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Motile eukaryotic cells propel themselves in viscous fluids by passing waves of bending
deformation down their flagella. An infinitely long flagellum achieves a hydrodynamically optimal
low-Reynolds number locomotion when the angle between its local tangent and the swimming
direction remains constant along its length. Optimal flagella therefore adopt the shape of a helix in
three dimensions �smooth� and that of a sawtooth in two dimensions �nonsmooth�. Physically,
biological organisms �or engineered microswimmers� must expend internal energy in order to
produce the waves of deformation responsible for the motion. Here we propose a physically
motivated derivation of the optimal flagellum shape. We determine analytically and numerically the
shape of the flagellar wave which leads to the fastest swimming for a given appropriately defined
energetic expenditure. Our novel approach is to define an energy which includes not only the work
against the surrounding fluid, but also �1� the energy stored elastically in the bending of the
flagellum, �2� the energy stored elastically in the internal sliding of the polymeric filaments which
are responsible for the generation of the bending waves �microtubules�, and �3� the viscous
dissipation due to the presence of an internal fluid. This approach regularizes the optimal sawtooth
shape for two-dimensional deformation at the expense of a small loss in hydrodynamic efficiency.
The optimal waveforms of finite-size flagella are shown to depend on a competition between
rotational motions and bending costs, and we observe a surprising bias toward half-integer wave
numbers. Their final hydrodynamic efficiencies are above 6%, significantly larger than those of
swimming cells, therefore indicating available room for further biological tuning. © 2010 American
Institute of Physics. �doi:10.1063/1.3318497�

I. INTRODUCTION

The locomotive capabilities of microorganisms are inti-
mately tied to the properties of the surrounding fluid
medium.1 On scales relevant to most microorganisms, iner-
tial effects are dominated by viscous dissipation; hence, the
ejection of momentum into the fluid by the shedding of vor-
tices, as observed in the locomotion of fish and birds, is not
a viable means of propulsion for bacteria and spermatozoa.
Instead, microorganisms evolved to exploit hydrodynamic
drag. Biological locomotion in this regime is the topic of a
vast body of research, and we refer the reader to an excellent
introduction by Purcell,2 and the classic texts by Lighthill3

and Childress.4 One of the most commonly observed means
of microorganismic propulsion is the propagation of periodic
waves down the length of a slender flagellum. Drag aniso-
tropy in viscous flows, in combination with the time-
irreversibility of unidirectional beating patterns, renders this
locomotive form one of the rather few relatively efficient
means of hydrodynamic propulsion in viscous fluids.

Due to its ubiquity in nature, flagellar locomotion has
long attracted the attention of biologists, mathematicians,
and engineers alike. Continuous advances in imaging re-
vealed new details regarding the structure and kinematics

of eukaryotic flagella,5–7 but theoretical considerations of
flagellar locomotion extend back to the seminal works of
Taylor,8 Hancock,9 Gray,10 and Lighthill.11 In these works
the authors considered the hydrodynamics of slender body
locomotion, developed a resistive force theory for the rela-
tionship between velocities and forces, and deduced conse-
quences regarding possible and, in some cases, optimal ge-
ometries. Corrections to the simplified resistive force theory
are found in a more detailed slender body theory.11–15 The
comparison of theory to experiments was furthered signifi-
cantly in the 1970s in the works of Machin,16 Higdon,17 and
Brokaw.18–20 An excellent review article on flagellar and cili-
ary propulsion from that era is provided by Brennen and
Winet.21 More recently, attention has been paid to the
relationship between internal structure and hydrodynamics.
Camalet and Jülicher22 have shown that periodic bending and
sliding of the microtubule structure of axonemal flagella can
lead to wave generation and organism propulsion. Riedel-
Kruse et al.23 considered the coordination of dynein motors
in beating spermatozoa and argued that the only theoretical
motor coordination that fits their experimental data is inter-
doublet sliding. Other avenues of current active research in-
clude the swimming dynamics of bodies in non-Newtonian
fluid environments, such as the propulsion of spermatozoa in
the human female reproductive tract.24–29

