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Some microorganisms, such as spermatozoa, synchronize their flagella when swimming in close

proximity. Using a simplified model (two infinite, parallel, two-dimensional waving sheets), we show

that phase locking arises from hydrodynamics forces alone, and has its origin in the front-back asymmetry

of the geometry of their flagellar waveform. The time evolution of the phase difference between

coswimming cells depends only on the nature of this geometrical asymmetry, and microorganisms can

phase lock into conformations which minimize or maximize energy dissipation.
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Swimming cells, such as spermatozoa or flagellated
bacteria, are ubiquitous in nature, yet their dynamics in a
world without inertia is often counter-intuitive [1]. Much
insight has been gained in the past about the nature of the
swimming of flagellated microorganisms, from the pio-
neering work of Taylor [2], through to many detailed re-
views on locomotion at the microscale [3–5]. Spermato-
zoa, in particular, have received much attention in an effort
to improve our understanding of the biomechanics of
reproductive processes [6].

One particularly puzzling phenomenon observed in
swimming spermatozoa and other microorganisms is the
apparent synchronization of the beating of the flagella of
two or more cells when in close proximity [2,7]. This
phenomenon was first modeled by Taylor using infinite
two-dimensional sinusoidal sheets [2]. Taylor found that
the most energetically efficient configuration for two
swimmers close together was to beat in synchrony. A
computational model of the same setup showed that at
small but finite Reynolds numbers, the sheets can achieve
stable phase locking at in-phase and opposite-phase con-
figurations [8], a result which remains valid for finite
swimmers with flagella of linearly increasing amplitude
[9]. Computations in two dimensions showed that the flow
fields of interacting swimmers tend to cluster them to-
gether into tight synchronized groups [7]. Large arrays of
cilia (short, closely packed flagella) also display synchro-
nization if the internal force-generation mechanism gen-
erating their beat pattern is load dependant [10,11].

What is still not understood is what constitutes the
essential physical ingredients to obtain an evolution in
time to a phase-locked configuration between cells swim-
ming close to each other. Here we consider a simplified
model of nearby swimming cells with a prescribed wave-
form. We show that stable phase locking can be obtained
purely passively, due to hydrodynamic interactions. The
phase-locked state to which the cells evolve is dictated
solely by the geometry of the flagellar waveforms of the
cells (specifically, their front-back asymmetry), and not by
considerations of energy dissipation.

In the spirit of Taylor [2], we consider a model of
coswimming cells consisting of two infinite parallel two-
dimensional sheets propagating lateral waves of transverse
oscillations with prescribed wave number k, frequency !,
and wave speed c ¼ !=k; each sheet is thereby propelled
in the direction opposite to the wave. This idealized geo-
metrical model, which has been used successfully in the
past to study other properties of cell locomotion [3], will
allow us to clearly elucidate the necessary ingredients
required for synchronization. We also relate it below to
experimental observations.
The shape of the waveform is assumed to be the same for

both swimmers, and is described by an arbitrary function a.
The position of the bottom sheet relative to an axis about
which it is centered vertically, is denoted y1 ¼ aðkx�!tÞ
in its swimming frame. The top sheet which is some mean
distance �h above and parallel to the bottom sheet moves at
a speed U� relative to the bottom sheet. The two sheets
have an instantaneous phase difference denoted � (see
Fig. 1); U� is defined to be positive if the upper sheet
moves to the right relative to the lower sheet; � is defined
to be positive if the upper sheet is left of the lower sheet by
�. The instantaneous position of the top sheet is thus given

FIG. 1 (color online). Our model for flagellar phase locking:
Two infinite, parallel, 2D sheets propagate periodic waves at a
speed c leading to swimming in the opposite direction. The top
sheet is allowed to move with velocity U� with respect to the
bottom sheet and is out of phase by an angle �.
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by y2 ¼ �hþ aðkx�!t� R
t
0 kU�ðt0Þdt0 þ ~�Þ, where ~� is

the phase difference at t ¼ 0.
The governing hydrodynamics equations for low-

Reynolds number flow in an incompressible Newtonian
fluid are the Stokes equations, frp ¼ �r2u;r � u ¼ 0g,
for the velocity field, u ¼ ðu; vÞ and pressure, p. We non-
dimensionalize using x̂� ¼ xk, y� ¼ y= �h, t� ¼ t!, u� ¼
u=c, U�

