymptotic limit drag coefficient refs interpretation

lSD ≫ R3m∕R2p �R ∼ (Rm∕Rp)3 [52,53] solid-body membrane rotation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

lSD ∼ R3m∕R2p �R ∼ (Rm∕Rp)3 [52,53] near-rigid membrane rotation with small shear
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Rp ≪lSD ≪ R3m∕R2p �R ∼ lSD∕2Rp [15] cylinder in two-dimensional fluid (no solvents)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

lSD ∼ Rp �R =O(1) [31] cylinder in two-dimensional fluid with solvents
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

lSD ≪ Rp �R ∼ 4∕3� [28] disc in three-dimensional fluid
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

and therefore the dimensionless friction coefficient is

⇒�R ∼ "−1, (3.6)

as observed in figure 6A.

Planar regime (4) As the membrane viscosity is reduced further, eventually " ∼ 1 or lSD ∼Rp

(figure 6A, region (4)). In this regime the mobility is asymptotically the same as in the planar

regime with contributions to the drag from both the membrane and the solvents [31], as the small

particle is oblivious to the membrane’s geometry.

Solvent-dominated limit (5) Finally, when the membrane viscosity is very low (" ≫ 1 or lSD ≪
Rp), we observe onemore regime (figure 6A, region (5)) where themembrane virtually disappears

and �R is the same as the three-dimensional mobility of a disc in the solvent, namely �R ∼
4∕3� [28].

A summary of the identified asymptotic limits is provided in table 2. An implication of our

analysis is that the planar Saffman theory therefore captures the mobility of small inclusions as

long as lSD is not too large, specifically lSD ≪R3
m∕R2

p. We also note that the asymptotic behaviour

in region (5), corresponding to " ≫ 1 or lSD ≪Rp is a reflection of the spherical geometry of our

setup. Indeed, while it is evident from equation (2.7) that the membrane applies negligibly small

in-plane stresses on the solvents, in-plane membrane incompressibility in general poses a non-

trivial constraint on the ambient flows due to the no-slip condition. It is for instance well-known

that a flat membrane with asymptotically small viscosity affects the leading-order translational

resistance of a particle [31]. In a spherical geometry, on the other hand, any purely azimuthal

surface flow is automatically divergence-free, so membrane incompressibility does not constrain

solvent flow and the limit � → 0 is regular (i.e. the membrane simply disappears).

The membrane flow is qualitatively different in regions (1)–(5). As shown in figure 6B, for

values of " in region (1), the membrane essentially rotates rigidly to reduce in-plane shear. This

effect lingers in region (2), but the increased shear noticeably slows down rotation. In region (3),

corresponding to �3p ≪"≪ 1, the membrane transitions from the high curvature regime, Rm ≪lSD
(" ≪ �p), to the low curvature regime, Rm ≫lSD (" ≫ �p). Interestingly, this transition is associated
with a loss of monotonicity and the creation of an internal minimum near the inclusion [32], while

rotation near the equator is nearly rigid to reduce the otherwise large in-plane shear. Finally, as

the membrane viscosity is reduced further, the membrane flow decreases monotonically on the

length scale of the particle with minimal qualitative differences between regions (4) and (5).

(ii) Large particle limit: Rp ∼ Rm
We now consider the case of particle of size comparable with that of the membrane, similar

to experimental observations of liquid domains in phase-separated giant unilamellar vesicles
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[3]. As already shown in figure 5 and in §3b(i), when the membrane is very viscous (lSD∕Rp ∼
lSD∕Rm ≫ 1), the system rotates rigidly and �R ∼ �−3p . In this section, we investigate the opposite

limit of a nearly inviscidmembrane (lSD∕Rp ∼ lSD∕Rm ≪ 1).As explained in §3b(i), themembrane

effectively disappears for small lSD. It is therefore natural to compare our numerical results for�R

with the exact rotationalmobility of a spherical cap �̂R obtained in the absence of amembrane [51]

�̂R(�p) =
1

8��3p
(8�p − 4 sin 2�p +

16

3
sin

3 �p) . (3.7)

Consistently with the aforementioned result for a rotating disc in an unbounded fluid [28], we

have �̂R → 4∕3� as �p → 0, while �̂R →�−3p when �p →� (i.e. the particle becomes a spherical

shell). We compare the limit in equation (3.7) with our numerical results in figure 6C. We see that

very good agreement is obtained throughout the domain, confirming that the membrane indeed

vanishes as � → 0.