It is natural to ask about the optimality of the flagellar
shapes exhibited by nature. Lighthill3 included a response to
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this question by maximizing a hydrodynamic efficiency over
the passage of periodic waves down the length of an infi-
nitely long flagellum. He showed that the optimal flagellar
shape was one for which the angle between the local tangent
to the flagellum and the swimming direction was constant. In
three dimensions, this leads to an optimal flagella in the
shape of a rotating helix, a swimming mechanism frequently
observed in nature. In contrast, in two dimensions the opti-
mal shape is nonsmooth and adopts a sawtooth form. Other
early work in this vein was performed by Pirroneau and
Katz,30 who considered the hydrodynamically optimal shape
of finite slender swimmers and noted an amplitude to wave-
length relation for optimality in sawtoothed and small ampli-
tude sinusoidal waveforms. The optimal shapes of finite saw-
toothed, sinusoidal, and other curves that are amenable to
analysis have also been studied by Silvester and Holwill,31

Higdon,17 and Dresdner et al.32 More recently, Tam33 has
shown numerically that the optimal slender swimmer in a
Stokesian fluid does in fact pass periodic waves along its
length, limiting to nearly the sawtoothed result of Lighthill.

In this paper we consider a physically motivated ap-
proach to the question of optimality in planar flagellar loco-
motion by explicitly taking into account the internal nature
of the flagellum. We study changes to the hydrodynamically
optimal but nonsmooth shape of Lighthill when internal en-
ergetic costs are included. Specifically, we determine analyti-
cally and numerically the shape of the flagellum which,
through the passage of a wave down its length, swims the
fastest for a given newly defined swimming energy. This
energy not only includes dissipation in the surrounding fluid,
but also �1� the elastic energy stored in the bending of the
flagellum, �2� the Hookean energy stored in the relative slid-
ing of the polymeric filaments �microtubules� which create
the waves of deformation, and �3� the internal dissipation
due to the presence of a fluid inside the axoneme. In the case
of infinite flagellum length, we show that this approach regu-
larizes the nonsmooth solution of Lighthill, at the expense of
a small decrease in the hydrodynamic efficiency �from 8.5%
to 7.5%�. Finite-length swimmers also display smooth flagel-
lar shapes, and we show that the optimal shape is determined
by a competition between rotational motions and bending
costs with a surprising bias toward half-integer wave num-
bers. The hydrodynamic efficiencies of the optimal finite-
length flagella are above 6%, significantly larger than those
of biological cells �typically in the 1% range�, indicating
available room for further biological tuning.

The paper is structured as follows. In Sec. II we intro-
duce the notation for the swimming kinematics, as well as
the new swimming energy measures we use in the paper. The
case of an infinite-length flagellum is treated analytically in
Sec. III by a variational approach and solved numerically for
finite bending and sliding costs. The results for finite-size
flagella are presented in Sec. IV. We conclude with a discus-
sion of our results and their implications for the biophysics
of motility in Sec. V.

II. KINEMATICS, FLUID-BODY INTERACTION,
AND ENERGETIC COSTS

A. Kinematics

We consider the passage of a periodic waveform down
along an inextensible flagellum of length L and radius a,
which is confined to motion in the x−z plane. The waveform
is described by X�s�= �X�s� ,Z�s��, where s� �0,L� is the arc
length ��Xs�s��=1, with the subscript denoting a derivative
with respect to s�. The waveform is chosen so that the body
is initially oriented along the x-axis, with X�0�=0, and

X�s + �� = X�s� + �, Z�s + �� = Z�s� , �1�

where � is the distance along the flagellum between wave-
lengths. � is the physical wavelength, so that �=� /��1 is a
contraction factor due to the waviness of the flagellum.3 We
define L=k�, with k the number of wavelengths along the
body �not necessarily integral�.

The body motion is illustrated in Fig. 1. At time t, the
waveform �X�s� ,Z�s�� is assumed to pass along the length of
the body at an angle ��t� to the x-axis. In a frame of refer-
ence moving with the traveling wave, the flagellum moves
tangentially with uniform speed c and a period T�=� /c. De-
fining x0�t� as the position of the head and r�s , t�=X�s−ct�
−X�−ct�, the body centerline is written as

x�s,t� = x0�t� + R� r�s,t� , �2�

where î=cos���x̂+sin���ẑ, and R� is the rotation operator,

R� = �cos ��t� − sin ��t�
sin ��t� cos ��t�

� . �3�

Hence, the velocity of each point may be written in the labo-
ratory frame as

u�s,t� = ẋ0�t� + R� �rt + �̇�t�r�� , �4�

with X�= �−Z ,X� and rt=−cXs�s−ct�+cXs�−ct�. The unit
tangent vector along the body �in the direction of increasing
s� is denoted by ŝ=R� �Xs�, and the normal vector is n̂= ŝ�.

