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Abstract – In many biological systems, microorganisms swim through complex polymeric fluids,
and usually deform the medium at a rate faster than the inverse fluid relaxation time. We address
the basic properties of such life at high Deborah number analytically by considering the small-
amplitude swimming of a body in an arbitrary complex fluid. Using asymptotic analysis and
differential geometry, we show that for a given swimming gait, the time-averaged leading-order
swimming kinematics of the body can be expressed as an integral equation on the solution to
a series of simpler Newtonian problems. We then use our results to demonstrate that Purcell’s
scallop theorem, which states that time-reversible body motion cannot be used for locomotion in
a Newtonian fluid, breaks down in polymeric fluid environments.

Copyright c© EPLA, 2009

Introduction. – The physics of cell locomotion
in viscous fluids affects many important biological
processes [1], such as the journey of spermatozoa through
the mammalian female reproductive tract [2], the mech-
anisms by which motile bacteria are able to progress
towards high nutrient concentration [3], and the availabil-
ity of plankton as food source for higher organisms in the
ocean [4].
In many relevant instances, cells have to move through

complex fluids, in particular during reproduction. In order
to reach the uterus of the female and continue their jour-
ney towards the ovum, mammalian spermatozoa cells have
to progress through the cervical mucus, a highly viscous
and highly elastic cross-linked polymeric gel [2]. The rheol-
ogy of cervical mucus depends on its hydration [5], and
varies during the female menstrual cycle [6], but its typi-
cal viscosity is two to four orders magnitude larger than
that of water [7–10], and its typical relaxation time, λ,
is in the 1–10 s range [5,7,10]. Since spermatozoa actuate
their flagella with typical frequencies ω∼ 20–50Hz [11],
cell locomotion through the cervical mucus occurs there-
fore at high Deborah number, De = λω≫ 1, and elastic
effects are expected to play a crucial role.
Building on twenty years of research on the mechanics of

locomotion in simple (Newtonian) fluids, Purcell detailed
in his 1977 classical paper the physical principles of life at
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low Reynolds number [12]. In contrast, the basic properties
of life at high Deborah number are not understood.
Calculating the swimming speed of a given organism in
a given complex fluid has only been solved for infinite
models [13,14], and the most basic questions remain
unanswered: how different are the locomotion kinematics
from those obtained in a Newtonian fluid? Can the non-
linear rheological properties of the fluid (in particular
shear-thinning viscosity and normal stress differences [15])
be exploited to design new propulsion methods?
Here, we address the problem of locomotion at high

Deborah number analytically. We show that for small-
amplitude swimming of a body in an arbitrary complex
fluid, the swimming kinematics can be expressed as an
integral equation on the solution to a series of simpler
problems (motion in a Newtonian fluid), thereby bypass-
ing the explicit solution for the complete flow field.
We then exploit our results to demonstrate explicitly
that Purcell’s scallop theorem —which states that time-
reversible body motion cannot be used for locomotion in a
Newtonian fluid [12]— breaks down in a polymeric fluid.

Newtonian swimming. – We first recall the solu-
tion to the swimming problem in a Newtonian flow [16].
Consider an isolated three-dimensional swimmer of instan-
taneous surface S with normal n into the fluid, deforming
periodically its surface with a sufficiently small-amplitude
and low-frequency motion that the inertial terms in the
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Fig. 1: (Color online) General statement of the swimming
problem in a fluid: a body of fixed volume deforms its shape
S(t) in a time-periodic fashion around an average shape, S0.
The surface deformation is prescribed in the swimming frame
(Eulerian velocity uS), and the unknown solid-body swimming
kinematics (velocity,U; rotation rate, Ω) are determined using
the constraint of force-free and torque-free motion.