4. Conclusion
In this paper, we computed the rotational mobility of a rigid particle embedded inside a spherical

membrane for various particle sizes and Saffman–Delbrück length scales. The calculation

was motivated by a number of relevant biological situations, such as the movement of ATP

synthase [45], aquaporin channels [9–11] and the Brownian motion of membrane-embedded

particles [46]. We started with the most general force-balance equations for the membrane

and eventually obtained an ODE for the membrane flow v. After expanding the ambient and

membrane flows with respect to a polynomial basis, we reduced the problem to an infinite set of

linear equations depending only on two dimensionless parameters: " and �p. These correspond
to " = 2�Rp∕� = 2Rp∕lSD, the ratio of the curvilinear particle radius and the Saffman–Delbrück

length, and �p =Rp∕Rm, the half-angle of the particle. Using a truncation to a finite number

of modes, the resulting system could be solved semi-analytically, allowing us to compute the

dimensionless rotational resistance �R for many values of " and �p, with results summarized in

figure 5.We then explored the physical significance of the three relevant length scales—curvilinear

particle radius Rp, Saffman–Delbrück length lSD, and membrane radius Rm—by considering

different asymptotic limits. We demonstrated that the particle only sees the spherical geometry

of the membrane when Rp =O(Rm) or when the membrane viscosity is sufficiently high, while for

sufficiently small Rp ≪Rm the flow is purely local and the mobility is set by the planar limit [31].

The Saffman–Delbrück length operates as a cut-off length beyond which the flow is affected by

the solvent traction. In particular, for small lSD the membrane disappeared altogether, while for

large lSD the membrane rotated almost rigidly as if the solvents were not present.

Froma theoretical standpoint, thiswork sheds light on the interplay between particle geometry

and intrinsic length scales in determining local flow and particle mobility. This is made possible

by considering a finite-sized particle, rather than a point-like inclusion [32]. Computationally, we

were able to numerically recover past results for planar mobility and the torque on a spherical

cap as special cases of our geometry [29,31,51]. The numerical implementation of a spherical

membrane of vanishing viscosity (a limit which we showed to be regular unlike in the planar

case [31]) may prove a valuable computational tool when dealing with rotational flow with

spherical geometries.

Biologically, our work provides a way of estimating the viscosity of membranes containing

large inclusions [3], which are affected by the membrane’s geometry. Current experimental

measurements of � typically approximate the membrane as planar [18] and rely on Saffman’s

theory to estimate � from the translational diffusion coefficient [15,29,31] of membrane-bound

proteins and microspheres [47]. When the inclusion is too large for Saffman’s theory to apply,

such as for large proteins [36,42], our work suggests that one may instead measure the rotational

diffusion coefficient DR of the inclusion and exploit Einstein’s relation DR = kBT∕Gp [15] to

determine the torque, Gp = kBT∕DR. Our predictions in figure 5 may then be used to estimate
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", and thus �. It should however be noted that measuring the rotational mobility may pose a

significant challenge, requiring the invention of bespoke experimental protocols.