FIG. 1. Swimming flagellum with notation. A periodic waveform with
physical wavelength � is passed from the head x0�t� down along the body
centerline �to the right� at an angle ��t� to the horizontal. The body moves
opposite the direction of the wave in mean. Unit tangent and normal vectors
are also indicated.
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B. Fluid-body interactions

The fluid-body interactions are modeled using the local
resistive force theory of Gray and Hancock �1955�.34 Resis-
tive force theory relates the local fluid force per unit length
and the local fluid/body velocity �equivalent by the assump-
tion of a no-slip boundary condition�. In the classical theory,
the velocity of the slender body at a station s is separated
into tangential and normal components, as is the correspond-
ing force per unit length f�s , t�:

ŝ · f�s,t� = KT ŝ · u, n̂ · f�s,t� = KN n̂ · u . �5�

The force per unit length on the fluid, f�s , t�, is thus taken to
be

f�s,t� = KT ŝŝTu + KN�I − ŝŝT�u

= �KT − KN�ŝ�ŝ · u� + KNu . �6�

With no external forcing, the dynamics are thus set by con-
ditions ensuring zero net force and zero net torque on the
body at all times,

�
0

L

f�s,t�ds = 0, �
0

L

�x�s,t� − x0�t�� � f�s,t�ds = 0. �7�

These three equations are linear in the velocities ẋ0 and �̇,
which are solved by a simple matrix inversion. The time-
dependent body geometry determines uniquely the velocities
at all times.

Corrections to the resistance coefficients and to the
local theory, in general, are the subject of a number of
studies.11,34,35 For this study we fix the ratio rk=KN /KT

=1 /2 with the acknowledgment that this ratio has been found
in these other works to be dependent �though logarithmi-
cally� on the ratio of body radius to wavelength, a /�, which
we take to be very small. Nonlocal effects are potentially
significant for the study of all but the thinnest of bodies;
however, the use of slender body theory is complicated by
the need for high resolution of the body shape near any re-
gion of rapid geometric variation such as a kink. The slender
body theory generates a system of Fredholm integral equa-
tions of the first kind which are in general susceptible to
oscillatory behavior or slow convergence in their numerical
solution, particularly when the immersed boundary has a
sharp geometry.36 This said, we note that Tam33 shows the
near recovery of Lighthill’s sawtoothed waveform solution
using the full slender body theory.

C. Energetics

1. Dissipation

The rate of mechanical work done by the body against

the fluid, �̃��t�, is determined through an integration along
the body centerline,

�̃��t� = �
0

L

f�s,t� · u�s,t�ds ��0� , �8�

and is seen to be non-negative due to the form of Eq. �6�.
Averaging over one cycle, we define

�� = 	�̃��t�
 , �9�

where

	�̃��t�
 =
1

T��
0

T�

�̃��t�dt . �10�

In addition to performing work against the fluid, internal
forces must also be exerted in order to create bending waves
along the flagellum. In this paper we are considering these
forces by explicitly taking into account the elastic nature of
the flagellum, as well as the presence of internal dissipation.
Three new measures of energy are therefore defined below.

2. Bending

Figure 2 shows a transmission electron microscopy
�TEM� image and a cross-sectional diagram of a typical eu-
karyotic flagellum, in this case that of the organism Chlamy-
domonas. The internal structure of a eukaryotic flagellum,
known as the axoneme, is usually composed of nine micro-
tubule doublets which encircle a central microtubule pair
�though other numbers and modifications of this basic pat-
tern have been observed�.21 Dynein molecular motors act to
generate shear forces that cause sliding between the outer
doublet microtubules, and consequently the macroscopic
passage of waves along the flagellar length.37 Nexin proteins
are elastic links that act to keep the outer microtubule dou-
blets well spaced.

