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Laminar flow over a bubble mattress is expected to experience a significant reduction in friction
since the individual surfaces of the bubbles are shear-free. However, if the bubbles are sufficiently
curved, their protrusion into the fluid and along the flow direction can lead to an increase in friction
as was recently demonstrated experimentally and computationally. We provide in this paper a simple
model for this result. We consider a shear flow at low Reynolds number past a two-dimensional
array of bubbles and calculate analytically the effective slip length of the surface as a function of the
bubble geometry in the dilute limit. Our model is able to reproduce quantitatively the relationship
between effective friction and bubble geometry obtained in numerical computations and, in
particular, �a� the asymmetry in friction between convex and concave bubbles and �b� the existence
of a geometric transition from reduced to enhanced friction at a critical bubble protrusion angle.
© 2009 American Institute of Physics. �DOI: 10.1063/1.3067833�

Microfluidic devices are used to manipulate small vol-
umes of liquids �micro- and nanoliters� and have important
applications in biology, chemistry, and engineering.1,2 How-
ever, from a practical standpoint, one important caveat of
decreasing length scales is the increase in friction. For flow
driven by a pressure gradient, �P, in a device of typical
cross-sectional scale a, the volume flow rate scales as Q
�a4� P /�, where � is the viscosity of the fluid. Conse-
quently, imposing a constant flow rate in a device decreasing
in size requires a sharp increase in the applied pressure gra-
dient as �P�1 /a4. For example, driving a flow rate of 1 �l
of water per second in a 10 �m wide and 1 cm long device
requires a pressure drop of many atmospheres.

Viscous friction is therefore an important issue on small
scales, and engineers have looked for ways to reduce it. Re-
cently a number of groups have reported slip, or apparent
slip, for simple shear or pressure-driven flows over hydro-
phobic surfaces �see Refs. 3–5 for a review�. Slip is typically
characterized by a slip length �, which is the fictional dis-
tance below the surface at which the velocity field would
extrapolate to zero. For a shear flow with shear rate �̇ over a
flat slipping surface, the velocity field is written as

u = ���̇ + �̇y�x̂ , �1�

where x̂ is the flow direction and y is the direction perpen-
dicular to the surface. For a system of typical cross-sectional
size a, friction decreases as some increasing function of
� /a.3–9 Therefore for small enough systems, or large enough
slip lengths, the friction reduction could be substantial. How-
ever, intrinsic slip lengths of hydrophobic surfaces do not
exceed tens of nanometers.3–5 As a result, the effect is small
for devices on the micron scale, and other means of friction
reduction must be devised.

One idea recently discussed is to exploit superhydropho-
bic surfaces10,11 to reduce drag. When a hydrophobic solid
surface �Fig. 1�a�� is sufficiently rough, under certain geo-
metric conditions, a low-pressure high-surface-energy fluid
in contact with the solid can spontaneously dewet,11 thus
transitioning from a Wenzel state where the fluid fills the
grooves on the surface �Fig. 1�b�� to a fakirlike Cassie state
where the fluid sits partially on the solid surface and partially
on gas �Fig. 1�c��.10,11 This phenomenon can also occur at the
nanometer scale.12 When dewetting does occur, shear
stresses on the portion of the fluid interface in contact with
the gas are expected to be insignificant, and the effective
friction of such a superhydrophobic surface should be sig-
nificantly lower than that of a solid surface. Drag reduction
by superhydrophobic surfaces was indeed demonstrated ex-
perimentally both for macroscale pipe flow13 as well as
microchannels.14,15 Numerical simulations also show a simi-
lar effect at the molecular scale.12

Liquids in contact with a mixed solid/gas interface are
therefore expected to display low friction. However, one is-
sue can potentially limit the drag-reducing properties of such
surfaces, namely, the geometry of the gas-liquid interface.
When the pressure in the gas is similar to that in the liquid
above it, the interface remains flat �Fig. 1�d��, and drag is
expected to be reduced by the gas-liquid interface. However,
when the pressure in the gas is larger than that in the liquid,
the interface becomes curved �Fig. 1�e��, with mean curva-
ture given by the Young–Laplace equation.11 In that case, the
protrusion of the interface into the liquid curtails the drag-
reducing properties of the surface by distorting the flow
streamlines in the shear direction.16–18 Notably, if we denote
by � the value of the protrusion angle of the spherical-cap
interface with respect to the horizontal surface �see Fig.
1�e��, two recent experimental and numerical studies demon-
strated that if the interface extends into the liquid beyond a
critical value �c, the friction of the surface becomes larger
than that of the original �flat� no-slip surface.8,9 These results
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imply therefore that the geometry of free surfaces plays a
crucial role vis-à-vis the resistance to viscous flow, implying,
in particular, that the recently discovered nanobubbles19,20

might not always lead to as low a friction as previously
thought.