Navier-Stokes can be safely neglected. Lorentz’ recipro-
cal theorem [17] states that for two arbitrary solutions of
Newtonian Stokes flows with the same viscosity, (u,σ) and
(û, σ̂), we have the equality

∫∫

S

u · σ̂ ·ndS =

∫∫

S

û ·σ ·ndS, (1)

where u(û) and σ(σ̂) are the velocity and stress fields.
For (u,σ) we consider the swimming problem (fig. 1): In
the swimming frame, the body prescribes its instantaneous
surface velocity, uS , and as a result moves with instanta-
neous (but unknown) swimming velocity U and rotation
rate Ω, so that the surface velocity is given in the lab
frame by u=U+Ω×xS +uS , for any point xS on its
surface. For (û, σ̂), we consider solid-body motion of the

instantaneous shape S with velocity Û and rotation rate
Ω̂, so that û= Û+ Ω̂×xS on the surface. The body in
the hat problem is therefore subject to an instantaneous
force, F̂=

∫∫

σ̂ ·ndS, and torque, L̂=
∫∫

x× (σ̂ ·n) dS (in
this paper, torques will be defined with respect to some
arbitrary origin). Exploiting the fact that locomotion at
low Reynolds numbers is force-free and torque-free, i.e.

∫∫

S

σ ·ndS =

∫∫

S

x× (σ ·n) dS = 0, (2)

eq. (1) leads to an equation for U and Ω as [16,18]

F̂ ·U+ L̂ ·Ω=−

∫∫

S

n · σ̂ ·uS dS. (3)

Equation (3) states that, for a given shape (S,n), and
a given swimming gait (uS), all six components of the
swimming kinematics, (U,Ω) can be calculated using
solely information about the dual problem of solid-body
motion (F̂ and L̂ in eq. (3) are arbitrary). Importantly, we
note that the value of the fluid viscosity is irrelevant: as
all hat terms in eq. (3) are proportional to the viscosity,
the relationship between the swimming gait (uS) and
the swimming kinematics (U,Ω) is independent of the
viscosity.

Locomotion in non-Newtonian fluids. – We now
consider the case where swimming occurs in a complex
fluid. The stress tensor, σ, includes an isotropic part
(the pressure, p), and a deviatoric component, τ =σ+ p1.
We assume the velocity field, u, to be incompressible,
and therefore the equations for mechanical equilibrium
in the absence of inertia are written as ∇p=∇· τ and
∇·u= 0. For constitutive modeling, we assume that τ can
be written as a sum of different modes, τ =

∑

i τ
i, where

each stress τ i satisfies a non-linear differential constitutive
relationship of the form

(1+Ai)τ
i+Mi(τ

i,u) = ηi(1+Bi)γ̇+Ni(γ̇,u). (4)

In eq. (4), γ̇ =∇u+∇uT is the shear rate tensor, Ai
and Bi are two sequences of linear differential operators
in time representing polymer relaxation and retardation
respectively, Mi and Ni are two sequences of symmetric
non-linear operators representing transport and stretching
of the polymeric microstructure by the flow, and ηi is the
zero-shear rate viscosity of the i-th mode. The relationship
between stresses and strain rates described by eq. (4)
is a very general differential constitutive relationship
[15,19–22], which includes as particular cases all classical
models of polymeric fluids1.
We consider a body performing periodic small-

amplitude swimming motion in a fluid described by
eq. (4). Its undeformed surface shape is termed S0,
parameterized by xS0 , and we define ǫ as the amplitude
of the periodic surface distortion non-dimensionalized
by a typical swimmer length (ǫ≪ 1). Material points on
the swimmer shape, xS , are assumed to display time
variations of the form xS(xS0 , t) = x

S
0 + ǫx

S
1 (x

S
0 , t), and

the function xS1 is assumed to be periodic in time with
period T . Such Lagrangian boundary motion forces the
fluid to move through the no-slip boundary condition,
uS(xS) = ∂xS/∂t.
We solve the swimming problem as a domain pertur-

bation expansion, where the fields of interest are written
as regular perturbation expansions, with boundary condi-
tions expressed on S0. Specifically, we write

{u, τ , p,σ}= ǫ{u1, τ1, p1,σ1}+ ǫ
2{u2, τ2, p2,σ2}+ . . . ,

(5)
which are all functions of (x, t), and are defined on the
zeroth-order surface S0. The boundary condition for the
surface velocity reads

uS = ǫuS1 (x
S
0 , t)+ ǫ

2uS2 (x
S
0 , t)+ . . . (6)