We model the elastic energy stored in the bending of the
axoneme, EBending

� �t�, as a function of the flagellum’s effec-
tive Young’s modulus E, its second moment of inertia I, and
the local flagellum curvature 	�s , t� using the classical elastic
beam theory;38 thus,

EBending
� �t� =

1

2
EI�

0

L

	2�s,t�ds . �11�

Note that kink instabilities have been shown to form when
soft elastic cylinders are bent beyond a critical radius of
curvature;39 however, we take such defects to be negligible
given the assumption of the vanishingly small aspect ratios
considered here.

For a periodic wave with an integer number of wave-
lengths, the rate of change of the bending energy is zero,
�tEBending

� �t�=0. Physically, elastic forces are conservative
and are therefore not associated with energy dissipation.
However, an organism must be capable of creating the bend-

(a)
Nexin

Membrane

Outer dynein arm
Inner dynein arm

Radial Spokes Central singlet microtubules

Microtubule doublet(b)

FIG. 2. The structure of the flagellar axoneme is seen in a �a� TEM image
�Ripped Electron Microscope Facility, Dartmouth College� and �b� a cross-
sectional diagram of a Chlamydomonas flagellum.
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ing moments associated with its shape at the outset of the its
swimming motion, as well as maintaining them during
locomotion, and the associated energetic constraints are
nontrivial.

In order to approximate the rate of mechanical work
done on the fluid, as well the amount of bending energy
stored in real eukaryotic flagella, we turn to experimental
data collected for the well-studied spermatozoa of the sea
urchin Psammechinus miliaris.10,21,34 We use sample
values from these studies of flagellum length L�40 
m,
wavelength ��24 
m, radius a�0.2 
m, and swimming
speed U�190 
m /s. For motion in water, the viscosity is
given by 
�10−3 Pa s, and the tangential resistance coeffi-
cient is approximately KT�2�
 / �ln�0.18� /a�−1 /2��2.4
�10−3 Pa s �see Ref. 11�. The rate of mechanical work
can be approximated by computing the fluid dissipation
while dragging the straightened body at the swimming
speed, and dividing this value by 1% �as suggested by a
common measure of hydrodynamic efficiency, discussed in
a following section�. The result is ���KTU2L /1%�3.5
�10−13 N m /s. The same studies report a wave amplitude
�Z���4 
m, and a flexural rigidity of a different sea urchin
spermatozoan was determined in Ref. 40 to be EI�2
�10−22 N m2 �see also Ref. 41�. Assuming a sinusoidal pro-
file using the measured wave amplitude and wavelength, the
curvature is approximated as 	��Zxx��=3�105 m−1, and
the elastic energy stored in the flagellum is found to be
EBending

� = �1 /2�EI	2L�3.6�10−16 N m, on the same order
therefore as the total amount of work done by the cell against
the fluid in 10−3 s, or in roughly 1/30th of the flagellar beat.

There are many possible ways to penalize the elastic
deformation in a measure of swimming efficiency. In this
paper, we choose an energy cost per time �or bending
“power”� associated with Eq. �11� to be

PBending
� = 	EBending

� �t�
/T�, �12�

representing the time-averaged elastic energy stored in the
flagellum per unit period of the wave.

3. Elastic sliding

The relative sliding between the microtubule doublets
�Fig. 2� is understood to account for the generation of bend-
ing moments and large scale undulations.22,23,42 In the study
of planar waves, a common abstraction of the internal sliding
is to consider a “two-dimensional axoneme” as illustrated in
Fig. 3 �following Camalet and Jülicher�.22 A rigorous con-
nection between the two-dimensional consideration above
and the full three-dimensional axoneme is presented in Ref.
43, and bending moment propagation in flagella by such slid-
ing action is considered in Ref. 44.

To capture an energetic cost due to a material shear of
this nature, we define a sliding energy per wavelength under
the assumption of a Hookean internal response. Based on the
two-dimensional structure described above, we define a local
sliding displacement 
�s , t� as a difference between the arc
lengths of the top and bottom curves �as illustrated in Fig. 3�,