An important extension of this work will consist of studying the other relevant mobility

component, namely the translational mobility of the particle. This is expected to be significantly

more challenging, as the resulting physical system will no longer be rotationally symmetric. It

may likewise be physically relevant to analyse the case of a non-circular particle [44]. Furthermore,

one could allow the interior and exterior solvents to have different viscosities, as may be the case

for cells whose cytoplasm viscosity is larger than that in the surroundings. Other directions for

future work include the interactions of multiple rotating particles, or adapting the theory to the

case of non-rigid inclusions, such as liquid domains [3]. The rotational diffusion of liquid domains

arises as a result of random molecular torques [15]. Such torques are applied on extremely fast

timescales, giving rise to oscillatory flows within the domain and the membrane. An unsteady

version of our theory will therefore be needed to capture this effect [52,53]. It may also be

biologically relevant [20] to allow for a more realistic membrane rheology, including viscoelastic

effects [12,54].
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Appendix A. Force and torque balance equations in the membrane
For the purposes of obtaining a general theory, let the membrane be parametrized by arbitrary

curvilinear coordinates (x1, x2) ∈ � ⊆ℝ2. Taking r to be the position vector in ℝ3, we may endow

themembranewith a coordinate basis ea = r,a. We further denote the unit normal to themembrane

by n, the metric tensor by gab = ea ⋅ eb and the extrinsic curvature tensor by Kab = n ⋅ )bea. The
viscous stresses in the membrane are described by a stress tensor �ab, such that the force f per unit
length on a curve with unit normal p (tangent to the membrane) is f= �abpaeb. Apply the force-

balance condition to a small area patch A with boundary )A and local boundary unit normal pa
(figure 7). The external viscous force on this patch is T‖A‖ + O(‖A‖2), where the norm denotes

the area. By the standard divergence theorem in ℝ2, letting g= det(gab), the viscous force due to
stresses in the membrane is

∮
)A
�abebpads= ∫

�
)a
(
�abeb

√
g
)
dx1dx2 (A 1)

= ∫
A

1
√
g
)a
(
�abeb

√
g
)
dS= 1

√
g
)a
(
�abeb

√
g
)
‖A‖ + O

(
‖A‖2

)
. (A 2)

Assuming themembrane is viscous enough for inertia to be negligible, forcesmust locally balance.

As a result, for ‖A‖→ 0,

1
√
g
)a
(
�abeb

√
g
)
+ T= 0 (A 3)

⇒ ()a�ab + �c
ac�ab + �b

ac�ac)eb + �abKabn + T= 0 (A 4)

⇒ (∇a�ab)eb + �abKabn + T= 0, (A 5)

where we exploited the fact that )a
√
g=�b

ab

√
g in equation (A 4). The expression in equation (A 5)

is now equal to equation (2.7) in the main body of the paper. An equivalent way to express
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Figure 7. Force balance sketch: the membrane viscous forces exerted on the boundary of the area patchA with unit normal
n, boundary )A and boundary unit normal p should balance the viscous forces generated by the solvents. Exploiting the
arbitrariness ofA yields the membrane Stokes (2.7).

force balance, more reminiscent of the standard Stokes equations, is obtained by rewriting

equation (A 3) as

divs(�abea ⊗ eb) + T= 0, (A 6)

where the operator divs = ea)a denotes the surface divergence [22]. To seewhy (not to be confused
with the covariant derivative). To see why equation (A 6) holds, note that from the Leibniz rule

for partial derivatives we have

ec)c(�abea ⊗ eb) = (∇c�ab)ec ⊗ ea ⊗ eb + �abec ⊗ (Kacn) ⊗ eb + �abec ⊗ ea ⊗ (Kbcn), (A 7)

and therefore, contracting the first tensor product

divs(�abea ⊗ eb) = (∇a�ab)eb + �abKabn. (A 8)

Finally, integrating equation (A 6) over the membrane, we obtain that the total external force

∫ℳ TdS reduces to a boundary term, and hence vanishes for a closed membrane with no

inclusions. By a similar argument as for the forces, torques balance within the membrane, as for

any area patch ℬ

∫
)ℬ

r × �abebpads= ∫
ℬ
)a(r × �abeb

√
g)dx1dx2

= ∫
ℬ
�abea × eb

√
gdx1dx2 + ∫

ℬ
r × 1

√
g
)a(�abeb

√
g)dS. (A 9)

= ∫
ℬ
r × divs(�abea ⊗ eb)dS

= ∫
ℬ
−r × TdS. (A 10)

Note that in equation (A 9) we have used the identity r,a = ea and the first integral cancels due to

symmetry of �ab. For our problem, this means that the total torque on the particle is equal to the

torque on the membrane-particle system from the external solvent.