1It includes in particular: second and n-th order fluid, all Oldroyd-
like models (upper-convected Maxwell, lower-convected Maxwell,
corotational Maxwell, Oldroyd-A, Oldroyd-B, corotational Oldroyd,
Oldroyd 8-constant model, Johnson-Segalman-Oldroyd), the
Giesekus and Phan-Thien-Tanner models, Generalized Newtonian
fluids, and all multi-mode version of these models. Furthermore,
although FENE-P is only exactly in this form, it becomes in
the asymptotic limit of small surface deformation [13], so the
relationship is also valid for FENE-P and FENE-P-like models.
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and swimming occurs with the kinematics

{U,Ω}= ǫ{U1,Ω1}+ ǫ
2{U2,Ω2}+ . . . , (7)

so that on the swimmer surface we have un =Un+Ωn×
xS0 +u

S
n , for n= 1, 2, . . . . Based on the Newtonian case,

we expect to obtain no swimming at order ǫ, but non-zero
time-averaged locomotion at order ǫ2 [23].

First-order solution. At order ǫ, the constitutive
model, eq. (4), is linearized

(1+Ai)τ
i
1 = ηi(1+Bi)γ̇1, (8)

associated with boundary conditions uS1 = ∂x
S
1 /∂t, evalu-

ated at (xS0 , t). Since the surface motion is time-periodic,
we introduce Fourier series, and write, for any field
f(t), f(t) =

∑∞
−∞ f̃

(n)einωt where ω= 2π/T and f̃ (n) =
1
T

∫ T

0
f(t)e−inωt dt. In Fourier space, eq. (8) then becomes

τ̃
i,(n)
1 (x) = Gi(n)˜̇γ

(n)

1 (x), (9)

where Gi(n) is the i -th relaxation modulus of the n-th
Fourier mode. Since we have τ =

∑

i τ
i, we get the

constitutive equation for the total first-order deviatoric
stress as

τ̃
(n)
1 (x) = G(n)

˜̇γ
(n)

1 (x), G(n) =
∑

i

Gi(n). (10)

We see from eq. (10) that, for each Fourier mode,
the swimming problem is a Newtonian problem
with a complex viscosity (G). We have to solve

∇p̃
(n)
1 = G(n)∇

2ũ
(n)
1 , ∇· ũ

(n)
1 = 0, subject to the bound-

ary condition ũ
(n)
1 (x

S
0 ) = Ũ

(n)
1 + Ω̃

(n)
1 ×x

S
0 + ũ

S,(n)
1 (xS0 ).

Applying eq. (3), we obtain the swimming kinematics for
each Fourier mode

F̂ · Ũ
(n)
1 + L̂ · Ω̃

(n)
1 =−

∫∫

S0

n0 · σ̂ · ũ
S,(n)
1 (xS0 ) dS. (11)

Since the value of the viscosity for the hat fields in eq. (11)
is arbitrary (see discussion below eq. (3)), we can take it
to be some fixed reference viscosity. In addition, as S0
does not depend on time, we can Fourier-invert eq. (11)
to obtain the locomotion in the time domain

F̂ ·U1(t)+ L̂ ·Ω1(t) =−

∫∫

S0

n0 · σ̂ ·u
S
1 (x

S
0 , t) dS. (12)

The solution at order ǫ leads thus to the same swimming
kinematics as in a Newtonian flow (eq. (3)). In addition,
since uS1 = ∂x

S
1 /∂t, we get that 〈u

S
1 〉= 0, where 〈.〉 denotes

time-averaging over one period of body deformation (i.e.
the zeroth Fourier mode). From eq. (12) we therefore see
that 〈U1〉= 〈Ω1〉= 0. As in the Newtonian case, there
is no time-averaged locomotion at leading order, and
swimming is quadratic in the amplitude of the surface
motion [23].