�s,t� = 
�s̄,t� + �
s̄

s �
�s�X +
a

2
n̂�
 − 
�s�X −

a

2
n̂�
�ds�

�13�

=
�s̄,t� + a�
s̄

s

	�s�,t�ds� �14�

=
�s̄,t� + a���s,t� − ��s̄,t�� . �15�

Here we defined the local tangent angle ��s , t�, where
Xs=cos��� and Zs=sin���, and �s=	. A complete description
of the sliding distribution requires initial specification of the
relative distance between top and bottom curves at a single
reference point 
�s= s̄ , t=0�. Subsequently for t�0 the
sliding dynamics are set by the time-dependent geometry as
we will show. The relative sliding displacement changes with
the local shears generated by bending moments, and the be-
havior at s= s̄ may be written in terms of a jump in upper and
lower curve velocities,


t�s̄,t� = �ŝ · u� = aŝ · n̂t = − �ac�ŝ · n̂s = − �ac��s�s̄,t� ,

�16�

where �f�= f top− fbottom. Hence, the sliding displacement may
be written as


�s,t� = 
�s̄,0� − �ac��
0

t

�s�s̄,��d� + a���s,t� − ��s̄,t�� .

�17�

We exploit the traveling wave structure, �s=−�1 /c��t, and
integrate the above to give


�s,t� = �
�s̄,0� − a��s̄,0�� + a��s,t� �18�

=a�c
 + ��s,t�� . �19�

Riedel-Kruse et al.23 set s̄=0 and couple the sliding dis-
placement at the flagellar base, 
�s̄=0, t�, to the internal slid-
ing dynamics along the body length. A sliding energy is de-
fined through a shear modulus G as

ESliding
� �t� =

G

2
�

0

L


2ds . �20�

As with the bending �Eq. �12��, the sliding energy is not
associated with any dissipative processes, but must however

FIG. 3. Two-dimensional analog of the axoneme shown in Fig. 2. A local
sliding displacement 
 is defined as the difference between the arc lengths
of the top and bottom curves X�s�� �a /2�n̂�s�. Here we set zero relative
displacement at the leftmost edge �
�s̄�=0�.
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be expended by the body to generate the initial internal slid-
ing profile. Similarly, then, we define a sliding energy per
time as the amount of sliding energy stored per unit period of
the wave, given by

PSliding
� = 	ESliding

� �t�
/T�. �21�

For periodic waveforms, �ac
� is equivalent to the
period-averaged sliding displacement, and we refer to c
 as a
dimensionless base sliding. Having assumed a Hookean elas-
tic response to sliding, c
�0 therefore corresponds to a non-
zero net internal moment. This moment would act, absent
any other internal forces, to drive the flagellum toward the
c
=0 state, or


�s̄,0� = a��s̄,0� , �22�

with the sliding displacement precisely equivalent to the tan-
gent angle multiplied by the body thickness. This special
case is illustrated in Fig. 4, along with an illustration of a
body with nonzero base sliding, c
�0. For a given body
shape, the second corresponds to a state with a larger internal
energy. Absent external forces there can also be a net body
rotation in an energy minimizing response to c
�0.

4. Rate of sliding

The locomotive properties of many organisms may also
depend on the dynamics of a fluid internal to the body.
Hence, we consider a third cost of locomotion: that of inter-
nal dissipation due to the sliding of an upper and lower
boundary as described above,

�̃Internal
� �t� = 2
I�

0

L �
t

a
�2

ds = 2
Ic
2�

0

L

	2ds , �23�

where 
I is the viscosity of the internal fluid and we used Eq.
�16�. As a result, the optimal waveforms determined by in-
cluding an elastic bending cost will also capture the effects
on the optimal shape determined in the presence of an inter-
nal dissipation cost to leading order in a /�. This is at first
glance a puzzling result; a shear of two surfaces certainly
need not require a curvature. However, given the assumption

of a periodic waveform and the associated velocities, the
shears generated are in fact due only to the bending of the
filament. Without loss of generality, we therefore consider
below only elastic bending and sliding costs.

5. Efficiency

The system is made dimensionless by scaling velocities
on the speed c, lengths on L ��� for finite-length �infinite-
length� bodies, and time on the ratio of length to velocity
scale. Geometrical variables, velocities, and forces are
henceforth understood to be dimensionless, and the period of
motion is denoted by T. The rate of mechanical work, and
bending and sliding terms defined above are written as

� =��
0

1

f · u ds�, PBending = �B��
0

1

	2ds�,

�24�

PSliding = �S��
0

1


2ds� ,

where �B and �S are dimensionless and may be inferred from
the definitions above. Finally, we define a swimming effi-
ciency. A common measure of hydrodynamic efficiency, �H,
for low Reynolds number swimming is the ratio of the rate of
work required to drag the straightened flagellum through the
fluid to the rate of work done to propel the undulating body
at the same velocity,

�H =
rkU

2

�
, �25�

where U= �	ẋ0�t�
� is the �dimensionless� mean swimming
speed, and rk is the ratio of normal to tangential resistance
coefficients defined earlier in the text.

