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Active flexible filaments form the classical continuum
framework for modelling the locomotion of sperma‑
tozoa and algae driven by the periodic oscillation of
flagella. This framework also applies to the locomotion
of various artificial swimmers. Classical studies have
quantified the relationship between internal forcing
(localized or distributed internal moments or forces)
and external output (filament shape and swimming
speed). In this paper, we pose locomotion as a
mathematical optimization problem and demonstrate
that the swimming of an isolated active filament can
be accurately described and optimized using a small
number of eigenmodes, significantly reducing compu‑
tational complexity. In particular, we reveal that the
motion of a filamentwithmonophasic forcing, relevant
to recently proposed artificial swimmers, is governed
by exactly four forcing eigenmodes, only two of which
are independent. We further present optimizations of
such swimmers under various constraints.
This article is part of the theme issue ‘Biological fluid

dynamics: emerging directions’.

1. Introduction
Microorganisms employ a variety of mechanisms to
self‑propel through viscous fluids [1–6]. Due to their
small size, their swimming is governed by low‑Reynolds‑
number hydrodynamics, i.e. Stokes flows [7], which is
the assumed flow regime for the swimmers (whether
micro‑scale, millimetre‑scale or larger) discussed in this
paper. In this regime, inertial effects in the fluid become
negligible relative to viscous effects, and the locomotion
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kinematics are constrained by the scallop theorem: time‑reversible motion of the swimmer’s body
cannot produce any net swimming [8] (so named because a small scallop that repeatedly opens
and closes would not be able to swim in the Stokes flow limit). Consequently, microorganisms
must employ non‑time‑reversible actuation to undergo net locomotion. Suchmechanisms include
the rotation of rigid helical flagellar filaments of bacteria, such as those employed by the model
organism Escherichia coli, that rotate to push the swimmer forwards [2], or the waving dynam‑
ics of the two flexible flagella of the green algae Chlamydomonas that act like arms to pull the
swimmer forwards [3]. Perhaps the most commonly known method of propulsion is that of sper‑
matozoa, which utilizes an undulating flexible flagellum to transmit travelling waves that push
fluid backwards and hence push the swimmer forwards [4,5].

It has long been known that the actuation of the spermatozoa flagellum is not simply local‑
ized to the point of attachment with the cell body, but is instead continuously distributed along
the entire flagellum length [9–12]. This is facilitated by the axoneme, the internal structure of the
flagellum, containing molecular motors that power the relative sliding of microtubules [13,14],
leading to an effective (and sophisticated) distribution of internal moments and forces that are
functions of both space (location along the flagellum) and time [4]. Not only does understanding
the swimming dynamics of spermatozoa have fundamental interest for cellular biology and fertil‑
ity science [15], but the simple form of the spermatozoa model (a single flexible filament attached
to a passive body)makes it an ideal basis for theoretical studies inmathematical biology [5,16–21],
and for the design and fabrication of experimental, artificial swimmers [22,23], including those
with biomedical applications [24].

While we aim to make the analysis in this paper as general as possible, we keep in mind two
intuitive and motivational examples of such sperm‑like artificial swimmers. Dreyfus et al. [25]
constructed a micro‑swimmer with a flagellum made of connected magnetic beads, actuated by
an oscillating external magnetic field, that propelled a payload in the form of a red blood cell. This
design was refined in later works to produce increasingly effective and diverse swimmers [26–
29]. However, such swimmers are not truly self‑propelled, relying on external magnetic fields. In
a creative solution to this limitation,Williams et al. [30] created a polymeric sperm‑likemillimetre‑
scale swimmer that was powered by heart muscle cells (cardiomyocytes) cultured onto the side
of the flagellum, and this concept of muscle‑powered swimmers has since then been diversely
explored [31–33]. We later see that the magnetic swimmer [25] and the biohybrid swimmer [30]
provide key and intuitive examples for the application of the models developed in this paper.

Froma fundamental physical point of view, flexible flagella are subject to three principal forces:
viscous drag from the surrounding fluid, active internal forcing from the biological activity at the
axoneme level (or artificial equivalents) and passive elasticity of the flagella. Due to the lack of
inertia, these forces must always instantaneously balance, producing classical partial differen‑
tial equations (PDEs) which govern the dynamics of the filament [34]. These elastohydrodynamic
(EHD) equations directly relate the time‑varying shape of the flagella to the active internal forcing
and they have been used to model both real spermatozoa [4] and sperm‑like artificial swimmers
[22–25,30].

Mathematically, for a given active forcing inside the flagellum, the EHD equations can be
solved to determine the filament motion [4]. Then, since the total hydrodynamic forces and mo‑
ments exerted by a swimming microorganisms must be zero at all times, the filament motion can
be used to determine the swimming kinematics via a global force and moment balance. These
calculations are generally numerical, but a fully analytical approach becomes available if per‑
turbations are assumed to be small relative to a straight flagellum. However, to the authors’
knowledge, no single formula for the swimming speed directly in terms of the active forcing
(without the need to explicitly calculate the filament motion) has yet been offered, even in this
linearized limit. In addition to this linearization, proposed experimental artificial swimmers often
utilize forcing that is entirely in phase [25,30], simplifying the problem further. Despite these sim‑
plifications, optimizing the configuration of the swimmer, involving parameters such as filament
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elasticity, fluid viscosity and active force distribution, remains a largely brute‑force computational
(or experimental) task [26,27,29,30].

In this paper, we consider an idealized version of a biological or artificial flagellum: an active
flexible filament waving in a Stokes flow under small‑amplitude forcing and with no head or cell
body. In the first part of our paper, revisiting classical work, we solve the classical EHD equa‑
tions and derive a new formula directly linking the active forcing to the swimming speed via a
symmetric swimming speed function, bypassing the need to explicitly calculate the filament mo‑
tion. In the second part of our paper, we pose an optimization problem wherein we maximize
the swimming speed subject to a fixed forcing magnitude, and show that the solutions to this
optimization problem are the eigenmodes of the swimming speed function, which form an or‑
thonormal basis for all possible forcing functions. We demonstrate optimization procedures to
maximize the swimming speed of the filament subject to a variety of constraints, resulting in a re‑
duced computational complexity compared to classical methods. We pay particular attention to
the case of monophasic forcing, relevant to artificial swimmers studied experimentally [25,30]. By
applying the optimization procedure to such filaments, we find, remarkably, that only four of the
eigenvalues are non‑zero, and analytically calculate these eigenvalues and their corresponding
eigenfunctions. Two of these eigenmodes are simply reflections of the other two (their eigenval‑
ues being negative), and one eigenvalue dominates the other under optimal physical parameter
conditions. Swimming is therefore governed approximately by just a single eigenvalue and eigen‑
mode pair. Finally,wedemonstrate that analysis can be applied to this eigenmode pair to optimize
swimming far more efficiently than brute‑force computation.

The paper is organized as follows. In §2, we obtain the full dimensionless EHD equations for
a general moment forcing function. We then linearize these equations for a small internal forcing,
and solve the resultant forced hyperdiffusion equation to determine the filament shape (equations
(2.29)–(2.31)) in terms of the Green’s functionG (appendix A). Using this solution and global force
balances, we identify the swimming speed of the filament (equation (2.35)) entirely in terms of the
moment forcing function and a symmetric swimming speed function Gswim (equation 2.36) that is
constructed fromG, bypassing the explicit solution for the filament shape. In §3, we next consider
an eigenvalue/eigenfunction problem for Gswim that can be solved numerically (for arbitrary forc‑
ing phases) to obtain an orthonormal eigenmode basis (equation (3.1)) from which to construct
the forcing function, and evaluate the swimming speed (equation (3.2)). We also construct an op‑
timization procedure, which shows that these eigenfunctions produce local minima or maxima
for the swimming speed, subject to a fixed forcing magnitude constraint.

We next demonstrate the advantages of this method using two key examples. We first consider
a travelling wave of forcing, obtaining similar results to those observed in biological spermatozoa
[4], and identifying the optimal forcing wavelength and a range of near‑optimal values for the di‑
mensionless parameter Sp that denotes the relative elastic properties of the filament (figure 2a).We
then consider the case of monophasic forcing, analytically solving for the four non‑zero eigenval‑
ues and eigenfunctions. Considering potential applications to experimental, artificial swimmers
[25,30], we demonstrate analyses that can be used to optimize the swimming speed, subject to a
variety of physical constraints and limitations. In particular, and somewhat counter‑intuitively,
we show that swimming with a fixed total forcing magnitude is optimized in the limit of single‑
point actuation (rather than distributed forcing) and produces a far greater swimming speed than
even eigenfunction forcing under the same constraint. We conclude in §4 with a summary of the
key results, and offer a discussion of potential extensions of ourmodal approach tomore complex
waving swimmers.

2. Classical elastohydrodynamics of active filaments
A great deal of classical work has been done in modelling the response of the filament shape
to both proximal and internal forcing, and how the resultant motion induces driving forces and
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Figure 1. Active filament. Parameterization of a (dimensional) filament of total length L. Notation includes: arc length 0≤
s≤ L, tangent angle𝜓, tangent vector t, normal vector n, tip position X and instantaneous tip velocity (−U, V).

locomotion [1,4,5,18,34]. Here we summarize this work, in particular presenting the classical lin‑
earized, dimensionless EHD equations that balance the hydrodynamic, elastic and active internal
forces. We then solve these for general active forcing using a Green’s function, and thence derive
the swimming speed functionGswim. Unless stated otherwise,wework below in the lab framewith
standard Cartesian (x, y) axes; this is the frame in which the fluid is stationary in the far field, and
in which the filament achieves net displacement through swimming, as would be observed under
a stationary microscope.

(a) Summary of classical work
Parameterization and notation. We begin by parameterizing the filament of length L by its arc
length 0≤ s≤ L and tangent angle 𝜓(s, t), giving tangent vector t= (cos𝜓, sin𝜓) and normal vector
n= (− sin𝜓, cos𝜓), as shown in figure 1. The front tip, s= 0, has position X(t) and instantaneous
velocity (−U,V) (note the sign convention applied to U; forwards swimming gives U> 0). The
position x(s, t) and velocity u(s, t) of a material point along the filament are then given by

x(s, t) =X(t) +∫
s

0

⎛
⎜
⎝

cos𝜓(s′, t)

sin𝜓(s′, t)

⎞
⎟
⎠
ds′, (2.1)

u(s, t) =
⎛
⎜
⎝

−U(t)

V(t)

⎞
⎟
⎠
+∫

s

0

⎛
⎜
⎝

− sin𝜓(s′, t)

cos𝜓(s′, t)

⎞
⎟
⎠
𝜓t(s′, t) ds′. (2.2)

Dimensional hydrodynamic and EHD equations. The filament is subject to elastic forces with bending
modulusA; as is standard,A has units Nm2, and is ameasure of the stress required to bend the fil‑
ament, see equation (2.4). The filament is also subject to an active (internal) moment forcingm(s, t),
interpreted physically as the moment exerted by material at s+ on material at s−. Therefore, ms is
both the active moment per unit length acting on the filament, and the force exerted by material
at s+ on material at s−. It follows that mss can be interpreted as the active force per unit length
acting on the filament. Fluid drag acting on the filament is calculated using resistive‑force theory
[35], with parallel motion (i.e. motion in the direction of the long axis of the filament) incurring
a drag force per unit length of c‖ per unit filament speed, and perpendicular motion incurring
a drag force per unit length of c⟂ per unit filament speed, giving an overall hydrodynamic drag
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force per unit length

f=−c⟂ (u ⋅ n)n − c‖ (u ⋅ t) t=−c⟂u +
(
c⟂ − c‖

)
(u ⋅ t) t. (2.3)

The motion of the filament is then determined by balancing the elastic, active and hydrodynamic
forces. For brevity, we omit the derivation of the classical EHD equations, often done through
variational calculus [34], and instead directly state them:

𝜓t =
1
c⟂

(−A𝜓ssss +msss + 𝜓s𝜏s + 𝜏𝜓ss) +
1
c‖
𝜓s (A𝜓s𝜓ss − 𝜓sms + 𝜏s) , (2.4)

𝜏ss −
c‖
c⟂
𝜓2s 𝜏 =

c⟂ + c‖
c⟂

𝜓s (mss − A𝜓sss) + 𝜓ss (ms − A𝜓ss) . (2.5)

Here 𝜏 is an elastic tension force (units of N) that enforces inextensibility. Note that the applied
moment per unit length ms has replaced the internal moment per unit length af in Ref[34].