Second-order solution. At order ǫ2, the constitutive
relationship for each mode, eq. (4), is written as

(1+Ai)τ
i
2 = ηi(1+Bi)γ̇2+Hi[u1] (13)

with

Hi = u1 · {γ̇1 : [(∇γ̇∇uNi)]− τ
i
1 : [(∇τ i∇uMi)]}, (14)

where the gradients in eq. (14) are evaluated at (0,0),
and with τ i1 and γ̇1 related through eq. (8). Since we are
interested in the time-averaged swimming motion, which
we expect occurs at O(ǫ2), we now consider only time-
averaged quantities. Averaging eq. (13) leads to

〈τ i2〉= ηi〈γ̇2〉+ 〈Hi[u1]〉, (15)

and therefore the time-averaged stress is given by

〈σ2〉=−〈p2〉1+ η〈γ̇2〉+ 〈Σ[u1]〉, (16)

where η=
∑

i ηi and 〈Σ[u1]〉=
∑

i〈Hi[u1]〉.
To derive the swimming kinematics, we apply the

principle of virtual work using the following two problems:
i) solid-body motion of the shape S0 in a Newtonian fluid
of viscosity η (the same viscosity as in eq. (16)), with
velocity and stress fields given by û and σ̂ and ii) time-
averaged swimming with flow velocity 〈u2〉 and stress field
〈σ2〉 given by eq. (16).
Since mechanical equilibrium is written ∇· σ̂=

∇· 〈σ2〉= 0, we have equality of their dot products with
the opposite velocity field, [∇· σ̂] · 〈u2〉= [∇· 〈σ2〉] · û,
and integration over the volume of fluid V0 outside of S0
leads to

∫∫

S0

n0 · σ̂ · 〈u2〉dS−

∫∫

S0

n0 · 〈σ2〉 · û dS =

∫∫∫

V0

〈σ2〉 :∇ûdV −

∫∫∫

V0

σ̂ :∇〈u2〉dV, (17)

where we have used integration by parts, and the fact that
n0 is directed into the fluid. If we then insert eq. (16) into
the right-hand side of eq. (17) we obtain

∫∫∫

V0

〈σ2〉 :∇û dV −

∫∫∫

V0

σ̂ :∇〈u2〉dV =

∫∫∫

V0

〈Σ[u1]〉 :∇ûdV, (18)

and the Newtonian components of both σ̂ and 〈σ2〉
have disappeared due to symmetry and incompressibility.
Consequently, eq. (17) becomes

∫∫

S0

n0 · σ̂ · 〈u2〉dS−

∫∫

S0

n0 · 〈σ2〉 · û dS =

∫∫∫

V0

〈Σ[u1]〉 :∇ûdV, (19)

and only the deviation from Newtonian behavior, Σ,
remains in the integral formula. This result is reminiscent
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of past work quantifying small viscoelastic effects on
particle motions [24].
On the surface S0 we have 〈u2〉= 〈U2〉+ 〈Ω2〉×x

S
0 +

〈uS2 〉, where a Taylor expansion of the boundary conditions
around xS0 leads to u

S
2 (x

S
0 , t) =−x

S
1 ·∇u1, so that eq. (19)

becomes

F̂ · 〈U2〉+ L̂ · 〈Ω2〉=−

∫∫

S0

n0 · σ̂ · 〈u
S
2 〉dS

+

∫∫

S0

n0 · 〈σ2〉 · û dS+

∫∫∫

V0

〈Σ[u1]〉 :∇ûdV. (20)

The final step in the calculation consists in enforcing
the force-free and torque-free condition for the swimmer.
On S0 we have û= Û+ Ω̂×x

S
0 , so that

∫∫

S0

n0 · 〈σ2〉 · û dS =

[
∫∫

S0

n0 · 〈σ2〉dS

]

· Û

+

[
∫∫

S0

xS0 × (n0 · 〈σ2〉) dS

]

· Ω̂.