In this paper we define a generalized swimming effi-
ciency, �, by including as well penalties associated with the
internal bending �or internal dissipation� and sliding,

� =
rkU

2

�1 − AB��1 − AS�� + �AB/�B�PBending + �AS/�S�PSliding
·

�26�

Here AB� �0,1� and AS� �0,1� are dimensionless numbers
which allow for variation of the relative importance of bend-
ing and sliding energetic costs. The optimal swimmer is
henceforth defined as that waveform X�s� which maximizes
the efficiency �.

As discussed above, the bending energy stored in a real
eukaryotic flagellum is small compared to the amount of
energy dissipated into the fluid with each passing flagellar
wave. In contrast, as noted in the introduction, and as will be
derived below, Lighthill’s hydrodynamically optimal wave-
form is a sawtoothed wave with infinite elastic energy. In our
work, we include therefore the two dimensionless parameters
AB and AS so that we may tune the relative importance of
stored elastic energies versus dissipation in both biological
and synthetic flagella, and consider such consequences as
geometric regularization.

Equivalently, our approach can be physically interpreted
in the context of constrained optimization. The hydrody-

FIG. 4. Two arrangements of sliding displacement density are illustrated.
The first corresponds to zero mean sliding displacement, �ac
�=0. The sec-
ond corresponds to a positive mean sliding displacement, �ac
��0, and
hence a nonzero net internal moment.
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namically optimal swimmer maximizing �H is that for which
the swimming speed is maximized for a given amount of
energy dissipated in the fluid. Herein we search for the wave-
form maximizing �, which is equivalent to the waveform
maximizing the swimming speed for a given amount of both
energy dissipation and elastic deformation �bending and/or
sliding�. Our approach consists therefore of adding con-
straints related to the elastic energy stored in the flagellum to
the usual dissipation measure, and as such it allows us to
determine the shape of the optimal elastic flagellum.

III. BODIES OF INFINITE LENGTH

A. A classical result by a variational approach

We begin by showing that a variational approach yields
the classic result due to Lighthill.3 When the body is infi-
nitely long �L→��, it is useful to decompose the body ve-
locity into the tangential motion along the waveform and a

swimming velocity, Ũ= 	Ũ ,0
 �as in Ref. 3� which we
achieve by defining

Ũ = ẋ0 − ��x̂ − ŝ�s=0� . �27�

Since 	�x̂− ŝ �s=0
=0 for periodic X�s�, this wave-frame
velocity is equivalent in mean to the head velocity,

	Ũ
= 	ẋ0
=U. The velocity of a point on the body in this

special case may then be written as u= �Ũ+��x̂− ŝ, and Eq.
�7� reduces to

Ũ = −
��1 − rk��1 − ��

1 − �1 − rk��
, �28�

� = �
0

1

Xsds, � = �
0

1

�Xs�2ds , �29�

ż0 = − ẑ · ŝ�s=0, ��t� = 0. �30�

The rate of mechanical work is given by

� = �Ũ + ��2�1 − �1 − rk��� + rk�1 − 2��Ũ + ��� . �31�

Defining the slope function g�s�=Zs�s�, and setting the varia-
tional derivative of the efficiency to zero ���=0� the follow-
ing algebraic equation is generated for g�s�:

g�s�2 = 1 −
�1 − ��2�1 − �1 − rk���4

rk
2�2�2 − �1 + rk��2 − �1 − rk��2 − �2���2

�constant� . �32�

Since the absolute slope �g�s�� is constant we may compute
simply the constants �=1−g2=�2. These relationships then
yield �=1 / �1+�rk�, and

g�s� = �� �rk

1 + �rk

· �33�

This is the result of Lighthill.3 For rk=1 /2, the physical
slope of the sawtoothed waveform is sin−1��g�s���=40.06°.
The associated efficiency is �= �1−�rk�2=0.0858, and the

swimming velocity is Ũ=−�1−�rk� / �1+�rk�=−0.224, oppo-

site the direction of the traveling wave. Generally speaking, a
body shape which alternates between the positive and nega-
tive slopes ��g�s�� at an arbitrary number of points yields the
same swimming velocity and efficiency. The structure even
admits pathologically discontinuous g�s�, up to the point at
which the resistive force theory becomes invalid. This com-
plication is removed in the case of infinite-length by simply
requiring that a fundamental periodic mode is exhibited over
a unit wavelength.