� ¼ U�=c, v
� ¼ v=�c, p� ¼ p�2=�!, where �

indicates the ratio of mean separation of swimmers to their
wavelength, � ¼ �hk. Fluid force per unit width are non-
dimensionalized as f� ¼ �f=�c and energy dissipation
rate per unit width as _E� ¼ �2 _E=�!c �h. For convenience
we introduce the variables h� ¼ y�2 � y�1, x� ¼ x̂� � t�,
� ¼ ~�� R

t�
0 U�

�ðt0Þdt0. Consequently, we have y�1 ¼
a�ðx�Þ, and y�2 ¼ 1þ a�ðx� þ�Þ, and the phase evolves

in time according to _� ¼ �U�
�. We further assume that the

waveform possesses reflectional symmetry with respect to
the horizontal axis, namely a�ðx� þ �Þ ¼ �a�ðx�Þ, in or-
der to focus on cells swimming along straight lines [12].
We now drop the (*) notation for convenience, and refer to
dimensionless variables.

As seen experimentally, phase locking can occur when
the cells flagella beat close together; therefore, an appro-
priate limit to study is when the mean distance between
them is much smaller than their wavelength, i.e., � � 1. In
this limit the Stokes equations reduce to the lubrication
equations, @p=@x ¼ @2u=@y2 and @p=@y ¼ 0 [13]. We
solve these equations in a frame moving with the waveform
of the bottom sheet [14]. The boundary conditions are
hence uðy1Þ ¼ �1 and uðy2Þ ¼ �1þU�. The solution
is for u readily obtained as

u ¼ 1

2

dp

dx
ðy� y2Þðy� y1Þ þU�

y� y1
y2 � y1

� 1: (1)

Integrating the continuity equation over h yields a relation
between the gradient of the flow rate between the sheets,
Q ¼ R

y2
y1
udy, and their relative motion as

@Q

@x
¼ U�

@y2
@x

� (2)

In order to determine the physical conditions for phase
locking to occur, we first set U� ¼ 0 and investigate the
resultant horizontal hydrodynamic force, fx, acting on the
upper sheet. In a free-swimming situation, the upper sheet
would move at a rate such that the viscous drag would
balance with fx (see below). With U� ¼ 0, we know from
Eq. (2) thatQ is constant and upon integrating Eq. (1) over
h we get Q ¼ �h� ðh3=12Þðdp=dxÞ. Since the system is
2� periodic, we have

R
2�
0 ðdp=dxÞdx ¼ 0, which leads to

Q ¼ �I2=I3 where Ij ¼
R
2�
0 h�jdx. The pressure gradient

is then obtained to be

dp

dx
¼ 12

�
I2
I3h

3
� 1

h2

�
� (3)

The force per unit width is determined by integrating the
stress over the upper sheet, fx ¼ ex �

R
S � � nds, where n

is the unit normal to the sheet into the fluid and � ¼
�p1þ�ðruþruTÞ is the stress tensor. Using integra-
tion by parts, the force is given by

fx ¼
Z 2�

0

�
y2

dp

dx
� @u

@y

�
jy¼y2dx: (4)

Using Eqs. (1) and (3), we finally obtain the force

fx ¼ 6
Z 2�

0

��
I2
I3h

3
� 1

h2

�
½aðxþ�Þ þ aðxÞ�

�
dx: (5)

Physical insight can be gained by inspection of Eq. (5).
When � ¼ 0 (in-phase swimming), h is constant, and
the force is identically zero for all waveforms aðxÞ.
Furthermore, since our waveforms possess reflection sym-
metries about the horizontal axis, the force is also exactly
zero when � ¼ � (opposite-phase swimming). What is
however the nature of the hydrodynamic force about the
fixed points � ¼ 0; �?
Using symmetry arguments, we can first demonstrate

that if the waveforms also possess reflection symmetry
with respect to the vertical axis (such as a pure sinewave),
no phase locking is ever possible. This is illustrated in
Fig. 2. Suppose the force between the swimmers acts to
stabilize the phase difference [Fig. 2(a)]. Let us then com-
pare the forces on the setup obtained by a reflection by the
vertical axis [Fig. 2(b)], with that obtained first by reflec-
tion by the horizontal axis and then by kinematic revers-
ibility (i.e., change of the direction of the wave) [Fig. 2(c)
and 2(d)]. The force in Fig. 2(d) is destabilizing while the
one in Fig. 2(b) is, for the same setup, stabilizing, indicat-
ing that both of them must be zero. In particular, sine-
waves, such as the ones considered in Refs. [2,8], cannot
phase lock. Note that this argument holds also for finite
flagella with a shape invariant upon reflection about the
vertical axis versus the horizontal axis, such as sine waves
with an integer number of wavelengths.
If the waveform is not front-back symmetric (i.e., lacks