(21)

The terms in brackets in eq. (21) are related to the
forces and torque on the swimmer at order ǫ2, and
can be evaluated using differential geometry. Let us
write the time-varying shape of the swimmer as xS =
xS0 + ǫn0δ1(x

S
0 , t)+ . . . , where the function δ1, with units

of length, represents the normal extent of the surface
deformations. When δ1 = 0, the shape of the swimmer does
not change with time, and all surface motion is tangential
(uS ·n= 0, so-called squirming motion), whereas for δ1 �=
0 the body also undergoes normal deformation and varies
its shape periodically. If we write the normal to the surface
as n= n0+ ǫn1+ . . . , differential geometry considerations
leads to the evaluation of the force, F2, and torque, Ω2,
on the swimmer at order ǫ2, as given by

F2 =

∫∫

S0

[

n1 ·σ1+n0 ·

(

σ2+ δ1
∂σ1
∂n

)]

dS, (22a)

Ω2 =

∫∫

S0

xS0 ×

[

n1 ·σ1+n0 ·

(

σ2+ δ1
∂σ1
∂n

)]

dS, (22b)

where ∂/∂n≡ n0 ·∇ denotes the normal derivative to S0.
Since locomotion occurs with no force or torque, we have
F2 =Ω2 = 0, and therefore after taking time averages of
eq. (22), we obtain
∫∫

S0

n0 · 〈σ2〉dS =

−

∫∫

S0

[

〈n1 ·σ1〉+n0 ·

〈

δ1
∂σ1
∂n

〉]

dS, (23a)

∫∫

S0

xS0 × (n0 · 〈σ2〉) dS =

−

∫∫

S0

xS0 ×

[

〈n1 ·σ1〉+n0 ·

〈

δ1
∂σ1
∂n

〉]

dS. (23b)

Life at high Deborah number. To obtain the final
integral formula, we insert the result of eq. (23) into
eqs. (20) and (21) to obtain the integral relationship

F̂ · 〈U2〉+ L̂ · 〈Ω2〉=

−

∫∫

S0

n0 · σ̂ · 〈u
S
2 〉dS+

∫∫∫

V0

〈Σ[u1]〉 :∇ûdV

−

{
∫∫

S0

[

〈n1 ·σ1〉+n0 ·

〈

δ1
∂σ1
∂n

〉]

dS

}

· Û

−

{
∫∫

S0

xS0 ×

[

〈n1 ·σ1〉+n0 ·

〈

δ1
∂σ1
∂n

〉]

dS

}

· Ω̂. (24)

The result expressed by eq. (24) is the non-Newtonian
equivalent of the Newtonian integral formula, eq. (3), at
second order in the amplitude of the surface deforma-
tion of the swimmer. It shows that one can compute the
time-averaged swimming kinematics for locomotion in a
complex fluid, using knowledge of a series of simpler prob-
lems. Indeed, to compute 〈U2〉 and 〈Ω2〉 from eq. (24),
and beyond the necessary knowledge of the surface motion
of the swimmer, one needs to know the velocity and
stress field for solid-body motion of S0 (i.e. the fields û
and σ̂), and the velocity and stress field for the first-
order solution (i.e. u1 and σ1). As discussed above, and
shown in eq. (10), the first-order solution can be found
in frequency space by solving a series of Newtonian flow
problems. Consequently, the computational complexity to
evaluate the terms in eq. (24) is that of a succession of
Newtonian flow problems, and therefore using this method
one bypasses entirely the calculation of the second-order
flow and stress field. Notably, the final result can be
applied to flows with arbitrary large Deborah numbers, as
is relevant in cell locomotion. Note also that for squirming
motion of the sphere, for which δ1 = 0 and n1 = 0, eq. (24)
is greatly simplified.

Breakdown of the scallop theorem. – As an appli-
cation of our results, we demonstrate that Purcell’s scallop
theorem [12] breaks down in a polymeric fluid. We consider
the axisymmetric squirming motion of a sphere (radius, a)
in an Oldroyd-B fluid [15,19–22]. Purcell’s scallop theorem
states that if the surface motion is time-reversible, we have
〈U〉= 〈Ω〉= 0 and therefore the Newtonian contribution
to eq. (24) averages to zero,

∫∫

S0

n0 · σ̂ · 〈u
S
2 〉dS = 0. (25)

In addition, we consider axisymmetric surface deformation
so that we have 〈Ω2〉= 0. As a consequence, the integral
equation leading the average swimming speed, eq. (24),
simplifies to

F̂ · 〈U2〉=

∫∫∫

V0

〈Σ[u1]〉 :∇ûdV. (26)
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Fig. 2: (Color online) Distribution of surface velocity, v‖,
(arbitrary units) for axisymmetric spherical squirming motion
and breakdown of the scallop theorem. (a) Surface velocity as a
function of the polar angle, θ; (b) color map of the the surface
velocity. Both figures illustrate the fore-aft asymmetry of the
tangential surface motion.