If the bending cost is included �AB�0� but the sliding
cost is ignored �AS=0�, after some algebra we find that the
variational problem leads to the following integrodifferential
equation for the slope g�s�:

AB�gss +
ggs

2

1 − g2�
− � �1 − AB�rk + �AB/�B�PBending

�
�g�1 − g2

+ �1 − AB�rk
2� �2 − �2��1 − �1 − rk��� − rk�

2

�1 − �1 − rk���2�1 − �� �
�g�1 − g2� + 2rk�AB/�B�

�� PBending

�1 − �1 − rk����1 − ��
�g�1 − g2� = 0. �34�

The AB→0 limit is readily seen to be a singular one, which
is expected due to the lack of regularity in the sawtoothed
solution. A numerical optimization for the case of general
AB�0 is presented in a later section. However, rewriting
Eq. �34� for AB�0 with its highest derivative alone on the
left hand side makes clear that further differentiations intro-
duce no irregularities for �g�s���1, so that such solutions
have g�C�.

B. Numerical optimization

Having already assumed that the fluid is modeled by the
Stokes equations and since length scales out of the efficiency
measure completely for a body of infinite length, there is a
scale invariance in the determination of the optimal wave-
form. We account for this invariance in the infinite-length
case by assuming that the waveform cannot be decomposed
into smaller periodic forms. In other words, we scale the
optimization so that the fundamental shape is expressed
exactly once in the spatial period s� �0,1�. This is achieved
by considering the following basis for the tangent angle
��s , t=0�:

��s,t = 0� = tan−1�Zs�s�
Xs�s�

� = �
n=1

�

an cos�2�ns� , �35�

subject to the constraint that Z�s+1�=Z�s�. We make a sim-
plifying assumption that �� �−� ,��. The solutions found
without enforcing this constraint are consistent with this as-
sumption, but the numerical search procedure can become
unstable or slow in some cases without its application. The
phase of the waveform is irrelevant for bodies of infinite
length. Given the tangent angle at each station s, we recover
the flagellar shape by integration,
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g�s� = Zs�s� = sin���s,t = 0��, Xs = cos���s,t = 0�� .

�36�

Numerical optimization is performed using a SQP, quasi-
Newton, line-search method in the MATLAB optimization
toolbox. The tangent angle is written as a finite sum over the
first n� Fourier modes, and the corresponding coefficients an

are determined so that the efficiency � is maximized. The
optimization routine runs until the line search detects a local
solution gradient with a relative error tolerance of 10−14.

The swimming velocity is determined by discretizing the
slender filament in the arc length s by M uniformly distrib-
uted points and solving the linear system, Eq. �7�. Since the
body is an infinitely long traveling wave, the velocity and
rate of mechanical work are constant in time, and hence are
determined numerically at t=0 alone. Hence, each iteration
of the optimization routine requires the creation and inver-
sion of only one algebraic equation for ẋ0�t�, since
z0�t�=��t�=0 in the infinite-length case. Generally, the val-
ues �M =4000, n�=80� are sufficient so that further reso-
lution has a negligible effect on the solution.

The constants �� ,�� as well as the rates of work
�� ,PBending� are determined by quadrature in s. Given that
their integrated arguments are periodic on s� �0,1�, a simple
trapezoidal rule yields spectral accuracy. The optimization
routine was seeded with a variety of initial flagellar shapes to
increase the probability that a global maximum of efficiency
was achieved. However, given enough spatial resolution the
solutions found for the infinite-length case did not vary, re-
gardless of the initial guess. In addition, the solutions so
found have been verified by insertion into Eq. �34�.

C. Finite bending costs: Numerical results

We now present the optimal shapes of infinite-length
bodies with the inclusion of the bending cost. Figure 5 shows
the optimal waveforms for a sequence of bending param-
eters, AB, with no sliding cost �AS=0�. In order to best com-
pare the shapes, the optimal waveforms are rescaled to the
same physical wavelength for presentation.