Dimensionless equations. We now apply non‑dimensionalization, scaling lengths with the fil‑
ament length L, time with 1∕𝜔 (a relevant angular forcing frequency) and moments and forces
with A∕L and A∕L2, respectively. Therefore the form of equation (2.2) for the filament velocity is
unchanged,

u(s, t) =
⎛
⎜
⎝

−U(t)

V(t)

⎞
⎟
⎠
+∫

s

0

⎛
⎜
⎝

− sin𝜓(s′, t)

cos𝜓(s′, t)

⎞
⎟
⎠
𝜓t(s′, t) ds′, (2.6)

though now 0≤ s≤ 1 and u,U and V have (implicitly) been non‑dimensionalized by scaling them
with L𝜔. In addition, the dimensionless hydrodynamic drag force per unit length is given by

f= Sp4 (−u +
c⟂ − c‖
c⟂

(u ⋅ t) t) , (2.7)

with the dimensionless ‘sperm’ number Sp defined as

Sp= L

(A∕𝜔c⟂)
1∕4

= L
le
, (2.8)

where le is the elastic penetration length, interpreted physically as the typical length scale over
which an elastically travelling displacement wave is damped by fluid drag. Finally, we obtain the
EHD equations in dimensionless form as,

Sp4𝜓t =−𝜓ssss + 𝜓s𝜏s + 𝜓ss𝜏 +msss +
c⟂
c‖
𝜓s (𝜓s𝜓ss + 𝜏s −ms𝜓s) , (2.9)

𝜏ss −
c‖
c⟂
𝜓2s 𝜏 =

c⟂ + c‖
c⟂

𝜓s (−𝜓sss +mss) + 𝜓ss (−𝜓ss +ms) . (2.10)

Global force balance. By noting that the total hydrodynamic force must be zero in Stokes flow, we
can integrate the dimensionless hydrodynamic force density, equation (2.7), along the length of
the filament, where u is given by equation (2.6) , giving a global dimensionless force balance as

⎛
⎜
⎝

0

0

⎞
⎟
⎠
=∫

1

0

⎧

⎨
⎩

⎛
⎜
⎜
⎝

(1 −
c⟂−c‖
c⟂

cos2(𝜓))U +
c⟂−c‖
c⟂

sin(𝜓) cos(𝜓)V

(−1 +
c⟂−c‖
c⟂

sin2(𝜓))V −
c⟂−c‖
c⟂

sin(𝜓) cos(𝜓)U

⎞
⎟
⎟
⎠

+
⎛
⎜
⎜
⎝

∫s
0 𝜓t(s

′) sin(𝜓(s′)) +
c⟂−c‖
c⟂

cos(𝜓(s))𝜓t(s′)(sin(𝜓(s) − 𝜓(s′)))ds′

∫s
0 −𝜓t(s

′) cos(𝜓(s′)) +
c⟂−c‖
c⟂

sin(𝜓(s))𝜓t(s′)(sin(𝜓(s) − 𝜓(s′)))ds′

⎞
⎟
⎟
⎠

⎫

⎬
⎭

ds, (2.11)

from which (the dimensionless) U and Vwill be determined.
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Leading‑order asymptotics. Next, we assume that the dimensionless forcing is small, of the form
m= 𝜖m(1), and look to solve the problem in powers of 𝜖 ≪ 1. While the following analysis is there‑
fore rigorously valid only for small 𝜖, previous results using similar analysis have demonstrated
remarkable accuracy for even𝒪(1) forcing [18]. Note that changingm to −mwould have no effect
on 𝜏(s, t) orU(t), but would change the signs of 𝜓(s, t) and V(t). Furthermore, in the limit 𝜖→ 0, we
must haveU→ 0 and 𝜏→ 0. Thereforewe deduce the following expansions in the small parameter
𝜖

𝜓 = 𝜖𝜓(1) + 𝜖3𝜓(3) + … , 𝜏 = 𝜖2𝜏(2) + 𝜖4𝜏(4) + … ,

U= 𝜖2U(2) + 𝜖4U(4) + … , V= 𝜖V(1) + 𝜖3V(3) + … . (2.12)

Note that the 𝒪(𝜖2) tension 𝜏 will, classically, prove absent from the leading‑order problem and
can henceforth be ignored. We have also assumed that, in the limit 𝜖→ 0, the resting straight fila‑
ment is aligned with the x axis; 𝜓 = 0. Linearizing equation (2.9) gives the classical hyperdiffusion
equation for linear elastohydrodynamics

Sp4𝜓(1)t + 𝜓(1)ssss =m(1)
sss , (2.13)

which describes the linearized local force balance between hydrodynamic drag (first term), restor‑
ing elastic effects (second term) and active forcing (third term). In this linear limit, the dimension‑
less elastic restoring moment and force exerted by material at s+ on material at s− are −𝜓(1)s and
−𝜓(1)ss , respectively.

Boundary conditions. In the derivation of the full EHD equations through variational calculus in
[34], boundary terms demand that both the force and torque provided by the filament itself (i.e. ex‑
cluding the effects of hydrodynamic drag) must be zero at both boundaries. In our dimensionless,
linear system, this becomes the conditions

m(1) − 𝜓(1)s =m(1)
s − 𝜓(1)ss = 0. (2.14)

This is because said forces and torques are provided by material at s+ acting on material at s−,
which cannot occur at the boundaries due to the lack of further material. This provides sufficient
boundary conditions for the problem, albeit dependent on the choice of m. However, we later
show that these can be reduced to boundary conditions that are independent of m, by suitable
integration of equation (2.13) .

Leading order swimming speed. Finally, considering the global force balance equation (2.11) at
leading order (specifically,𝒪(𝜖) in the y component, and𝒪(𝜖2) in the x component) yields leading
order expressions for V and U,

V(1) =−∫
1

0
(∫

s

0
𝜓(1)t (s′)ds′) ds, (2.15)

U(2) =−∫
1

0

c⟂ − c‖
c‖

𝜓(1)V(1) + (∫
s

0

c⟂
c‖
𝜓(1)t (s′)𝜓(1)(s′) +

c⟂ − c‖
c‖

𝜓(1)t (s′)(𝜓(1)(s) − 𝜓(1)(s′))ds′) ds.

(2.16)

We also soon show that the leading‑order torque balance is zero, as required for free swimming.

(b) Integrated hyperdiffusion equation
In preparation for solving equation (2.13) for a general forcing functionm using aGreen’s function
G, which will require setting m(1) to be a 𝛿‑function, we now integrate the equation three times.
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We define

y(1)(s, t) = 1
Sp4

∫
t

0

(
m(1)
ss (0, t′) − 𝜓(1)sss (0, t′)

)
dt′ +∫

s

0
𝜓(1)(s′, t) ds′, (2.17)

𝛽(s, t) =∫
s

0
y(1)(s′, t) ds′, (2.18)

𝛹(s, t) =∫
s

0
𝛽(s′, t) ds′. (2.19)

Here, y(1) will soon be shown to be the leading‑order vertical position of the filament as a func‑
tion of s and t; 𝛽 and 𝛹 have no discernible physical interpretation, besides their definitions
in terms of y(1). The governing equations for these are simply Sp4y(1)t + y(1)ssss =m(1)

ss for y(1), and
Sp4𝛽t + 𝛽ssss =m(1)

s for 𝛽, while the equation for 𝛹 is

Sp4𝛹t + 𝛹ssss =m(1). (2.20)

We now see that the boundary conditions equation (2.14), which here are equivalent to m(1) −
𝛹ssss =m(1)

s − 𝛹sssss = 0, reduce to

𝛹t =𝛹st = 0, (2.21)

at both boundaries, and these are the boundary conditions we henceforth consider.

(c) Calculating V(1) and U(2) and verifying global torque balance
We now obtain simple expressions for the velocity of the filament tip, for general time‑periodic
forcingm(1), by applying these governing equations and boundary conditions. Recalling equation
(2.15), the vertical speed is given by

V(1) =−∫
1

0
(∫

s

0
𝜓(1)t (s′)ds′) ds

=− 1
Sp4

∫
1

0
(∫

s

0
m(1)
s′s′s′ (s

′) − 𝜓(1)s′s′s′s′ (s
′)ds′) ds

=− 1
Sp4

∫
1

0

(
m(1)
ss (s) −m(1)

ss (0) − 𝜓(1)sss (s) + 𝜓(1)sss (0)
)
ds

= 1
Sp4

(
m(1)
ss (0) − 𝜓(1)sss (0)

)
= y(1)t (0, t) = 𝛹sst(0, t). (2.22)

Therefore, y(1)(0, t) can be understood as the vertical position of the front tip at time t in this lin‑
earized limit. From the definition of y(1), we then see that y(1)(s, t) is the leading‑order vertical
position of the point s at time t. Finally, note that periodic forcing, i.e. periodic 𝛹, will therefore
yield

⟨
V(1)

⟩
= 0, where ⟨…⟩ denotes the time‑average over a period.

Similarly, we can determine the time‑average of leading‑order swimming speed, U(2). Noting
that the time‑average of 𝜓(1)𝜓(1)t is zero for periodic forcing, we find

⟨
U(2)⟩=−

c⟂ − c‖
c‖

∫
1

0
{
⟨
𝜓(1)V(1)

⟩
+ (∫

s

0

⟨
𝜓(1)t (s′)𝜓(1)(s)

⟩
ds′)} ds

=−
c⟂ − c‖

c‖
∫

1

0

⟨
𝜓(1) [V(1) + (∫

s

0
𝜓(1)t (s′)ds′)]

⟩
ds

=−
c⟂ − c‖

c‖
∫

1

0

⟨
𝜓(1)y(1)t

⟩
ds = −

c⟂ − c‖
c‖

∫
1

0
⟨𝛹sss𝛹sst⟩ ds. (2.23)
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This is simply the classical propulsive force formula [1] divided by c‖. Here it will be useful to

define the reduced swimming speed as 𝒰 =
2c‖

c⟂−c‖

⟨
U(2)⟩, giving

𝒰 =−2∫
1

0
⟨𝛹sss𝛹sst⟩ ds. (2.24)

Finally, we can calculate the leading order global torque, measured about the tip, acting on the
filament as

𝒢(1) =∫
1

0
y(1)t s ds=∫

1

0
𝛹sst s ds. (2.25)

Recalling that 𝛹st =𝛹t = 0 at both boundaries, we integrate by parts to obtain

𝒢(1) =−∫
1

0
𝛹st ds= 0, (2.26)

hence the leading‑order global torque 𝒢(1) is indeed zero at all times.