reflection symmetry with respect to the vertical axis), such

FIG. 2 (color online). Swimmers with reflection symmetries
by the horizontal and vertical axes cannot phase lock: If a
relative force exists in (a), we obtain the forces in (b) and (c)
by reflection symmetries (R planes). Applying kinematic revers-
ibility to (c) (KR line) leads to a force in (d) which is minus the
one in (b), indicating that they both must be zero.
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as spermatozoa with flagellar waveforms of increas-
ing amplitude [15], the comparison between Figs. 2(b)
and 2(d) cannot be made, and a force can appear. In that
case, the comparison between Figs. 2(a) and 2(c) shows
that this force must be an odd function of the phase
difference, i.e., fxð��Þ ¼ �fxð�Þ. For small variations
about the fixed points, � ¼ �0 þ�0 with �0 � 1, the
force given by Eq. (5) determines the stability of �0.
Near the in-phase configuration (�0 ¼ 0) the force is

fx0 � �72�03 Z 2�

0
a

�
da

dx

�
3
dx; (6)

to leading order in �0. If � denotes the amplitude of the
waveform, we see that fx0 ���03�4, with a sign that

depends solely on the wave geometry; the sign þ (�)
leads to stability (instability) of in-phase swimming.
Similarly, expanding about opposite-phase swimming
(�0 ¼ �), we get at leading order

fx� � 6�03 Z 2�

0

ðda=dxÞ3
ð1� 2aÞ4

�
2

ð1� 2aÞ
J2
J3

� 1

�
dx; (7)

where Jn ¼ R
2�
0 ð1� 2aÞ�ndx. For small-amplitude waves

with � � 1, Eq. (7) simplifies to

fx� � 72�03 Z 2�

0
a

�
da

dx

�
3
dx: (8)

Comparing Eq. (6) with Eq. (8), we see that forces near in-
phase and opposite-phase configurations have the same
magnitude, but opposite signs. One of the fixed points
for phase locking is therefore stable while the other is
unstable, in a manner which depends solely on the wave-
form geometry: If the waveform a is such that A 	R
2�
0 aðda=dxÞ3dx < 0 (>0) then in-phase swimming is

stable (unstable) while opposite-phase swimming is un-
stable (stable) [16].

The rate of energy dissipated in the fluid between the
sheets per unit width is _E¼RR

�: rudydx which is given

over one wavelength by

_E ¼ 12
Z 2�

0
h3
�
I2
I3h

3
� 1

h2

�
2
dx: (9)

For small-amplitude waves near in-phase swimming
(�0 ¼ 0), we get _E0 � 12�02 R2�

0 ðda=dxÞ2dx, while near

the opposite-phase configuration (�0 ¼ �), we obtain
_E� � 12

R
2�
0 ð4a2 � ðda=dxÞ2�02Þdx. In-phase swimming

is therefore always the situation where the swimmers have
to do the least amount of work, while opposite-phase the
most work [2,8,17]. Comparing this result with the forces
in Eqs. (6) and (8), we see explicitly that there is no
relationship between viscous dissipation and hydrody-
namic force, and the swimmers can be forced into a stable
conformation where the energy dissipation is in fact maxi-
mum (when A > 0).

In order to observe the evolution of the phase angle
towards a phase-locked state, we now allow U� to be
nonzero. Evaluating Eq. (2) with Eq. (1) and integrating

in x we get

dp

dx
¼ 6U� � 12

h2
� 12U�y2 þ C

h3
; (10)

where C is a constant, found by enforcing that the pressure
is 2� periodic, C ¼ ð6U� � 12ÞðI2=I3Þ � 12U�ðK=I3Þ,
where K ¼ R