For constitutive modeling, we consider an Oldroyd-B fluid,
which represents a polymeric fluid as a dilute solution
of elastic dumbbells [22], and for which the relationship
between stresses and rate of strains is given by

τ +λ1
▽

τ= η[γ̇+λ2
▽

γ̇], (27)

where
▽

a= ∂a/∂t+u ·∇a− (∇uT ·a+a ·∇u) is the
upper-convected derivative for the tensor a. In eq. (27),
λ1 and λ2 are, respectively, the relaxation and retarda-
tion time scales for the fluid. If ηs denotes the solvent
viscosity, and η the total viscosity of the polymer, we
have λ2/λ1 = ηs/η < 1. Using the notation of eq. (4),
the Oldroyd-B model corresponds to a single mode with
A≡ λ1∂/∂t, B ≡ λ2∂/∂t, M≡ λ1[u ·∇τ − (∇u

T · τ +
τ ·∇u)] and N≡ λ2η[u ·∇γ̇− (∇u

T · γ̇+ γ̇ ·∇u)].
For a time-reversible deformation, we consider a simple

sinusoidal gait of the form uS1 (x
S
0 , t) = v

S
‖ (x

S
0 )cosωt, so

that ũ
S,(n)
1 (xS0 ) = 0 for all n �=±1, and ũ

S,(±1)
1 (xS0 ) =

vS‖ (x
S
0 )/2 otherwise. At order ǫ, only the Fourier modes

with n �=±1 are non-zero, and we have

τ̃
(1)
1 = Gγ̃

(1)
1 , τ̃

(−1)
1 = G∗γ̃

(−1)
1 , G = η

1+ iλ2ω

1+ iλ1ω
, (28)

where {.}∗ denotes the complex conjugate. The spatial
distribution of surface deformation, described by v‖,
is assumed to be axisymmetric. The symmetry axis is
denoted ez (see fig. 2), the polar angle is θ, and is
associated with the orientation vector eθ. In the frame
moving with the swimmer, we prescribe

vS‖ (x
S
0 ) = 3aω sin θ(1+ cos θ) eθ, (29)

which is illustrated in fig. 2. Note that the velocity
distribution described by eq. (29) is fore-aft asymmetric,
which is necessary in order to obtain net locomotion with
an actuation varying sinusoidally in time.
Given eq. (29), we can then calculate the unsteady

swimming at order ǫ from eq. (12), and we find U1 =
2aω cosωtez. As a result, the surface distribution of veloc-
ity in the lab frame is given by u1(x

S
0 , t) = v‖(x

S
0 )cosωt,

where

v‖(x
S
0 ) = 2aω cos θ er + aω sin θ(1+ 3 cos θ) eθ. (30)

Given eq. (11), it is then easy to show that each Fourier
component of the entire flow field is identical to that
obtained in the Newtonian problem. Consequently, if
v‖(x) denotes the Newtonian velocity field associated
with the lab-frame boundary conditions v‖(x

S
0 ) on S0, we

obtain at first order u1(x, t) = v‖(x)cosωt. The velocity
field v‖(x) with boundary conditions from eq. (30) can be
found using the Legendre polynomials method pioneered
by Blake [25], and we get v‖ = v‖,rer + v‖,θeθ with

v‖,r = aω

[

2
a3

r3
cos θ+

3

2
(3 cos2 θ− 1)

(

a4

r4
−
a2

r2

)]

, (31a)

v‖,θ = aω

[

a3

r3
sin θ+3

a4

r4
sin θ cos θ

]

. (31b)

At order ǫ2, straightforward algebra allows us to obtain
the deviation from Newtonian behavior, in eq. (16), as [13]

〈Σ[u1]〉 =
η(λ2−λ1)

2(1+De2)

×
[

v‖ ·∇γ̇‖−
(

∇vT‖ · γ̇‖+ γ̇‖ ·∇v‖

)]