(d) Solving for filament motion using a Green’s function
We now consider the simple case of a moment forcing function m(1)(s, t) =ℜ

[
f(s)e−i𝜙(s)eit

]
,

where f is real, 𝜙(s) is the (real) phase function, and the angular frequency is 1 thanks to non‑
dimensionalization. The corresponding solution to equation (2.20) is given by 𝛹 =ℜ

[
𝛷(s)eit

]
,

where 𝛷 is a complex function given by Sp4i𝛷 + 𝛷ssss = f(s)e−i𝜙(s), with solution

𝛷(s) =∫
1

0
G(s; 𝜉)f(𝜉)e−i𝜙(𝜉) d𝜉. (2.27)

G(s; 𝜉) is the Green’s function of the problem, given by

Sp4iG + G′′′′ = 𝛿(s − 𝜉), (2.28)

and subject toG=Gs = 0 at both boundaries. The full derivation and expression forG are given in
appendix A. In particular,G is comprised entirely of the four natural modes eks, where k4 =−Sp4i.
Therefore, the solution 𝛹 =ℜ

[
𝛷(s)eit

]
for general forcing function m(1)(s, t) =ℜ

[
f(s)e−i𝜙(s)eit

]
is

written as

𝛹(s, t) =ℜ [eit∫
1

0
G(s; 𝜉)f(𝜉)e−i𝜙(𝜉) d𝜉] . (2.29)

Recalling that y(1) =𝛹ss and 𝜓(1) =𝛹sss, this then allows us to express the filament shape in terms
of the derivatives of G with respect to s,

y(1)(s, t) =ℜ [eit∫
1

0
G′′(s; 𝜉)f(𝜉)e−i𝜙(𝜉) d𝜉] , (2.30)

or equivalently,

𝜓(1)(s, t) =ℜ [eit∫
1

0
G′′′(s; 𝜉)f(𝜉)e−i𝜙(𝜉) d𝜉] . (2.31)

Note that G, and therefore 𝛹, y(1) and 𝜓(1), are dependent upon the dimensionless sperm number
Sp that parameterizes the problem. We omit the explicit dependence on Sp for brevity, but pro‑
ceed with the understanding that any calculation is done for a specific value of Sp. In particular,
any optima that we identify are the optima for a specific value of Sp, and variation of Sp will be
necessary to determine global optima.
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(e) Calculating the swimming speed using G
The result in equation (2.24) can be used to calculate the swimming speedwhen the filament shape
is known. We would first need to calculate 𝛹 and its derivatives, perform a time‑average, and fi‑
nally an integral in s. However, it is possible to circumvent calculating the filament shape, and
instead calculate the swimming speed directly from the forcing function and G, using a double
integral. For general moment forcingm(1)(s, t) =ℜ

[
f(s)e−i𝜙(s)eit

]
, we show in appendix B that 𝒰 is

given by

𝒰 =−∫
1

𝜉1=0
∫

1

𝜉2=0
f(𝜉1)ℑ

[
G′(𝜉1; 𝜉2)ei(𝜙(𝜉1)−𝜙(𝜉2))

]
f(𝜉2) d𝜉2 d𝜉1. (2.32)

Importantly, the derivation of this equation in appendix B involves a time‑average over a period.
Therefore, if higher frequency modes are present within m(1) (i.e. 𝜔= 2, 3, 4,… under the current
non‑dimensionalization, which is applied with regard to the fundamental mode) then their in‑
teractions will be averaged and vanish since, for example ⟨sin (at) sin (bt)⟩= 0 when a and b are
distinct integers. Similarly, any constant forcing (i.e. 𝜔= 0) will have no effect on the swimming
speed, since constant forcing cannot produce swimming, nor can any interactions between this
constant forcing and non‑zero frequency modes. Noting that each mode will have its own non‑
dimensionalization, and therefore require its own unique re‑dimensionalization, we deduce that
the overall dimensional swimming speed can be obtained simply as the sum of the dimensional
swimming speeds corresponding to each individual temporal mode ofm(1). Obviously, this equa‑
tion for the swimming speed is not very intuitive due to the complex values of G and ei𝜙. We can
further define real symmetric and antisymmetric functions as

Gs(𝜉1, 𝜉2) = −1
2
(
ℑ
[
G′(𝜉1; 𝜉2)

]
+ℑ

[
G′(𝜉2; 𝜉1)

])
, (2.33)

Ga(𝜉1, 𝜉2) = −1
2
(
ℜ
[
G′(𝜉1; 𝜉2)

]
−ℜ

[
G′(𝜉2; 𝜉1)

])
, (2.34)

and these enable us to rewrite equation (2.32) as

𝒰 =∫
1

𝜉1=0
∫

1

𝜉2=0
f(𝜉1)Gswim(𝜉1, 𝜉2)f(𝜉2) d𝜉2 d𝜉1, (2.35)

where

Gswim(𝜉1, 𝜉2) =Gs(𝜉1, 𝜉2) cos (𝜙(𝜉1) − 𝜙(𝜉2)) + Ga(𝜉1, 𝜉2) sin (𝜙(𝜉1) − 𝜙(𝜉2)) (2.36)

is the (real) swimming speed function. The result in equation (2.35) is the first main result of this
paper, showing the direct link between forcing (function f) and swimming (reduced speed 𝒰).

Once again, note thatGswim is dependent upon Sp, and also on the phase function 𝜙, thoughwe
omit these dependences from the notation for brevity. By construction, Gswim is real and symmet‑
ric for any phase function 𝜙. OnceGs andGa are calculated,𝒰 can easily be numerically evaluated
for any forcing magnitude f(s) and phase 𝜙(s).

3. Modal analysis
By deriving and solving the classical forced hyperdiffusion equation for filamentmotion, we have
determined equation (2.35) for the swimming speed𝒰 of the filament entirely in terms of the forc‑
ing function f and the real symmetric function Gswim that depends on the sperm number Sp and
phase function 𝜙.

There are, however, two practical concerns regarding equation (2.35). First, this equation has
a quadratic computational complexity. If Gswim has been computed, and f is known, and the
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integrals are evaluated using some N‑point numerical integration scheme (e.g. trapezium ap‑
proximation), then evaluating 𝒰 will usually be an 𝒪(N2) process. Second, if we are interested
in maximizing 𝒰 over choice of f, there is no clear way to do this using equation (2.35).

We now show that both concerns can be addressed by exploiting the real symmetric nature
of Gswim and deriving a modal analysis of the system. We show that 𝒰 can be well approxi‑
mated using an𝒪(N) or even𝒪(1) process, and optimization techniques for the choice of f become
available.

(a) Eigenfunctions and eigenvalues: theory
The key point that allows us to derive a modal analysis of this problem is to note that, as the
continuum extension of a real symmetric matrix,Gswim has an infinite basis of orthonormal eigen‑
functions gn(𝜉) and corresponding eigenvalues 𝜆n, dependent upon Sp and 𝜙, and given by

∫
1

0
Gswim(𝜉1, 𝜉2)gn(𝜉2) d𝜉2 = 𝜆ngn(𝜉1), ∫

1

0
gm(𝜉)gn(𝜉) d𝜉 = 𝛿mn. (3.1)

We can express f in terms of this basis, and hence express the swimming speed from equation
(2.35) via this modal approach, leading to

f(𝜉) =
∞∑

n=1
angn(𝜉), an =∫

1

0
f(𝜉)gn(𝜉) d𝜉, 𝒰 =

∞∑

n=1
a2n𝜆n. (3.2)

Since eigenvalues typically decay in magnitude as n becomes large, a finite truncation of these
series is usually sufficient to produce accurate results.

(b) Eigenfunctions and eigenvalues: computation
Algebraically calculating the eigenfunctions and eigenvalues ofGswim is often technically possible
by exploiting the definition of Green’s function as the solution to a differential equation (see Ex‑
ample B below). However, it is usually easier to calculate them numerically by discretizing Gswim
into an N ×N real symmetric matrix and the eigenfunction gk into a real vector of length N,

Gmatrix
mn =Gswim (

2m − 1
2N , 2n − 1

2N
) , gvectork,n = gk (

2n − 1
2N

) , (3.3)

where 1≤m,n≤N. The discretized eigenfunctions (eigenvectors in this context) and correspond‑
ing eigenvalues of equation (3.1) are therefore given by approximating the integral numerically
as

Gmatrixgvectork ≈N𝜆kgvectork , (3.4)

and so the eigenfunctions and eigenvalues can easily be obtained via standard methods of com‑
puting the eigenvectors and eigenvalues of a real symmetric matrix. Note that N must be large
enough to accurately capture the behaviour of Gswim and its eigenfunctions; in practice we find
that setting N= 100 comfortably achieves this, in the sense that increasing N further, even to
N= 1000, had no discernible effect on any of the results or figures discussed below. SettingN= 100
enablesGmatrix to be evaluated, and its eigenfunctions and eigenvalues calculated, practically in‑
stantly on a laptop computer. We find that the eigenvalues typically decay quite quickly, and only
a handful of eigenfunctions need be considered in practice. Importantly, the number of relevant
eigenvalues does not change noticeably when increasing N, see figure 2b below. Of course, the
eigenfunctions and eigenvalues depend on the phase function 𝜙 and the sperm number Sp. While
Sp is something that can be continuously varied to find an optimum, the function 𝜙 is often set by
physical or biological context, as we will soon demonstrate with two key examples.
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(c) Using calculus of variations to prove the eigenfunctions produce optimal swimming
To continue with this modal analysis, we first seek an intuitive understanding of the eigenfunc‑
tions and eigenvalues obtained above, in particular how they provide optimal choices for the
forcing function. We first note that f must be constrained in some way, otherwise we could sim‑
ply, for example, double f to quadruple 𝒰. Various physical and biological constraints may be
relevant, such as having a fixed rate of doingwork (particularly relevant for biological cells such as
spermatozoa) or engineering constraints that limit the choice of f (relevant for artificial swimmers).

From a mathematical perspective, the simplest constraint is one of fixed average magnitude,

∫
1

0
f(𝜉)2 d𝜉 = 1, (3.5)

which can be interpreted physically as the filament having a fixed total (squared)moment forcing.
We then consider the variational optimization of the swimming speed subject to this fixed forcing
magnitude, yielding the Lagrangian

ℒ=∫
1

𝜉1=0
∫

1

𝜉2=0
f(𝜉1)Gswim(𝜉1, 𝜉2)f(𝜉2) d𝜉2d𝜉1 − 𝜆 [∫

1

0
f(𝜉)2 d𝜉 − 1] , (3.6)

where 𝜆 acts as the Lagrange multiplier of the variational problem, enforcing the constraint in
equation (3.5) (i.e. the bracketed term is zero). Applying the standard perturbation f↦ f + 𝛿f yields
a linear change in the Lagrangian given by

1
2𝛿ℒ=∫

1

𝜉1=0
∫

1

𝜉2=0
𝛿f(𝜉1)Gswim(𝜉1, 𝜉2)f(𝜉2) d𝜉2d𝜉1 − 𝜆∫

1

0
𝛿f(𝜉)f(𝜉) d𝜉. (3.7)

By writing this as

1
2𝛿ℒ=∫

1

𝜉1=0
𝛿f(𝜉1) [∫

1

𝜉2=0
Gswim(𝜉1, 𝜉2)f(𝜉2) d𝜉2 − 𝜆f(𝜉1)] d𝜉1, (3.8)

we establish the solution to this variational problem as the function f (obeying the fixed forcing
magnitude constraint) satisfying

∫
1

𝜉2=0
Gswim(𝜉1, 𝜉2)f(𝜉2) d𝜉2 = 𝜆f(𝜉1). (3.9)

The result in equation (3.9) shows that the eigenfunctions f of Gswim are precisely the choice of
forcing function which provide (local) optima to this variational problem. In other words, setting
f to be an eigenfunction of Gswim necessarily yields a local maximum (or minimum) for the swim‑
ming speed. The global maximum (for each particular value of Sp and 𝜙) can then be identified
as the eigenfunction with the largest (positive) eigenvalue, which can then be maximized over all
acceptable choices of Sp and 𝜙 to obtain the truemaximum swimming speed. Alternatively, swim‑
ming in the opposite direction can be maximized by choosing the eigenfunction with the largest
(in magnitude) negative eigenvalue. It should be noted that this simple choice of f is only optimal
when the constraint upon f truly is a fixed magnitude constraint; a variety of other constraints
may be relevant, such as a fixed rate of doing work, or constraints upon f itself (see Example B
below). In such cases, the full suite of eigenfunctions will have to be considered in general, though
typically all but a handful of these can be neglected by virtue of small eigenvalues.

(d) Example A: travelling wave forcing
We now consider the application of our modal approach to two relevant examples. A biologically
relevant situation is that of a travelling wave of forcing [4]. If we set 𝜙(s) = 2𝜋ks for some constant
k, the overall moment forcing is then given by
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Figure 2. Modal approach under travelling wave forcing. (a) Heatmap of the largest positive eigenvalue for various values
of Sp and k, with k= 0 (dashed red line) and the optimal k≈ 0.72 (dashed black line) indicated. Examples of spermatozoa
swimming through in vitro fertilization medium (red, k= 1.5, Sp= 4 [4,36,37]) and a near-optimal active filament (solid
pink, k= 0.72, Sp= 3) are also shown, as well as optimal swimming in the same direction as wave propagation (hollow pink,
k=−1.5, Sp= 3). (b) Log–log plot (base 10) showing the errors incurred as the truncation of equation (3.2) is varied, for a
near-optimal filament (k= 0.72, Sp= 3). Eigenvalues are arranged in order of decreasing magnitude, normalized relative to
the largest/first eigenvalue, and their decay as n increases is given (thick dashed black line). Also plotted is the relative error
incurred by truncating equation (3.2) at the n-th term, normalized relative to the exact swimming speed calculated using equa-
tion (2.35), for simple forcing functions f(𝜉)≡ 1 (red solid line), f(𝜉) = sin (2𝜋𝜉) (blue) and f(𝜉) = sin (8𝜋𝜉) (pink). (c)
The eigenfunctions for the six eigenvalues with largest magnitudes, for the same near-optimal filament, normalized using the
fixed forcingmagnitude constraint, equation (3.5). The first and sixth eigenvalues are positive (solid lines) while the others are
negative (dashed lines).

m(1)(s, t) =ℜ
[
f(s)ei(t−2𝜋ks)

]
. (3.10)

This corresponds to a forcing wave of wavelength 1∕k (i.e. there are k wavelengths on the flag‑
ellum) travelling at speed 1∕2𝜋k in the backwards direction, i.e. from the proximal end (s= 0) to
the distal end (s= 1). This is approximately observed in real spermatozoa, both in high‑viscosity,
viscoelastic cervical mucus substitute (k≈ 2 − 3, Sp≈ 24) and low‑viscosity in vitro fertilization
medium with viscosity similar to that of water (k≈ 1.5, Sp≈ 4) [4,36,37].