Appendix B. Membrane flow equation as limit of the three-dimensional Stokes
equations
To further elucidate the two-dimensional flow model for the membrane, in this Appendix we

derive (2.10) as the limit of the standard three-dimensional Stokes equations.
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We start by approximating the membrane as a thin layer of Newtonian fluid in a spherical

annulus Rm ≤ r≤Rm + �Rm with viscosity �. Because of the presence of undeformable molecules

oriented normal to the membrane [17], we assume that such a fluid layer must have vanishing

radial shear; using E to denote the rate-of-strain tensor, this means that Err = Er� = Er� = 0. In a

rotationally symmetric setup, this constrains the flow to be of the form

u= rv(�) sin �e�, Rm ≤ r≤Rm + �Rm. (B 1)

Flow in the membrane is affected by the traction from the solvents, which can be thought of as a

force per unit volume f�. The corresponding forced three-dimensionalmembrane Stokes equation

∇p − �∇2u= f e� is now

� (v′′ sin � + 3v′ cos �) + rf = 0. (B 2)

In the limit of a thin membrane with �Rm∕Rm ≪ 1, the total force on a volume element should be

the same as the traction on the upper and lower surfaces, i.e.

f�Rm = ��. (B 3)

Assuming a very viscous membrane, sending now �Rm → 0, so that r→Rm, while keeping the

effective two-dimensional membrane viscosity � = ��Rm constant leads to

�(v′′ sin � + 3v′ cos �) + Rm�� = 0. (B 4)

This coincides with (2.10) in the main text, showing that the previously introduced two-

dimensional model of the membrane is obtained as the limit of a thin, non-shearing three-

dimensional flow.

Appendix C. Derivation of governing equations (2.16) and (2.17)
In order to determine the flow in the membrane and the solvents, we need to find the expansion

coefficients cn. These can be expressed in terms of v(x) by multiplying (2.14) by 1 − x2 and taking

the inner product with Pm. Using the classical equalities [55,56]

(1 − x2)P′n = n(Pn−1 − xPn), (C 1)

∫
1

−1
Pn(x)Pm(x)dx=

2�n,m
2n + 1

, (C 2)

∫
1

−1
xPn(x)Pm(x)dx=

2(m + 1)
(2m + 1)(2m + 3)

�n,m+1 +
2m

(2m − 1)(2m + 1)
�n,m−1, (C 3)

(C 4)

for n,m≥ 0, we readily obtain the recursive relationship for n≥ 0

(n + 1)(n + 2)
(2n + 1)(2n + 3)

cn+1 −
n(n − 1)

(2n − 1)(2n + 1)
cn−1 =

1

2
∫

1

−1
Pn(x)v(x)(1 − x2)dx. (C 5)

The membrane velocity v(x) and the coefficients cn are also coupled via the momentum equation

(2.10). Substituting x= cos �, this takes the form

�[(1 − x2)v′′(x) − 4xv′(x)] + Rm(1 − x2)−1∕2�� = 0 �p < � ≤ � (membrane). (C 6)

The azimuthal tractions may be evaluated as

(1 − x2)−1∕2�� =�Rm

⎡
⎢
⎣

)(V�
+ − V

�
−)

)r
⎤
⎥
⎦r=Rm

=−�
∞∑

n=1
(2n + 1)cnP′n(x), (C 7)
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finally yielding

(1 − x2)v′′(x) − 4xv′(x) =
�Rm

�

∞∑

n=1
(2n + 1)cnP′n(x) = 0 x≥ xp (membrane), (C 8)

which is the same as (2.17) in the main text.
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