2�
0 y2=h

3dx. We then obtain U� by imposing

that the swimmers are force-free. Substituting Eqs. (10)

and (1) into Eq. (4) with fx ¼ 0, we solve for _� ¼ �U�

and get

d�

dt
¼ ��fsx; (11)

where

��1¼
Z 2�

0

��
3

h2
� 3

h3

�
2y2þI2�2K

I3

��
½aðxþ�ÞþaðxÞ�

� 1

1þaðxþ�Þ�aðxÞ
�
dx; (12)

and fsx refers to the force in Eq. (5). The change in the
phase angle between the two sheets is therefore propor-
tional to the force which would be acting between them if
they were prevented from having any relative motion. For
small-amplitude waves, we get��1 � 2�, so that near the

fixed points, the phase behaves as _�0 � ��4�03 and we

have �0 � t�1=2 near stable fixed points and �0 � ð~t�
tÞ�1=2 near unstable points.
As discussed above, the geometry of the wave is the only

factor determining the direction in which the relative po-
sition of the sheets evolve. For illustration, we now con-
sider waves in the form of skewed sinusoids. Wemap a sine
wave from the intervals [0: �=2] and [�=2: �] to the
intervals [0: �=2þ �] and [�=2þ �: �], and define
aðxþ �Þ ¼ �aðxÞ on the interval [�: 2�]. Shapes with
�> 0 (�< 0) have a larger region where the wave ampli-
tude increases (decreases) in the direction of the wave
propagation (see Fig. 3, upper inset). If �> 0 (�< 0)
then A < 0 (A > 0) and our analysis predicts that phase
locking will occur at the in-phase (opposite-phase) con-
formation. Experimental observations in Ref. [15] suggest
the flagellar amplitude of bull spermatozoa is reasonably
given by a linearly increasing sine wave; this yields front-
back asymmetry corresponding to A < 0. We now proceed
to solve Eq. (11) numerically.
The dynamics of phase locking is illustrated in

Fig. 3 (top), where we plot the evolution of the phase angle
from an initial phase � ¼ �=2 for three shapes of
swimmers (upper inset): perfect sine wave (� ¼ 0, black
solid line), and two skewed sine waves with � ¼ 3�=10
(blue dotted line) and � ¼ �3�=10 (red dashed line). The
perfect sinusoidal shape yields no evolution in time, as
predicted by the analysis. In contrast, the skewed sine
waves evolve into the predicted phase-locked positions,
in-phase for �> 0 and opposite-phase for �< 0 (at the
same rate because the waveforms are symmetric to each
other about the vertical axis). The energy dissipated be-
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tween the sheets, Eq. (9), is displayed in Fig. 3 for the three
shapes [lower inset]. The dissipation for the two skewed
waveforms is identical—as _E is invariant under a reversal
of swimming direction—, is slightly different from the
perfect sinusoid (mean square difference <0:1%), and all
shapes display the predicted maximum at � and minimum
at 0 and 2�. In agreement with our analysis, the numerical
results demonstrate therefore that swimmers with increas-
ing amplitude (�> 0) phase lock into the most energeti-
cally favorable conformation, while those with decreasing
amplitude (�< 0) phase lock into the least energetically
favorable conformation. The example with � ¼ 3�=10 is
further illustrated in Fig. 3 (bottom) where we show the
evolution of the phase angle from various initial phases. In

all cases, the configuration evolves into a phase-locked
state at the only stable fixed point, � ¼ 0. Further compu-
tations (not shown) show that increasing the asymmetry of
the waveform, or its amplitude, decreases the time scale
over which the systems evolve into a phase-locked state.
In summary, in this Letter we have used a simplified

model to show that hydrodynamic forces alone can lead to
the observed phase locking between two swimming micro-
organisms if their waveforms are front-back asymmetric.
The nature of the phase-locked state, and the rate at which
the relative conformation of the two swimmers evolve to it,
is dictated solely by the geometry of the waveforms. In
particular, an in-phase conformation may be obtained
when the swimmers have shapes with increasing amplitude
front to back, as observed for some mammalian spermato-
zoa [15]. Other front-back asymmetries, such as the pres-
ence of a head, would also further contribute to phase
locking [7].
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FIG. 3 (color online). Top: Evolution of the phase angle, �,
from an initial value of �=2 for swimmers with three different
waveforms [upper inset]: sine wave (black solid line), sine waves
shifted forward and backwards by 3�=10 (blue dotted and red
dashed lines, respectively). As predicted by the theory, the
perfect sine wave shows no phase evolution while the skewed
sine waves evolve to phase-locked positions (in-phase and
opposite-phase, respectively). The energy dissipated for the three
waveforms is almost identical [lower inset] (see text). Bottom:
For all initial conditions, the phase angle converge to a phase-
locked state at the only stable fixed point, � ¼ 0 (same parame-
ters as in top figure, dotted line).
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