With the moment forcing in equation (3.10), the swimming speed function Gswim is given by

Gswim(𝜉1, 𝜉2) =Gs(𝜉1, 𝜉2) cos (2𝜋k (𝜉1 − 𝜉2)) + Ga(𝜉1, 𝜉2) sin (2𝜋k (𝜉1 − 𝜉2)) . (3.11)

Note that the forcing strength f is stationary and does not move with the wave. One naturally ex‑
pects swimming to occur in the direction opposite to the direction of wave propogation, i.e.𝒰k> 0
under the current sign convention, and this is observed in spermatozoa [4,36,37], with backwards
travelling waves (k> 0) generating forwards swimming (𝒰 > 0). In addition, k< 0 corresponds to
forwards travelling waves, which are generally not biologically observed.

(i) Results of modal analysis

Optimal swimming mode. For each Sp and k, we next apply the above modal approach to compute
the eigenvalues of equation (3.11). Themagnitude of largest positive eigenvalue is plotted in figure
2a as a function of Sp and k (allowing both signs for k). For each value of the parameters, this cor‑
responds to the optimal swimming speed under the constraint of fixed forcing magnitude. Note
that, given the distributed forcing, swimming speed does not tend to zero as Sp→ 0, in contrast to
classical results for single‑point actuation [17]. However, the swimming speed does tend to zero
as Sp becomes large, corresponding to elastic waves that decay over very short dimensionless
length scales.

We observe that, in accordance with the intuition that 𝒰k> 0 in the biological world (i.e.
swimming occurs in the direction opposite to wave propagation), the optimal k (i.e. that which
maximizes forward swimming) is positive, approximately k= 0.72 (dashed black line in figure 2a).
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In fact, there is a large region of near‑optimality, for a range of values of both k and Sp, and the
dependence on Sp within this region is extremely weak. This means that there is a great deal of
freedom in choosing k and especially Sp to optimize the forward swimming speed. Note that the
actual optimum has Sp→ 0, which is obviously physically impossible. Therefore we often select
a ‘near‑optimum’ (solid pink dot in figure 2a) that could correspond to a real swimmer, without
any notable sacrifice to swimming speed.

Remarkably, the conditions for near‑optimal swimming of this isolated filament (solid pink
dot in figure 2a) are similar to the conditions observed in real spermatozoa swimming through
water‑like in vitro fertilization medium (red dot in figure 2a) [4,36,37]. This suggests that despite
the various assumptions made, such as the linearization and lack of a head, an active filament
model reasonably approximates biological spermatozoa.

Interestingly, 𝒰k< 0 is also possible, and surprisingly effective (local optimum in the region
𝒰k< 0 shown by the hollow pink dot in figure 2a), with forwards travellingwaves able to generate
approximately half the maximum speed compared with the 𝒰k> 0 case.

Superposition of modes. If f cannot be freely chosen, or is not subject to a fixed forcingmagnitude,
we must use the full suite of eigenfunctions and eigenvalues. Fortunately, the eigenvalues decay
rapidly, as shown in figure 2b (thick dashed black line) for a near‑optimal filament with k= 0.72
and Sp= 3. Of course, a small eigenvalue can still contribute significantly to 𝒰 if the correspond‑
ing coefficient an is large enough. For a typical forcing function f(𝜉)≡ 1, approximately observed
in spermatozoa [4], figure 2b also shows that the relative errors in approximating 𝒰 using a trun‑
cation of equation (3.2), compared with using the exact expression in equation (2.35), also decays
rapidly, and only a few terms need be retained to obtain an accurate result.

For comparison, we also show in figure 2b the corresponding results obtained by setting
f(𝜉) = sin (2𝜋𝜉) and f(𝜉) = sin (8𝜋𝜉). Overall, only a small truncation is needed, with just 10 terms
being sufficient to obtain an error of less than 0.01% for both f(𝜉)≡ 1 and f(𝜉) = sin (2𝜋𝜉), with the
higher‑frequency forcing f(𝜉) = sin (8𝜋𝜉) incurring an error of approximately 0.1% using the same
number of modes.

This increase in error induced by higher frequency forcing can be understood physically by
examining the form of the eigenfunctions. The six eigenvalues with largest magnitudes, and their
corresponding eigenfunctions (normalized using the fixed forcingmagnitude constraint, equation
(3.5)), are shown in figure 2c, again for a near‑optimal filament with k= 0.72 and Sp= 3. Despite
the fact that the forcing wave is travelling backwards (i.e. k> 0) four of these six eigenvalues are
negative (the largest eigenvalue is positive, however, and more than twice the magnitude of any
other eigenvalue). Furthermore, the negative eigenvalues appear to have eigenfunctionswhich are
significantly more oscillatory than their counterparts for positive eigenvalues, and the eigenfunc‑
tion of the largest eigenvalue is the least oscillatory of all. In fact, the frequency of the eigenmodes
increases as the magnitudes of the eigenvalues decrease, explaining the greater errors observed
for higher frequency forcing seen in figure 2b. Finally, note that the eigenfunction of the largest
eigenvalue is close to the actual forcing observed in real spermatozoa [4].

It is important to note that these results do not discernibly change when increasing N, hence
the number of relevant eigenfunctions and eigenvalues does not change asN is further increased.
We can therefore generally truncate equation (3.2) to a fairly small number of modes, while still
retaining excellent accuracy in calculating the swimming speed.

(ii) Computational considerations

When f can be freely varied, and is subject to a fixed forcing magnitude, we immediately obtain
the optimal f for fixed Sp and k as the eigenfunction with the largest eigenvalue. Otherwise, we
use a finite truncation of equation (3.2), and this provides multiple computational advantages
compared with standard methods of calculating 𝒰.

For any given f, the swimming speed could be evaluated without the use of the modal ap‑
proach, using equation (2.35), by performing a double integral. Assuming said integrals are
calculated numerically, using some N‑point scheme (such as a trapezium approximation), this
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represents a computational complexity of 𝒪(N2). However, using the modal approach, with a fi‑
nite truncation of the eigenfunctions in equation (3.2) (e.g. retaining the 10 largest‑in‑magnitude
eigenvalues), we instead only need to calculate a fixed number of single integrals, and so the over‑
all computational complexity of calculating 𝒰 is 𝒪(N), with a slight trade‑off of accuracy in the
result due to the neglected eigenfunctions. Of course, this requires us to know the eigenfunctions
and eigenvalues; however, once these are calculated, they can be applied to calculate 𝒰 in 𝒪(N)
time for any f.

This advantage is even more striking if, instead of choosing f and then calculating integrals
to identify the coefficients an of equation (3.2), we do the converse: select the an, and use these to
calculate f. Not only does this fully circumvent the need to calculate the integrals, enabling𝒰 to be
computed with 𝒪(1) complexity, but it reduces the phase space of f from an infinite‑dimensional
one (where f can be continuously varied) to one of finite dimensions. Then the optimal f, for that
particular Sp and k, can be identified easily by maximizing 𝒰 through variation of the an.

Clearly, the actual procedure to calculate 𝒰 will depend on the constraints imposed on f.
Furthermore, these methods do not provide any way to maximize 𝒰 over all Sp and k.

(e) Example B: monophasic forcing
Having considered an example that is biologically relevant, we now turn to one that is applicable
to the design of artificial swimmers. Due to the difficulties of engineering on such small scales,
forcing is typically simple in form. Two notable examples of experimental artificial swimmers are
the filament made of magnetic beads used in [25], and the polymeric flagellum actuated by car‑
diomyocytes used in [30]. In both of these cases, forcing generally acts in phase, 𝜙≡ 0 (equivalent
to the k= 0 case in the previous example), with the former applying distributed forcing and the
latter utilizing point actuation. When taking 𝜙≡ 0, Gswim is given simply by

Gswim(𝜉1, 𝜉2) =Gs(𝜉1, 𝜉2) = −1
2
(
ℑ
[
G′(𝜉1; 𝜉2)

]
+ℑ

[
G′(𝜉2; 𝜉1)

])
. (3.12)

In this section, we apply our modal approach to develop optimization techniques for such arti‑
ficial swimmers. We find, remarkably, that only (exactly) four of the eigenvalues are non‑zero.
Two of these are simply negatives of the other two, their eigenfunctions being reflections, due to
the symmetry of the filament. We start below by analytically proving that only four of the eigen‑
values are non‑zero, followed by developing an analytic method to calculate the corresponding
eigenfunctions. We then apply these results to establish exact formulae for the swimming speed
𝒰, before making various approximations to optimize the configuration of an artificial swimmer,
and demonstrating this using simple examples.

(i) Only four eigenvalues are non-zero

Given the swimming speed function in equation (3.12), the eigenfunction f with eigenvalue 𝜆
satisfies

𝜆f(𝜉1) =∫
1

0
Gswim(𝜉1, 𝜉2)f(𝜉2) d𝜉2

= 1
2ℑ [∫

1

0
−G′(𝜉1; 𝜉2)f(𝜉2) − G′(𝜉2; 𝜉1)f(𝜉2) d𝜉2]

= 1
2ℑ [−

𝜕
𝜕𝜉1

(∫
1

0
G(𝜉1; 𝜉2)f(𝜉2) d𝜉2) +∫

1

0
G(𝜉2; 𝜉1)

𝜕
𝜕𝜉2

(
f(𝜉2)

)
d𝜉2]

= 1
2ℑ

[
−I′1(𝜉1) + I2(𝜉1)

]

=ℜ [I3] , (3.13)
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where I1 and I2 are the solutions to the differential equations

Sp4iI1(𝜉1) + I′′′′1 (𝜉1) = f(𝜉1), (3.14)

Sp4iI2(𝜉1) + I′′′′2 (𝜉1) = f′(𝜉1), (3.15)

and I3 =
1
2
i
(
I′1 − I2

)
satisfies the equation

Sp4iI3(𝜉1) + I′′′′3 (𝜉1) = 0, (3.16)

with I(0) = I(1) = I′(0) = I′(1) = 0 for both I1 and I2.
Defining, as in appendix A, 𝜂 = e−𝜋i∕8, we therefore deduce that

I3(𝜉1) =AeSp𝜂𝜉1 + BeSp𝜂i𝜉1 + Ce−Sp𝜂𝜉1 +De−Sp𝜂i𝜉1 (3.17)

consists entirely of the naturalmodes of the filament. Therefore, since the eigenfunction fmust sat‑
isfy 𝜆f(𝜉1) =ℜ [I3], we deduce that 𝜆= 0whenever f contains a non‑natural mode, and so there are
only finitely many eigenfunctions with non‑zero eigenvalues, each constructed entirely using the
natural modes. Using complex coefficients, I3 has only four modes, while using real coefficients,
f has eight modes. Note, however, that I3(0) = I3(1) = 0, which reduces the number of indepen‑
dent modes of I3 to two, therefore reducing the number of independent modes of f to four. Hence
there are at most four eigenfunctions fwith non‑zero eigenvalue, and by symmetry, two of these
eigenfunctions will simply be reflections of the other two, their eigenvalues being negatives.