, (32)

where De= λ1ω is the Deborah number for the flow.
Finally, the hat problem in eq. (26) is the solid-body

translation of the sphere, with velocity field given by [26]

û=
3

4
a

[

1

r
+
rr

r3

]

· Û+
1

4
a3
[

1

r3
−
3rr

r5

]

· Û (33)

together with Stokes law, F̂=−6πηaÛ.
By symmetry, we expect that average swimming will

occur along the z-direction, so that 〈U2〉= 〈U2〉ez and by

choosing Û= Ûez, the left-hand side of eq. (26) is given
by −6πηaÛ〈U2〉. Given eqs. (31), (32) and (33), we can
evaluate the right hand side of eq. (26) and obtain

∫∫∫

V0

〈Σ[u1]〉 :∇û dV = a
2ω2Û

η(λ1−λ2)

1+De2
299π

25
. (34)

Recalling that λ2 = λ1ηs/η, we obtain the explicit formula
for the time-averaged swimming speed, 〈U2〉, of the
squirming sphere as

〈U2〉= aω
De

1+De2

(

ηs
η
− 1

)

Λ, (35)

where Λ= 299/150≈ 1.993. The result of Eq. (35) demon-
strates explicitly that the scallop theorem breaks down
in an Oldroyd-B fluid: The swimming gait is a sinusoidal
function, and therefore time-reversible, yet the force-free
body swims on average. In the Newtonian limit where
De= 0, we have 〈U2〉= 0 and the result of the scallop theo-
rem is recovered. Note that since ηs < η, we have 〈U2〉< 0.
High surface shear is localized on the top of the sphere
(see fig. 2b), so this is also where high normal-stresses
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differences are localized, and the sphere is being pushed
from the top to swim in the −z-direction.

Perspective. – In this paper, we have addressed the
most basic problem in the locomotion of microorganisms:
For a given swimming gait, at which speed is the organism
expected to swim? The solution to this problem is known
in the case where the fluid is Newtonian, and given
by eq. (3), but is not known for complex polymeric
fluids displaying a non-linear relationship between stress
and strain rates. We have considered the time-periodic
small-amplitude locomotion of a deformable body in an
arbitrary complex fluid. We have shown that the time-
averaged swimming kinematics of the body (translation
and rotation) are given by an integral formula on a series of
simpler Newtonian problems. The final formula, eq. (24),
can be applied for high Deborah numbers, which is the
relevant limit for the locomotion of swimming cells in
mucus, and provides the first formal framework to address
locomotion in complex fluids. In addition, our results are
valid beyond the biological realm, and can be used in
particular to the quantify the locomotion of synthetic
microswimmers [27].
As an application of our results we have constructed an

explicit example of a deformable body that swims using a
time-reversible stroke in a polymeric fluid. This example
demonstrates formally the breakdown of Purcell’s scallop
theorem in complex fluids for a finite-size, force-free and
torque-free swimmer. Note that the final formula for the
time-averaged swimming speed of the body, Eq. (35),
is reminiscent of recent work on the force generated by
flapping motion in polymeric fluids [28]. The implication
of this result, more generally, is that it is possible to
exploit non-linear rheological mechanisms (in our case,
the existence of normal-stress differences) to design new
swimming methods.
Finally, we note that recent work on infinite models for

swimmers deforming in a wave-like fashion showed that,
for a given swimming gait, swimming is always slower in
a polymeric fluid than in the Newtonian limit [13,14].
The final integral formula for the swimming speed we
obtain here, eq. (24), explicitly shows that in general the
beneficial vs. detrimental impact of the polymeric stresses
on the swimming performance cannot be established a
priori.
The results above could be extended in many different

ways. In particular, the method of expansion outlined
in the paper could be further continued, and all Fourier
components of the flow at higher order in the amplitude
of the surface deformation could be formally calculated.
Similar work could also be performed near boundaries, or
in the presence of other swimmers, and therefore could be
exploited to characterize the effect of polymeric stresses
on collective locomotion. The application of our results to
different swimmer geometries and various modes of surface
swimming, including flagella-based ones, will be reported
in future work.
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