Here, we specifically address this geometric transition
from reduced to enhanced friction for shear flow over a col-
lection of bubbles. We consider a simple two-dimensional
model to predict the critical value of the apparent angle �c of
the bubbles on the �otherwise� horizontal surface at which
the effective surface starts displaying a friction larger than
that obtained by a smooth solid surface. In the two-
dimensional case, the velocity field can be solved exactly in
the dilute limit, and the geometric transition is seen to hap-
pen at �c�65°. More generally the relationship between ef-
fective slip length and apparent angle from numerical simu-
lations is well represented by our simple model.8,9

We consider therefore the setup displayed in Fig. 2: A
dilute collection of two-dimensional bubbles �no-shear sur-
faces� on an otherwise no-slip surface. We assume the capil-
lary number to be sufficiently small that the bubbles have
perfectly circular shape. Their projected radius on the surface
is c and they are separated by a distance 2L. The bubble
surface coverage is therefore given by �=c /L. The protru-
sion angle of the bubble into the fluid is denoted �; ��0 is a
concave bubble that protrudes into the fluid �Fig. 2�b��,

whereas ��0 is a convex bubble protruding underneath the
surface �Fig. 2�c��. The velocity field away from the surface
is a pure shear flow, with constant shear rate �̇. We denote by
x the direction along the surface, y the direction of shear, and
z the third direction and solve for the flow field in the limit of
low Reynolds number.21

We first examine the case of a single bubble. The veloc-
ity field v is solved by introducing a stream function,
v=curl�	ẑ�, where �4	=0 in the half-plane y�0, indented
by an arc of the circle x2+ �y+c cot ��2=c2 csc2 � which per-
turbs the shear flow 	= 1

2 �̇y2. There is perfect slip without
penetration at the surface of the two-dimensional bubble, and
no slip is enforced at the rigid plane y=0. We introduce
toroidal coordinates defined by

x =
c sinh 


cosh 
 + cos �
, y =

c sin �

cosh 
 + cos �
, �2�

which is the conformal mapping x+ iy=c tanh�
+ i�� /2. The
fluid region is then −��
�� , �����, with 
= � at
the special points �c ,0�, 
=0 on the y axis, �=� on the
arc, and �=� at y=0, �x��c. A suitable biharmonic stream
function, asymptotic at infinity to the prescribed shear flow,
is given by22,23

	 = �̇c2� 1
2sin2 �

�cosh 
 + cos ��2 −
	0

�f�s,��cos s
ds

cosh 
 + cos �

 ,

�3�

f = − A�s�sin �
sinh s�� − ��

s

+ B�s��cos �
sinh s�� − ��

s
+ sin � cosh s�� − ��
 .

Here, two functions have been eliminated by imposing no
slip �	=0=�	 /�� at �=�� on the rigid plane on either side
of the bubble. Note that using the method in Eq. �3� allows
us to capture the appropriate stress singularity at the contact
point between the bubble and the surface.

The first equation for the functions A and B is estab-
lished by demanding that the arc �=� be a streamline on
which 	=0. Thus the transform

�
0

� sinh s�

sinh s�
cos s
ds =

1
2sin �

�cosh 
 + cos ��
���� � �� �4�

yields, by substituting Eq. �3�,

f�s,�� = sin �
sinh s�

sinh s�
. �5�

The second equation is established by demanding that the
strain rate component e
� vanishes at �=� in order to
achieve perfect slip. Since

2e
� =
�

�

�−

1

h2

�	

�

 +

�

��
� 1

h2

�	

��
 ,

�6�

h =
c

cosh 
 + cos �
,

it is found that
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FIG. 1. �Color online� Superhydrophobic surfaces and bubble mattress: Liq-
uid drop on a �a� flat hydrophobic surface, �b� rough hydrophobic surface in
Wenzel state, and �c� rough hydrophobic surface in Cassie state. When the
drops sit partially on air �Cassie state�, the gas-liquid interface can be �d� flat
or �e� curved, with a protrusion angle � measured with respect to the hori-
zontal direction.
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FIG. 2. �Color online� Setup for the two-dimensional calculation and nota-
tion: �a� shear flow �shear rate �̇� over a collection of bubbles of projected
radius c, protrusion angle �, and separation distance 2L. The calculation is
performed asymptotically in the dilute limit, �=c /L�1; �b� the case
��0 corresponds to a concave bubble protruding into the liquid; �c� ��0
models a convex bubble curved away from the otherwise flat surface.
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The first and second derivatives of Eq. �4� give

� �2f

��2 + �s2 + 1�f

�=�

=
2s�s sin � sinh s� + cos� cosh s��

sinh s�
. �8�

After substitution of Eq. �3� into Eq. �5� and Eq. �8�, it is
found that

A�s� =
s

sinh 2s�� − �� + s sin 2�

��cos 2� +
s sin 2� cosh s� + sinh s�� − 2��

sinh s�


�9�

and

B�s� =
s sin 2�

sinh 2s�� − �� + s sin2�
. �10�

We can now derive the result for a period array of
bubbles. Away from the surface, the far-field velocity field is
given, according to Eq. �2�, by 
2+ ��−��2→0 �����, with

x �
2c



2 + �� − ��2 , y �
2c�� − ��


2 + �� − ��2 . �11�

Hence the asymptotic form of the perturbation term in Eq.
�3� is given by

2�̇c2 y2

x2 + y2�
0

�

A�s�ds . �12�

In the presence of a periodic array of bubbles, with period
2L, the prefactor in Eq. �12� is replaced by �n=−�

� �y2 / ��x
−2nL�2+y2�� with a mean value available from the identity

1

2L
�
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L
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· �13�

Consequently, the far-field velocity perturbation is given by

��̇c� c

L
�

0

�

A�s�dsx̂ , �14�

which, with A�s� given by Eq. �9�, is identified as an effec-
tive slip speed at y=0 with dimensionless slip length �see
Eq. �1��,

�

c
= �� c

L
�

0

�

A�s�ds . �15�

Let us now compare the predictions of our model �Eq.
�15�� with the numerical computations of Refs. 8 and 9. The
results are displayed in Fig. 3, where we plot the effective
slip length of the surface �nondimensionalized by the pro-
jected bubble radius on the surface, c� as a function of the
protrusion angle � into the fluid. The simulations of Ref. 8
consider a three-dimensional square lattice, with a surface
coverage of the bubbles �=0.68 �squares�. The computations
of Ref. 9 are for three different lattices �square lattice,
circles; rectangular lattice, lozenges; rhombic lattice, tri-
angles� and in all cases where the dependence on the protru-
sion angle is studied the fraction of the surface covered by
the bubbles is �=0.43. We also plot in Fig. 3 the results of
our model for both surface coverage considered in the two
previous studies: �=0.43 �dashed line� and �=0.68 �solid
line�.24

The main features of the full numerical results are seen
to be reproduced by our analytical model. There exists a
critical protrusion angle �c above which the effect of the
wall-attached bubbles displays a transition from reduced
����c� to enhanced friction ����c�. Our model predicts
�c�65°, in good agreement with the results of Ref. 8
��c�62°� and Ref. 9 ��c�69°�. Our model also successfully
reproduces the asymmetry in the friction curves between
��0 and ��0, indicating a qualitative difference between
the effect of convex and concave bubbles on shear flow.
Experimentally, this asymmetry implies that flow over an
array of bubbles at a lower pressure than the fluid ���0� is
less likely to show an increase in wall friction than flow over
an array of bubbles with a larger pressure than the fluid
���0�.

The model we consider here is two dimensional. A
simple argument can also be made to show that the critical
protrusion angle lies in the range 0° ��c�90° in three di-
mensions. For �=0°, the bubbles are flat disks, for which the
calculation is available in Ref. 25, where it is found26 that the
asymptotic form of the perturbation flow component vx is
2�̇c3yx2 /3�r5, with r2=x2+y2+z2. In the presence of a �di-
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FIG. 3. �Color online� Comparison between the numerical data of Ref. 8
�empty symbols� and Ref. 9 �filled symbols� and our two-dimensional dilute
model: Dimensionless effective slip length as a function of the protrusion
angle of the bubble into the fluid. Symbols: Square lattice ��, �=0.68 �Ref.
8; �, �=0.43 �Ref. 9��; rectangular lattice ��, �=0.43 �Ref. 9��; rhombic
lattice ��, �=0.43 �Ref. 9��. Lines: Our two-dimensional dilute model, Eq.
�15�, for two different surface coverages, �=0.43 �- - -� and �=0.68 �—�.
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lute� square lattice of such disks, with period 2L, the effec-
tive slip length is simply found to be � /c=c2 /9L2. This is the
same result as that obtained by Ref. 6 and indicates that
bubbles with �=0° reduce the effective friction of the sur-
face, and therefore 0° ��c. In the case where �=90° �hemi-
spherical bubble�, the velocity field is readily verified to be
given by v= �̇y�x̂−c3xr̂ /r4�.18,27 In the presence of a square
lattice of such bubbles, the perturbation velocity in the far
field can be simply added up �in the dilute limit�, and the
obtained slip length is given by � /c=−�c2 /6L2. The nega-
tive slip length indicates that the array of stress-free hemi-
spheres increases the effective friction of these surfaces, and
therefore �c�90°.

In summary, this paper presents a two-dimensional
model of shear flow past an array of bubbles. We calculate
the effective slip length of the surface in the dilute limit and
find good agreement with recent numerical three-
dimensional numerical simulations for flow over superhydro-
phobic surfaces. In particular, our results reproduce the
asymmetry between convex and concave bubbles, as well as
the existence of a geometric transition from low to high fric-
tion at a critical bubble protrusion angle. Our approach pro-
vides therefore the minimal model necessary to quantita-
tively capture the interplay between low friction and
geometry in shear flows.

Our results could be extended by relaxing the various
assumptions made in the paper, in particular, by going be-
yond the two-dimensional, dilute, and zero capillary number
limits. In the case of three-dimensional bubbles, the issue of
geometry of the lattice needs to be further explored as well.
Experimentally, the fabrication of controlled porous
surfaces28 or predesigned bubble lattices29 would present ex-
citing opportunities to map out and optimize the frictional
properties of superhydrophobic surfaces. In addition, simula-
tions showing an increase in friction of a bubble mattress
with capillary numbers9 could be addressed with a similar
framework.
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