We can identify the I3 corresponding to each mode of f, and equating modes then results in an
eigenvector problem, allowing us to find the eigenfunctions f and their corresponding eigenval‑
ues. This can be done using a standard method (see appendix C) to obtain an 8 × 8 system with
four zero eigenvalues. Alternatively, as we now show, we can instead incorporate the boundary
conditions for I3 directly into the eigenfunction calculation to obtain a simpler 4 × 4 system that
fully identifies the eigenfunctions and eigenvalues, and demonstrates their symmetry.

(ii) Analytic calculation of eigenvalues

The function I3 must obey I3(0) = I3(1) = 0, and therefore, by expressing two of the coefficients in
terms of the other two, we find that, regardless of f, we can express I3 in the form

I3(𝜉1) =Afs(𝜉1) + Bfa(𝜉1) (3.18)

for symmetric (fs(1 − 𝜉1) = fs(𝜉1)) and antisymmetric (fa(1 − 𝜉1) = −fa(𝜉1)) functions

fs(𝜉1) =
eSp𝜂𝜉1 + eSp𝜂e−Sp𝜂𝜉1

1 + eSp𝜂
− eSp𝜂i𝜉1 + eSp𝜂ie−Sp𝜂i𝜉1

1 + eSp𝜂i
, (3.19)

fa(𝜉1) =
eSp𝜂𝜉1 − eSp𝜂e−Sp𝜂𝜉1

1 − eSp𝜂
− eSp𝜂i𝜉1 − eSp𝜂ie−Sp𝜂i𝜉1

1 − eSp𝜂i
. (3.20)

The forcing f must also have this form to be an eigenfunction with non‑zero eigenvalue, and in
particular we can calculate I1 and I2 for the four different modes of f. For f(𝜉) =ℜ

[
bfs(𝜉1)

]
, where

b= 1 or b= i, we have

I(b,s)1 (𝜉1) =
b𝜉1

8Sp3𝜂3
(
eSp𝜂𝜉1 − eSp𝜂e−Sp𝜂𝜉1

1 + eSp𝜂
− i e

Sp𝜂i𝜉1 − eSp𝜂ie−Sp𝜂i𝜉1

1 + eSp𝜂i
) +

b∗fs(𝜉1)∗

4Sp4i

+ A(b,s)
1 eSp𝜂𝜉1 + B(b,s)1 eSp𝜂i𝜉1 + C(b,s)1 e−Sp𝜂𝜉1 +D(b,s)

1 e−Sp𝜂i𝜉1 ,

I(b,s)2 (𝜉1) =
b𝜉1

8Sp2𝜂2
(
eSp𝜂𝜉1 + eSp𝜂e−Sp𝜂𝜉1

1 + eSp𝜂
+ eSp𝜂i𝜉1 + eSp𝜂ie−Sp𝜂i𝜉1

1 + eSp𝜂i
) +

b∗f′s(𝜉1)∗

4Sp4i

+ A(b,s)
2 eSp𝜂𝜉1 + B(b,s)2 eSp𝜂i𝜉1 + C(b,s)2 e−Sp𝜂𝜉1 +D(b,s)

2 e−Sp𝜂i𝜉1 . (3.21)
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In addition, if f(𝜉) =ℜ
[
bfa(𝜉1)

]
, where b= 1 or b= i, we obtain

I(b,a)1 (𝜉1) =
b𝜉1

8Sp3𝜂3
(
eSp𝜂𝜉1 + eSp𝜂e−Sp𝜂𝜉1

1 − eSp𝜂
− i e

Sp𝜂i𝜉1 + eSp𝜂ie−Sp𝜂i𝜉1

1 − eSp𝜂i
) +

b∗fa(𝜉1)∗

4Sp4i

+ A(b,a)
1 eSp𝜂𝜉1 + B(b,a)1 eSp𝜂i𝜉1 + C(b,a)1 e−Sp𝜂𝜉1 +D(b,a)

1 e−Sp𝜂i𝜉1 ,

I(b,a)2 (𝜉1) =
b𝜉1

8Sp2𝜂2
(
eSp𝜂𝜉1 − eSp𝜂e−Sp𝜂𝜉1

1 − eSp𝜂
+ eSp𝜂i𝜉1 − eSp𝜂ie−Sp𝜂i𝜉1

1 − eSp𝜂i
) +

b∗f′a(𝜉1)∗

4Sp4i

+ A(b,a)
2 eSp𝜂𝜉1 + B(b,a)2 eSp𝜂i𝜉1 + C(b,a)2 e−Sp𝜂𝜉1 +D(b,a)

2 e−Sp𝜂i𝜉1 . (3.22)

Here there are 32 coefficients that must be evaluated by applying the boundary conditions on I1
and I2. According to equations (3.14) and (3.15), and the definition of I3, we see that a symmetric
f results in an antisymmetric I3, and an antisymmetric f results in a symmetric I3. Recalling the
form that I3 must take, equation (3.18), and that the non‑natural modes of I1 and I2 vanish in I3,
we deduce that

I(b,s)3 (𝜉1) =
1
2 i (

(
I(b,s)1

)′
− I(b,s)2 )= E(b,s)3 fa(𝜉1), (3.23)

I(b,a)3 (𝜉1) =
1
2 i (

(
I(b,a)1

)′
− I(b,a)2 )= E(b,a)3 fs(𝜉1), (3.24)

where each of the new coefficients is given by

E(b,a)3 = 1
2 i
(
1 + eSp𝜂

) (
Sp𝜂A(b,a)

1 − A(b,a)
2

)
, (3.25)

E(b,s)3 = 1
2 i
(
1 − eSp𝜂

) (
Sp𝜂A(b,s)

1 − A(b,s)
2

)
. (3.26)

These four coefficients can be calculated for any given Sp, and this gives us a fully determined
system. If we write the eigenfunction as

f(𝜉1) =Afℜ
[
fs(𝜉1)

]
+ Bfℜ

[
fa(𝜉1)

]
+ Cfℜ

[
ifs(𝜉1)

]
+Dfℜ

[
ifa(𝜉1)

]
, (3.27)

then this results in an I3 given by

I3(𝜉1) =
(
AfE

(1,s)
3 + CfE

(i,s)
3

)
fa(𝜉1) +

(
BfE

(1,a)
3 +DfE

(i,a)
3

)
fs(𝜉1). (3.28)

Recalling that the coefficients of f are real, and that 𝜆f=ℜ [I3], we finally obtain an eigenvector
problem

𝜆

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Af

Bf
Cf

Df

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 ℜ
[
E(1,a)3

]
0 ℜ

[
E(i,a)3

]

ℜ
[
E(1,s)3

]
0 ℜ

[
E(i,s)3

]
0

0 ℑ
[
E(1,a)3

]
0 ℑ

[
E(i,a)3

]

ℑ
[
E(1,s)3

]
0 ℑ

[
E(i,s)3

]
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Af

Bf
Cf

Df

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (3.29)

This equation can easily be solved for the coefficients of f, therefore identifying the eigenfunc‑
tions and eigenvalues. Furthermore, we see that any solution has the property that a change
Bf↦−Bf,Df↦−Df, 𝜆↦−𝜆 still satisfies this equation, which is equivalent to a change
f(𝜉)↦ f(1 − 𝜉)with negative eigenvalue, as required by symmetry of the filament.

(iii) Results of modal analysis

Having shown that only four eigenvalues are non‑zero, and derived a method by which to calcu‑
late them analytically, we now present these results, and exploit them to calculate the swimming
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Figure 3. Eigenvalues and eigenfunctions for monophasic forcing. (a) The large (red) and small (blue) eigenvalues, 𝜆+ and
𝜆−, respectively, for monophasic forcing,𝜙≡ 0. Note that 𝜆+ is plotted against 10𝜆−. (b) Eigenfunctions corresponding to
the large (red) and small (blue) eigenvalues, g+ and g−, respectively, normalizedwith the established fixed forcingmagnitude
condition, for the optimal sperm number Sp= 4.7.

speed. Denoting the two positive eigenvalues by 𝜆+ and 𝜆−, with corresponding eigenfunctions
g+ and g−, respectively, equation (3.2) simplifies to

𝒰 =
⎡
⎢
⎢
⎣

(∫
1

0
f(s)g+(s) ds)

2

− (∫
1

0
f(s)g+(1 − s) ds)

2⎤
⎥
⎥
⎦

𝜆+

+
⎡
⎢
⎢
⎣

(∫
1

0
f(s)g−(s) ds)

2

− (∫
1

0
f(s)g−(1 − s) ds)

2⎤
⎥
⎥
⎦

𝜆−. (3.30)

In particular, if the artificial filament is powered byM discrete actuators, modelled as 𝛿‑functions
with strengths Fm and positions 𝜉m, this formula can be written as

𝒰 =
⎡
⎢
⎢
⎣

⎛
⎜
⎝

M∑

m=1
Fkg+(𝜉k)

⎞
⎟
⎠

2

−
⎛
⎜
⎝

M∑

m=1
Fkg+(1 − 𝜉k)

⎞
⎟
⎠

2⎤
⎥
⎥
⎦

𝜆+

+
⎡
⎢
⎢
⎣

⎛
⎜
⎝

M∑

m=1
Fkg−(𝜉k)

⎞
⎟
⎠

2

−
⎛
⎜
⎝

M∑

m=1
Fkg−(1 − 𝜉k)

⎞
⎟
⎠

2⎤
⎥
⎥
⎦

𝜆−. (3.31)

These equations yield significant results, enabling 𝒰 to be determined through only four sums
or integrals. Again, this represents a reduction in complexity from 𝒪(N2) to 𝒪(N) (N discretiza‑
tion points for a continuous f) or from𝒪(M2) to𝒪(M) (numberM of discrete actuators) compared
with equation (2.35). However, while useful for computation of 𝒰 for a particular f and Sp, these
equations are not, a priori, conducive to analysis, nor to any optimization over f and Sp besides
brute‑force methods, and thus require further simplification.

(iv) Finding the optimal sperm number and neglecting the smaller eigenvalue

We find that both eigenvalues have a maximum at a single value of Sp, as illustrated in figure 3a
(Note that, since 𝜆+ is much larger than 𝜆−, we plot 𝜆+ against 10𝜆−). We see that 𝜆+ has a maxi‑
mum of 𝜆+ ≈ 0.00170 at Sp≈ 4.70, where it is approximately a hundred times larger than 𝜆− at the
same point. Furthermore, the maximum value of 𝜆+ is approximately 20 times larger than that of
𝜆−. Since 𝜆+ is much larger than 𝜆−, we set the sperm number to be Sp= 4.7, for the remainder
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Figure 4. Symmetric and antisymmetric decomposition of eigenmodes. (a) Symmetric function gs (thick solid line) and anti-
symmetric function ga (thick dashed line); the lines g= 0 and s= 0.5 are shown as thin dashed lines. (b) Ratio ga(s)∕gs(s)
used for optimizations.

of this example. For this optimal Sp, the eigenfunctions g+ and g− (for comparison) are shown in
figure 3b.

Since 𝜆+≫𝜆−, an approximate solution may be obtained by neglecting in the analysis the
smaller eigenvalue and eigenfunction. The swimming speed under continuous forcing f can then
be expressed approximately as

𝒰 ≈
⎡
⎢
⎢
⎣

(∫
1

0
f(s)g+(s) ds)

2

− (∫
1

0
f(s)g+(1 − s) ds)

2⎤
⎥
⎥
⎦

𝜆+, (3.32)

or, forM discrete actuators,

𝒰 ≈
⎡
⎢
⎢
⎣

⎛
⎜
⎝

M∑

m=1
Fkg+(𝜉k)

⎞
⎟
⎠

2

−
⎛
⎜
⎝

M∑

m=1
Fkg+(1 − 𝜉k)

⎞
⎟
⎠

2⎤
⎥
⎥
⎦

𝜆+. (3.33)

These formulae represent further improvement. Since we have set Sp to take its approximate op‑
timal value, optimizing the swimming speed over choice of f therefore produces the approximate
global maximum value of 𝒰 across all values of Sp, eliminating the need to vary Sp manually.
These formulae also require only half as many calculations compared with equations (3.30) and
(3.31).

(v) Swimming speed as the difference of two squares

Aiming to find the simplest mathematical method to maximize the value of 𝒰, we now define
symmetric and antisymmetric functions, gs and ga, respectively, to be twice the symmetric and
antisymmetric components of the eigenfunction g+:

gs(s) = g+(s) + g+(1 − s),

ga(s) = g+(s) − g+(1 − s). (3.34)

These two functions are shown in figure 4a, with their ratio (to be used later) plotted in figure 4b.
The swimming speed from equation (3.32) is then given by

𝒰 ≈ [∫
1

0
f(s)gs(s) ds] [∫

1

0
f(s)ga(s) ds] 𝜆+, (3.35)
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or for discrete actuators, equation (3.33) becomes

𝒰 ≈
⎡
⎢
⎣

M∑

m=1
Fmgs(𝜉m)

⎤
⎥
⎦

⎡
⎢
⎣

M∑

m=1
Fmga(𝜉m)

⎤
⎥
⎦
𝜆+. (3.36)

In optimizing the filament, we may assume (without loss of generality) that both integrals/sums
are non‑negative.

(vi) Application to artificial swimmers with continuous forcing

An artificial swimmer is unlikely to be constrained by the fixed forcingmagnitude condition given
by equation (3.5); instead the limitations aremore likely to be in the engineering and fabrication of
the forcing on such small scales.We apply amore appropriate constraint below, but for now let us
consider the simple situation where each location 𝜉 along the filament is either passive (f(𝜉) = 0)
or forced (f(𝜉) = 1). This is a reasonable parallel to the artificial microswimmer demonstrated in
[25], where forcing is provided by magnetic beads (where f(𝜉)≠ 0), potentially alternating with
inert sections of filament (f(𝜉) = 0). Note, however, that this specific example [25] utilizes exter‑
nally powered actuation, and the resultant dynamics cannot be exactly described by the model
developed in this paper. Nonetheless, it is an intuitive example of the form of a microswimmer
that utilizes piecewise constant forcing. By using equation (3.35), we now determine the choice of
fwhich maximizes the swimming speed.

Despite the temptation of using as much forcing as possible, simply setting f= 1 everywhere
cannot produce any swimming due to symmetry of the filament (figure 5a(i)), and amore detailed
analysis is required. Using equation (3.35), with the functions gs and ga given in figure 4a, we see
that, regardless of the values taken by f(𝜉) for 𝜉 > 0.5, the swimming speed is always increased by
setting f(𝜉) = 1 for all 𝜉 ≤ 0.5 (assuming without loss of generality that both integrals in equation
(3.35) are non‑negative). We immediately deduce that a possible swimmer has f(𝜉) = 1 for 𝜉 ≤ 0.5
and f(𝜉) = 0 for 𝜉 > 0.5 (figure 5a(ii)).

We can further improve this swimmer by setting f(𝜉) = 1 for some values of 𝜉 > 0.5. Suppose
that f takes its optimal value. Then any acceptable change in f (i.e. any change which maintains
f(𝜉) = 0 or f(𝜉) = 1 at each 𝜉) will necessarily reduce the swimming speed. Calling such a change
𝛿f(s; 𝜉), which takes a constant non‑zero value (either 1 or−1) in a small region of width 𝛥 around
s= 𝜉, and is zero elsewhere, the swimming speed is perturbed by

𝛿𝒰 ≈ {[∫
1

0
f(s)gs(s) ds] ga(𝜉) + gs(𝜉) [∫

1

0
f(s)ga(s) ds]}𝛥𝜆+𝛿f(𝜉; 𝜉). (3.37)

For an optimal f, we require this to be negative whenever 𝛿f takes an allowable value. Therefore,
if f(𝜉) = 1, then 𝛿𝒰 must be negative for 𝛿f(𝜉; 𝜉) = −1, while if f(𝜉) = 0, then 𝛿𝒰 must be negative
for 𝛿f(𝜉; 𝜉) = 1. We deduce that

ga(𝜉) (∫
1

0
f(s)gs(s) ds) + gs(𝜉) (∫

1

0
f(s)ga(s) ds)≥ 0 when f(𝜉) = 1, (3.38)

ga(𝜉) (∫
1

0
f(s)gs(s) ds) + gs(𝜉) (∫

1

0
f(s)ga(s) ds)≤ 0 when f(𝜉) = 0. (3.39)

By noting that gs is positive, we can write these inequalities as

∫10 f(s)ga(s) ds

∫10 f(s)gs(s) ds
+

ga(𝜉)
gs(𝜉)

≥ 0 when f(𝜉) = 1, (3.40)

∫10 f(s)ga(s) ds

∫10 f(s)gs(s) ds
+

ga(𝜉)
gs(𝜉)

≤ 0 when f(𝜉) = 0. (3.41)
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Figure 5. Artificial swimmers with continuous (a) and discrete (b) forcing. (a) Example artificial swimmers, with continuous,
piecewise constant forcing, of progressively increasing speeds, optimized using equation 3.35. Solid lines represent the fila-
ments at t= 0, and t increases to𝜋 in progressively fading lines. Speeds have been divided by𝜆+ to produce the speed factor
(SF) as a percentage. (i) Uniformly forced filament that cannot swim due to the scallop theorem. (ii) Simple swimmer with
forcing in the front half only. (iii) Swimmer with frontal forcing occupying an optimal fraction of the filament. (iv) Swimmer
with optimally chosen positive and negative forcing. An animated version of these swimmers is shown in electronic supple-
mentary material, video S1. (b) Example artificial swimmers forM= 1, 2, 3, 5, 7, 9 discrete actuators, each of strength 1∕M,
with speed factors indicated. Minimum spacing of 0.1 between actuators. An animated version of these swimmers is shown in
electronic supplementary material, video S2.

As shown in figure 4b, the ratio ga∕gs is an antisymmetric, strictly decreasing function of 𝜉. There‑
fore, assuming that f does not take the same constant value for all 𝜉, an optimal f that satisfies these
inequalities must have a corresponding point 𝜉∗1 such that

∫10 f(s)ga(s) ds

∫10 f(s)gs(s) ds
=−

ga(𝜉∗1 )
gs(𝜉∗1 )

, (3.42)

with f(𝜉) = 1 for 𝜉 < 𝜉∗1 and f(𝜉) = 0 for 𝜉 > 𝜉∗1 . Hence this implicit equation can be simplified as

∫
𝜉∗1
0 ga(s) ds

∫
𝜉∗1
0 gs(s) ds

=−
ga(𝜉∗1 )
gs(𝜉∗1 )

. (3.43)

We can solve equation (3.43) numerically to identify 𝜉∗1 = 0.625, with the corresponding swimmer
illustrated in figure 5a(iii).

This procedure can easily be adapted to consider a somewhat more advanced swimmer where
f can be 1, 0 or −1. Following the same logic we obtain

∫10 f(s)ga(s) ds

∫10 f(s)gs(s) ds
+

ga(𝜉)
gs(𝜉)

≥ 0 when f(𝜉) = 1, (3.44)

∫10 f(s)ga(s) ds

∫10 f(s)gs(s) ds
+

ga(𝜉)
gs(𝜉)

= 0 when f(𝜉) = 0, (3.45)

∫10 f(s)ga(s) ds

∫10 f(s)gs(s) ds
+

ga(𝜉)
gs(𝜉)

≤ 0 when f(𝜉) = −1. (3.46)

Once again, there is therefore a point 𝜉∗2 for which f(𝜉) = 1 for 𝜉 < 𝜉∗2 and f(𝜉) = −1 for 𝜉 > 𝜉∗2 . There
can be no region where f= 0 because that would require equation (3.45) to be satisfied within said
region, which is impossible for the strictly decreasing ratio ga∕gs. Then 𝜉∗2 is now given by

∫
𝜉∗2
0 ga(s) ds − ∫1𝜉∗2 ga(s) ds

∫
𝜉∗2
0 gs(s) ds − ∫1𝜉∗2 ga(s) ds

=−
ga(𝜉∗2 )
gs(𝜉∗2 )

. (3.47)
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The implicit equation in equation (3.47) can be solved to find 𝜉∗2 = 0.701, resulting in the swimmer
shown in figure 5a(iv).

The four artificial swimmers shown in figure 5a have progressively increasing speeds, as indi‑
cated in insets and quantified as speed fraction (SF), defined as the dimensionless speed divided
by the eigenvalue 𝜆+ and interpreted as the fraction of the swimming speed 𝒰 that would be
achieved by setting the forcing function f to be the eigenfunction g+. We see in particular that this
final artificial swimmer can achieve amaximumof 69.9% of its optimal speed, as defined by setting
f= g+. Animated versions of the swimmers of figure 5a are available in electronic supplementary
material, video S1.

(vii) Piecewise constant forcing is optimized in the limit of single-point forcing

An optimal SF of 69.9% (figure 5a(iv)) is fairly respectable, and an artificial swimmer with this
piecewise constant forcing would be a comparably fast swimmer with one that uses eigenfunc‑
tion forcing. It is notable that the swimmer in figure 5a(iv) has a swimming speed that is less
than double the swimming speed of the swimmer of figure 5a(ii), despite having twice as much
total forcing. Indeed, uniformly doubling the forcing magnitude (from f(𝜉) to 2f(𝜉)) of any given
swimmerwould quadruple the swimming speed, whichmakes an improvement of less than dou‑
ble disappointing, and this motivates a new forcing constraint. An artificial swimmer is likely to
be limited by the engineering involved in its fabrication, and this is likely to manifest as a total
forcing magnitude constraint of the form

∫
1

0
|f(𝜉)| d𝜉 = 1. (3.48)

A specific example of thiswould be the artificialmillimetre‑scale swimmer powered by cardiomy‑
ocytes (heart muscle cells) studied experimentally in [30], where each cardiomyocyte generates a
fixed forcingmoment. In that case, themost likely limitation is the number ofmuscle cells that can
be cultured onto the filament, corresponding to the new forcing magnitude constraint in equa‑
tion (3.48). Note that, under this constraint, g+ has a total forcing magnitude of approximately
0.84, rather than 1. Eigenfunction forcing under this new total forcing magnitude constraint (i.e.
f= g+∕0.84) will therefore produce a speed factor of 142.0%.

Returning to figure 5a, we observe that a swimmer that has f(𝜉) = 2 for 𝜉 ≤ 0.5 and f(𝜉) = 0 for
𝜉 > 0.5 (i.e. as in figure 5a(ii) but with doubled forcing and hence quadrupled speed) would swim
more than twice as fast as one with the more distributed forcing |f(𝜉)|= 1 for all 𝜉 (figure 5a(iv)),
for the same total forcing magnitude as defined by equation (3.48). This suggests that distributing
the forcing along a greater length is, perhaps counterintuitively, detrimental to swimming. This
is in contrast to the biological situation of spermatozoa, which use distributed forcing along the
entire axoneme [9–12].

In fact, as we are now going to show, in this new constraint swimming is optimized by tak‑
ing the limit of single‑point actuation; this will turn out to present up to fourfold improvement
compared with the swimmer of figure 5a(iv), while still satisfying equation 3.48.

From previous swimmers illustrated in figure 5a, it is apparent from the signs of gs and ga
(figure 4a) and of their ratio ga∕gs (figure 4b), that positive forcing (f≥ 0) should exist in 0≤ 𝜉 ≤ 0.5,
and extending some way past 0.5, while negative forcing (f≤ 0) should occupy the remainder of
the filament.

In the range 0≤ 𝜉 ≤ 0.221, both gs and ga are increasing (figure 4a) and so any positive forcing
in this range should be moved right if possible. Conversely, for 0.5≤ 𝜉 ≤ 0.779, both gs and ga are
decreasing and any positive forcing should be moved to the left. In the region 0.221≤ 𝜉 ≤ 0.5, it is
easily shown that gs and ga are both concave functions, and thus contracting any positive forcing
(e.g. changing f(𝜉) = F for 𝜉1 ≤ 𝜉 ≤ 𝜉2 into f(𝜉) = F × (𝜉2 − 𝜉1) ∕ (𝜉2 − 𝜉1 − 2𝜖) for 𝜉1 + 𝜖 ≤ 𝜉 ≤ 𝜉2 − 𝜖)
will necessarily increase the swimming speed, since it would be increasing both terms in equation
(3.35). From these observations, we deduce that the benefit to the swimming speed contributed by
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the positive forcing can be improved by contracting it, ideally to the limit of single‑point actuation
at some position in the interval 0.221≤ 𝜉 ≤ 0.5.

Conversely, any negative forcing in the range 0.5≤ 𝜉 ≤ 0.779 should be moved rightwards; in
particular, this implies that all negative forcing should exist entirely to the right of any positive
forcing. While gs is slightly concave in a small sub‑region at the start of 0.779≤ 𝜉 ≤ 1, it is con‑
vex in most of the region, with ga being convex in the entire region. Overall, swimming speed is
therefore essentially increased by a contraction of the negative forcing in this region. Therefore
we deduce that negative forcing should again be contracted as much as possible, ideally to the
limit of single‑point actuation at some point in the range 0.779≤ 𝜉 ≤ 1, to produce near‑optimal
swimming speed.

(viii) Optimizing swimmers under discrete actuation

Having shown that piecewise constant forcing is optimized in the limit of single‑point forc‑
ing, we now investigate numerically the optimal configurations, directly applying the results to
the biohybrid swimmer of [30] shortly. Starting with the case of a single‑point positive forcing,
f(𝜉) = 𝛿(𝜉 − 𝜉1), and no negative forcing, we find that swimming speed is maximized by placing
the actuator at 𝜉1 = 0.309, achieving a far greater swimming SF of 280.4% (see swimmer illustrated
in figure 5b(i)). It is perhaps surprising that concentrating all the forcing in a single location can
produce a far greater swimming speed compared even to eigenfunction forcing under the same
fixed forcing magnitude constraint (equation (3.48)), with the speed factor almost doubling. In
addition, suppose we instead want to use one positive and one negative forcing actuator of equal
strength, 1∕2. We find these should be placed at 𝜉1 = 0.357 and 𝜉2 = 0.902, respectively, though
this only achieves an SF of 104.1% (figure 5b(ii)).

By varying over all possible allocations of forcing magnitudes between these two actuators,
we find that just having a single, positive actuator of strength 1 at 𝜉1 = 0.309, and no negative ac‑
tuator (i.e. the swimmer of figure 5b(i)), is optimal among all possible discrete actuations. Across
the entire suite of forcing functions, the optimal swimming speed subject to the new constraint
equation (3.48) is thus achieved using this single‑point actuator.

From a practical standpoint, there may be situations in which an artificial swimmer cannot be
constructed with all of its forcing applied to one location. For example, in the cardiomyocytes‑
powered swimmer from [30], the magnitude of the forcing that can be applied at a particular
location is limited by the contractile force of the cardiomyocytes that power the filament. Since the
filament has limited space and one cannot simply place arbitrarily many of these cardiomyocytes
at 𝜉1 = 0.309, the forcing would probably need to be distributed over some length, using some
number M of single‑point actuators, possibly limited by some minimum spacing requirement
between the actuators.

If the locations of the actuators were pre‑determined (e.g. 𝜉m = (2m − 1)∕2M), and we are free
to choose the forcing strengths (Fm = 1∕M, 0 or −1∕M), then the results in figure 5a serve as an ex‑
cellent guide whenM is large. In addition, brute force computations are feasible whenM is small,
since there are only 3M configurations and their number can be further reduced using the logic
we have considered above (e.g. noting that actuators in 𝜉 ≤ 0.5 should have positive forcing).

On the other hand, the actuator locations may not be pre‑defined, and we may instead be free
to choose the optimal actuator location and forcing direction for a given number of actuators. As
we have argued above, all actuators with the same forcing should be placed as close together as
possible. We may assume (by symmetry) that at least half of the actuators have positive forcing,
giving at most M∕2 configurations for the number of actuators of each sign. For each of these,
we are left with just two continuous parameters to optimize: the locations 𝜉1 and 𝜉2 of the centre
of each group of actuators. In figure 5b(iii–vi), we illustrate the results obtained forM= 3, 5, 7, 9,
assuming a minimum actuator separation of 0.1. As expected, we see that distributing the forc‑
ing over multiple actuators progressively decreases the swimming speed. For larger values of
M, the inclusion of negative forcing actuators becomes necessary to achieve optimal swimming
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speed (figure 5b(v,vi)). Animated versions of the swimmers of figure 5b are available in electronic
supplementary material, video S2.

(ix) Application to the biohybrid swimmer of Ref. [30]

The results of this paper, in particular those of figure 5b, can be applied to perform optimizations
based on various constraints such as actuator separation and direction. A good example of such
a swimmer is the approximately 2 mm long biohybrid swimmer produced in [30]. This swimmer
(which, in the experiments, possessed a passive head) was actuated by cardiomyocytes, cultured
onto the flagellum near the point of attachment with the head. By applying our model, we can
identify the optimal configuration for a headless swimmer, and compare our results to the numer‑
ical results obtained in [30] in the limit of a vanishing head. Simply applying the same value of Sp
(4.19) and the same actuator location (around 𝜉 = 0.25) used in their experiments, we calculate a
dimensional swimming speed of approximately 1.3 𝜇m s−1, in good agreement with their numeri‑
cal results (1 to 2 𝜇ms−1). This agreement is despite the fact that the dimensionlessmoment forcing
has a magnitude of approximately 4.5, suggesting our model remains reasonably accurate even
for nonlinear actuation. Furthermore, the cardiomyocyte contractions were not simple sinusoidal
functions of time, and higher temporal modes were present, though this is easily resolved since
the temporal modes decouple and the overall dimensional swimming is simply the sum of the di‑
mensional swimming speeds corresponding to each temporal mode. Modifying Sp (for example,
by elongating the swimmer) and 𝜉 to take their optimal values of 4.7 and 0.309, respectively (see
figure 5b(i)), can increase this dimensional swimming speed, measured in swimmer lengths per
second, by approximately 50%. Importantly, this is an immediate result requiring no additional
analysis or computation.

4. Conclusion
The dynamics of slender filaments is relevant not only for modelling biological microorganisms
such as spermatozoa, but also for the design and fabrication of artificial swimmers. By revisit‑
ing and linearizing classical elastohydrodynamic theory, we have derived simple expressions for
the shape of the filament (equation (2.29)) in terms of Green’s function (appendix A) and for the
swimming speed (equation (2.35)) in terms of the swimming speed function (equation (2.36)). In
particular, the swimming speed may be evaluated, for a given forcing, without the need to ex‑
plicitly calculate the shape of the filament, in an 𝒪

(
N2) process, where N is the number of points

used to perform the numerical integration in equation (2.35). However, while useful for the quick
and easy evaluation of the swimming speed, this process is not conducive to optimizations over
choices of forcing functions.

The real symmetric nature of the swimming speed function suggests a modal approach, and
we next numerically identified its eigenfunctions and eigenvalues by discretizing the swimming
speed function as a large symmetric matrix. We further revealed via calculus of variations that
these eigenfunctions provide optimal forcing functions for swimming, assuming a fixed forcing
magnitude constraint (equation (3.5)). These eigenfunctions and eigenvalues provide an alterna‑
tive method by which to calculate the swimming speed (equation (3.2)), and in particular most
of the modes may be neglected by virtue of small eigenvalues. We have found that, in a variety
of situations, only a small number of eigenmodes need be retained to produce accurate results
(figure 2), thereby reducing the computational complexity in evaluating the swimming speed to
an 𝒪(N) problem, or even an 𝒪(1) problem if the forcing function is initially constructed in terms
of the modal basis.

Furthermore, this modal approach allows for optimizations of the forcing function, such as
by approximating it as a sum of the dominant modes. In the particular situation of monophasic
forcing, the eigenfunctions and eigenvalues may be calculated analytically, and in particular only
four of the infinitely many eigenvalues are non‑zero. These consist of two symmetric pairs, one of
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which is dominated by the other at optimal Sp (figure 3). By neglecting the lesser eigenvalue, we
have revealed a wide range of analyses that allow for the optimal design of an artificial swimmer,
subject to various constraints (figure 5), in particular producing effective swimmers that utilize
piecewise constant forcing or single‑point actuation, relevant to previously demonstrated artificial
swimmers [25,30].

It is clear that the slender filaments considered are but a simplified model system. Real swim‑
mers, both biological and artificial, typically carry a body. Not only does this allow for the trans‑
port of a payload, but the presence of a body can also be advantageous for producing increased
swimming speed [30]. Furthermore, we have considered here only two‑dimensional filament
motion, while some spermatozoa can exhibit three‑dimensional (often helical) motion [38–40].
Finally, our assumption of small (𝜖 ≪ 1) disturbances will inevitably lead to inaccuracies when
modelling real swimmers with𝒪(1) disturbances, though previous investigations have shown re‑
markable agreement even in such situations [18]. Despite these simplifications, we have obtained
results which are quantitatively similar to those observed in spermatozoa swimming through in
vitro fertilization medium (figure 2). Potential adaptations and improvements to this work in‑
clude generalizations of the mathematical approach, such as considering different variational
constraints which may produce new and interesting optimizations. Future work could also con‑
sider generalizations of the swimmer design and behaviour, such as through the inclusion of a
head, as in spermatozoa and the aforementioned artificial swimmers, which have an effective
head either in the form of a payload [25], or a designed head that improves swimming [30].

We hope that this work will be helpful in the design and optimization of artificial swimmers,
and in aiding the ongoing understanding of the motion of spermatozoa and other microor‑
ganisms, with potential applications to fertility science, micro‑engineering and general medical
applications.
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Appendix A. Green’s function for the hyperdiffusion equation
The Green’s function G(s; 𝜉) used in equation (2.29) is the solution to the equation

Sp4iG + G′′′′ = 𝛿(s − 𝜉). (A 1)

Note this corresponds to a single point actuator forcing located at position 𝜉 along the filament.
To enforce the zero force andmoment boundary conditions on the filament, we requireG=Gs = 0
at s= 0 and s= 1. In addition, as standard for a Green’s function,G,G′ andG′′must be continuous
at s= 𝜉, with G′′′ jumping by a value of 1. The solution for G is given by

G=H(s − 𝜉)G+ +H(𝜉 − s)G−, (A 2)

where

G−(s) =A−eSp𝜂s + B−eSp𝜂is + C−e−Sp𝜂s +D−e−Sp𝜂is, (A 3)

G+(s) =A+eSp𝜂s + B+eSp𝜂is + C+e−Sp𝜂s +D+e−Sp𝜂is, (A 4)
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with 𝜂 = e−𝜋i∕8. The coefficients are determined by the boundary and jump conditions, via the
matrix equation

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1 0 0 0 0

1 i −1 −i 0 0 0 0

0 0 0 0 eSp𝜂 eSp𝜂i e−Sp𝜂 e−Sp𝜂i

0 0 0 0 eSp𝜂 ieSp𝜂i −e−Sp𝜂 −ie−Sp𝜂i

−eSp𝜂𝜉 −eSp𝜂i𝜉 −e−Sp𝜂𝜉 −e−Sp𝜂i𝜉 eSp𝜂𝜉 eSp𝜂i𝜉 e−Sp𝜂𝜉 e−Sp𝜂i𝜉

−eSp𝜂𝜉 −ieSp𝜂i𝜉 e−Sp𝜂𝜉 ie−Sp𝜂i𝜉 eSp𝜂𝜉 ieSp𝜂i𝜉 −e−Sp𝜂𝜉 −ie−Sp𝜂i𝜉

−eSp𝜂𝜉 eSp𝜂i𝜉 −e−Sp𝜂𝜉 e−Sp𝜂i𝜉 eSp𝜂𝜉 −eSp𝜂i𝜉 e−Sp𝜂𝜉 −e−Sp𝜂i𝜉

−eSp𝜂𝜉 ieSp𝜂i𝜉 e−Sp𝜂𝜉 −ie−Sp𝜂i𝜉 eSp𝜂𝜉 −ieSp𝜂i𝜉 −e−Sp𝜂𝜉 ie−Sp𝜂i𝜉

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A−

B−
C−
D−

A+

B+
C+
D+

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

0

0

0

0

0

0
1

Sp3𝜂3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(A 5)
We have therefore solved the hyperdiffusion equation for the Green’s function G.

Appendix B. Derivation of equation (2.32)
Recalling that

𝒰 =−2∫
1

0
⟨𝛹sss𝛹sst⟩ ds, (B 1)

we derive here equation (2.32) for 𝒰, for general moment forcing m(1)(s, t) =ℜ
[
f(s)e−i𝜙(s)eit

]

and corresponding solution 𝛹(s, t) =ℜ
[
eit ∫10 G(s; 𝜉)f(𝜉)e−i𝜙(𝜉) d𝜉

]
. We begin by substituting the

solution for 𝛹, moving the time‑average inside the integrals:

𝒰 =−2∫
1

s=0
∫

1

𝜉1=0
∫

1

𝜉2=0

⟨
ℜ
[
eitG′′′(s; 𝜉1)f(𝜉1)e−i𝜙(𝜉1)

]
ℜ
[
ieitG′′(s; 𝜉2)f(𝜉2)e−i𝜙(𝜉2)

]⟩
d𝜉2d𝜉1 ds. (B 2)

Next we evaluate the time‑averages to find

𝒰 =∫
1

s=0
∫

1

𝜉1=0
∫

1

𝜉2=0

{
−ℑ

[
G′′′(s; 𝜉1)f(𝜉1)e−i𝜙(𝜉1)

]
ℜ
[
G′′(s; 𝜉2)f(𝜉2)e−i𝜙(𝜉2)

]

+ℜ
[
G′′′(s; 𝜉1)f(𝜉1)e−i𝜙(𝜉1)

]
ℑ
[
G′′(s; 𝜉2)f(𝜉2)e−i𝜙(𝜉2)

]}
d𝜉2d𝜉1ds. (B 3)

We integrate by parts with respect to s, recalling that G′(0; 𝜉) =G′(1; 𝜉) = 0,

𝒰 =∫
1

s=0
∫

1

𝜉1=0
∫

1

𝜉2=0

{
ℑ
[
G′′′′(s; 𝜉1)f(𝜉1)e−i𝜙(𝜉1)

]
ℜ
[
G′(s; 𝜉2)f(𝜉2)e−i𝜙(𝜉2)

]

−ℜ
[
G′′′′(s; 𝜉1)f(𝜉1)e−i𝜙(𝜉1)

]
ℑ
[
G′(s; 𝜉2)f(𝜉2)e−i𝜙(𝜉2)

]}
d𝜉2d𝜉1ds. (B 4)

We now recall the governing equation for the Green’s function, Sp4iG + G′′′′ = 𝛿(s − 𝜉), giving

𝒰 =∫
1

s=0
∫

1

𝜉1=0
∫

1

𝜉2=0

{
ℑ
[(
𝛿(s − 𝜉1) − Sp4iG(s; 𝜉1)

)
f(𝜉1)e−i𝜙(𝜉1)

]
ℜ
[
G′(s; 𝜉2)f(𝜉2)e−i𝜙(𝜉2)

]

−ℜ
[(
𝛿(s − 𝜉1) − Sp4iG(s; 𝜉1)

)
f(𝜉1)e−i𝜙(𝜉1)

]
ℑ
[
G′(s; 𝜉2)f(𝜉2)e−i𝜙(𝜉2)

]}
d𝜉2d𝜉1ds.

(B 5)
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Using integration by parts with respect to s, recalling that G(0; 𝜉) =G(1; 𝜉) = 0, we note that

I(𝜉1, 𝜉2) =∫
1

s=0
ℜ
[
G(s; 𝜉1)f(𝜉1)e−i𝜙(𝜉1)

]
ℜ
[
G′(s; 𝜉2)f(𝜉2)e−i𝜙(𝜉2)

]
ds

=−∫
1

s=0
ℜ
[
G′(s; 𝜉1)f(𝜉1)e−i𝜙(𝜉1)

]
ℜ
[
G(s; 𝜉2)f(𝜉2)e−i𝜙(𝜉2)

]
ds=−I(𝜉2, 𝜉1). (B 6)

Therefore

∫
1

𝜉1=0
∫

1

𝜉2=0
I(𝜉1, 𝜉2) d𝜉2d𝜉1 =∫

1

𝜉1=0
∫

1

𝜉2=0
−I(𝜉2, 𝜉1) d𝜉2d𝜉1 =∫

1

𝜉2=0
∫

1

𝜉1=0
−I(𝜉1, 𝜉2) d𝜉1d𝜉2, (B 7)

and so is zero. The same argument holds for I(𝜉1, 𝜉2) defined using imaginary parts rather than
real parts. Therefore the equation for 𝒰 simplifies to

𝒰 =∫
1

s=0
∫

1

𝜉1=0
∫

1

𝜉2=0

{
ℑ
[
𝛿(s − 𝜉1)f(𝜉1)e−i𝜙(𝜉1)

]
ℜ
[
G′(s; 𝜉2)f(𝜉2)e−i𝜙(𝜉2)

]

−ℜ
[
𝛿(s − 𝜉1)f(𝜉1)e−i𝜙(𝜉1)

]
ℑ
[
G′(s; 𝜉2)f(𝜉2)e−i𝜙(𝜉2)

]}
d𝜉2d𝜉1ds. (B 8)

The 𝛿‑functions are real and so

𝒰 =∫
1

s=0
∫

1

𝜉1=0
∫

1

𝜉2=0

{
𝛿(s − 𝜉1)ℑ

[
f(𝜉1)e−i𝜙(𝜉1)

]
ℜ
[
G′(s; 𝜉2)f(𝜉2)e−i𝜙(𝜉2)

]

−𝛿(s − 𝜉1)ℜ
[
f(𝜉1)e−i𝜙(𝜉1)

]
ℑ
[
G′(s; 𝜉2)f(𝜉2)e−i𝜙(𝜉2)

]}
d𝜉2d𝜉1ds, (B 9)

and we now evaluate the integral in s to obtain

𝒰 =∫
1

𝜉1=0
∫

1

𝜉2=0

{
ℑ
[
f(𝜉1)e−i𝜙(𝜉1)

]
ℜ
[
G′(𝜉1; 𝜉2)f(𝜉2)e−i𝜙(𝜉2)

]

−ℜ
[
f(𝜉1)e−i𝜙(𝜉1)

]
ℑ
[
G′(𝜉1; 𝜉2)f(𝜉2)e−i𝜙(𝜉2)

]}
d𝜉2d𝜉1. (B 10)

Recalling that f is real gives

𝒰 =∫
1

𝜉1=0
∫

1

𝜉2=0
f(𝜉1)

(
ℑ
[
e−i𝜙(𝜉1)

]
ℜ
[
G′(𝜉1; 𝜉2)e−i𝜙(𝜉2)

]
−ℜ

[
e−i𝜙(𝜉1)

]
ℑ
[
G′(𝜉1; 𝜉2)e−i𝜙(𝜉2)

])
f(𝜉2) d𝜉2d𝜉1.

(B 11)
And by re‑combining terms, we obtain

𝒰 =−∫
1

𝜉1=0
∫

1

𝜉2=0
f(𝜉1)ℑ

[
G′(𝜉1; 𝜉2)ei(𝜙(𝜉1)−𝜙(𝜉2))

]
f(𝜉2) d𝜉2d𝜉1, (B 12)

as promised.

Appendix C. Standard eigenfunction calculation for monophasic forcing
The method presented in the main text allows for the concise calculation of the eigenfunctions
and eigenvalues for the case 𝜙≡ 0. We present here a more standard method that has potential
to be generalized to different situations, at the cost of being more cumbersome and producing an
8 × 8 system with four zero eigenvalues.
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Suppose f(𝜉1) =ℜ
[
ek𝜉1

]
= 1

2

(
ek𝜉1 + ek∗𝜉1

)
, where k is one of the four values such that this is a

natural mode; k4 =−Sp4i. Note that k∗ does not correspond to a natural mode. Then we can solve
for I1 and I2 as

I(1,k)1 (𝜉1) =
𝜉1ek𝜉1

8k3
+ ek∗𝜉1
4Sp4i

+ A(1,k)
1 eSp𝜂𝜉1 + B(1,k)1 eSp𝜂i𝜉1 + C(1,k)1 e−Sp𝜂𝜉1 +D(1,k)

1 e−Sp𝜂i𝜉1 , (C1)

I(1,k)2 (𝜉1) =
𝜉1ek𝜉1
8k2

+ k∗ek∗𝜉1
4Sp4i

+ A(1,k)
2 eSp𝜂𝜉1 + B(1,k)2 eSp𝜂i𝜉1 + C(1,k)2 e−Sp𝜂𝜉1 +D(1,k)

2 e−Sp𝜂i𝜉1 . (C2)

Alternatively, if f(𝜉1) =ℜ
[
iek𝜉1

]
, then I1 and I2 are given by

I(i,k)1 (𝜉1) =
i𝜉1ek𝜉1

8k3
− ek∗𝜉1
4Sp4

+ A(i,k)
1 eSp𝜂𝜉1 + B(i,k)1 eSp𝜂i𝜉1 + C(i,k)1 e−Sp𝜂𝜉1 +D(i,k)

1 e−Sp𝜂i𝜉1 , (C3)

I(i,k)2 (𝜉1) =
i𝜉1ek𝜉1
8k2

− k∗ek∗𝜉1
4Sp4

+ A(i,k)
2 eSp𝜂𝜉1 + B(i,k)2 eSp𝜂i𝜉1 + C(i,k)2 e−Sp𝜂𝜉1 +D(i,k)

2 e−Sp𝜂i𝜉1 . (C4)

The 64 coefficientsA,B,C,D can easily be calculated, for a particular Sp, according to the boundary
conditions I(0) = I(1) = I′(0) = I′(1) = 0. From these,we candefine, for b= 1 or b= i, and aparticular
value of k,

I(b,k)3 = 1
2 i (

(
I(b,k)1

)′
− I(b,k)2 ) , (C 5)

which, defining new coefficients,

A(b,k)
3 = 1

2 i
(
Sp𝜂A(b,k)

1 − A(b,k)
2

)
,

B(b,k)3 = 1
2 i
(
Sp𝜂iB(b,k)1 − B(b,k)2

)
,

C(b,k)3 = 1
2 i
(
−Sp𝜂C(b,k)1 − C(b,k)2

)
,

D(b,k)
3 = 1

2 i
(
−Sp𝜂iD(b,k)

1 −D(b,k)
2

)
, (C 6)

can be evaluated as

I(b,k)3 (𝜉1) =A(b,k)
3 eSp𝜂𝜉1 + B(b,k)3 eSp𝜂i𝜉1 + C(b,k)3 e−Sp𝜂𝜉1 +D(b,k)

3 e−Sp𝜂i𝜉1 . (C 7)

Importantly, the 32 coefficients can be evaluated easily for any given Sp. Therefore, letting general
f(𝜉1) be given by the sum of its eight possible terms,

f(𝜉1) =
∑

b=1,i
k4=−Sp4i

E(b,k)ℜ
[
aek𝜉1

]
, (C 8)

where each E(b,k) is real, we obtain an overall I3 given by

I3(𝜉1) =
∑

b=1,i
k4=−Sp4i

E(b,k)
(
A(b,k)
3 eSp𝜂𝜉1 + B(b,k)3 eSp𝜂i𝜉1 + C(b,k)3 e−Sp𝜂𝜉1 +D(b,k)

3 e−Sp𝜂i𝜉1
)
. (C 9)

The eigenvalue problem can then be written as

𝜆
∑

b=1,i
k4=−Sp4i

E(b,k)ℜ
[
bek𝜉1

]

=
∑

b=1,i
k4=−Sp4i

E(b,k)ℜ
[
A(b,k)
3 eSp𝜂𝜉1 + B(b,k)3 eSp𝜂i𝜉1 + C(b,k)3 e−Sp𝜂𝜉1 +D(b,k)

3 e−Sp𝜂i𝜉1
]
. (C 10)
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Equating each of the eight modes gives an 8 × 8 eigenvalue problem, for a vector v of the
coefficients E(b,k), and matrixMeig,

𝜆v=Meigv. (C 11)

The easiest way to write this explicitly is to define the vectorization of a set of coefficients by

vec(F) =
[
F(1,Sp𝜂) F(1,Sp𝜂i) F(1,−Sp𝜂) F(1,−Sp𝜂i) F(i,Sp𝜂) F(i,Sp𝜂i) F(i,−Sp𝜂) F(i,−Sp𝜂i)

]
. (C 12)

Then

v= vec(E)⊺, (C 13)

and

Meig =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ℜ [vec(A3)]

ℜ [vec(B3)]

ℜ [vec(C3)]

ℜ [vec(D3)]

ℑ [vec(A3)]

ℑ [vec(B3)]

ℑ [vec(C3)]

ℑ [vec(D3)]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (C 14)

As mentioned previously, four of the eight resultant eigenvalues are zero, leaving four non‑zero
eigenvalues, as promised.
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