For AB=10−6 the optimal waveform is very nearly the

analytically derived sawtooth function. As the bending cost
increases the shape undergoes its most dramatic change near
AB�10−2 and settles to very nearly a sinusoid for AB=1;
specifically, to Z�s��0.1159 sin�2�s�−0.0017 sin�6�s�,
or Z�x��0.1208 sin�2�x /��+0.0033 sin�6�x /��, with �
=0.850 96. The inclusion of bending costs as we propose in
this paper therefore effectively regularizes the nonsmooth-
ness of Lighthill’s solution.

In Figs. 6 and 7, we provide a closer inspection of the
optimal shape and its properties for the same range of bend-
ing parameters AB. First, and as expected, with the additional
cost of bending �increasing AB�, the curvature at the apex
decreases from its infinite value in the Lighthill solution. The
wavelength-normalized curvature at the apex is further plot-
ted in Fig. 7�a�. It is not surprising to recover an apex cur-
vature 	�gs�AB

−1/2 due to the form of Eq. �34�.
For AB�1, Eq. �34� is dominated by the algebraic expression
of Eq. �32� outside a boundary layer region where
ABgss=O�1�. The terms in this equation are of like order in a
region of size s��AB around the discontinuities in the
Lighthill solution.

The third column of Fig. 6 displays the slope at the
midpoint of the body, which we find is not monotonic in the
bending parameter AB. This angle �absolute value� is further
plotted in Fig. 7�b�. The absolute slope increases from 40.06°
to approximately 49° at AB�10−2.5, then decreases to
nearly 44° when the bending costs are prohibitively expen-
sive �AB→1�.

The total and hydrodynamic efficiencies are displayed in
Fig. 7�c� as a function of the bending parameter AB.
For AB�10−2, the efficiency decreases approximately like
��AB

−1, which may be predicted given an inspection of the
efficiency measure �. The limiting value of the total effi-
ciency is 0.001 30. Given the relatively small global change
in the optimal shape, the hydrodynamic efficiency does not
decrease as drastically as the total efficiency with increasing
bending costs. For AB→1, the hydrodynamic efficiency ap-
proaches the limit �H=0.0746, a decay of only 13% from the
optimal Lighthill solution in the case where bending is with-
out cost. In this case, the design of an organism or manmade
swimmer is far more sensitive to the energetic costs due to
bending than to hydrodynamic costs.

The swimming speed, U, is shown in Fig. 7�d� as a func-
tion of the bending parameter AB, which decreases from the
analytical solution in the previous section with increasing
bending costs. Even though the hydrodynamic efficiency
only decays 13% from the optimal sawtoothed solution, the
swimming speed decreases by approximately 20%. Figure
7�e� shows the wavelength-normalized amplitude, bk, where
b=2��Z�� and k=1 /� is the wave number. This amplitude
decreases from approximately 1.31 to 0.87 as AB→1.

Finally, Fig. 7�f� shows the odd-numbered Fourier
modes in of the optimal waveform for four different bending
parameters AB on semilog axes. We observe that the
Fourier coefficients decay linearly on this scale, so that
an�10−p�AB�n for large �odd-numbered� n and constants
p�AB� as indicated in the figure. This decay, faster than
polynomial in n, indicates that the optimal solution has

FIG. 5. �Color online� Optimal waveforms for an infinite flagellum with
various bending costs �AB�0�, in the case of no sliding cost �AS=0�. For a
small bending cost �AB�1� the optimal waveform is very nearly the ana-
lytically derived sawtooth function. As the bending cost increases, the shape
undergoes its most dramatic change for AB�10−2 and settles to very nearly
a sinusoid for AB=1.
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g�s��C�, in agreement with the previous comment �even-
numbered Fourier modes are zero to working precision�.

D. Sinusoidal waveforms

The variational result given by Eq. �34� does not lend
itself to a straightforward long wavelength �small amplitude�
asymptotic analysis; indeed, the solutions of interest require
g�s�=O�1� so that g�s��g�s�3. However, a linearization of
Eq. �34� balances the elasticity with the hydrodynamics:
roughly, gss+�g=0. Hence, we expect periodic, near-
sinusoidal solutions in general. This intuition is already cor-
roborated by the near-sinusoidal solution for large bending
parameters �AB�1�, as previously discussed. For compari-
son, we compute the optimal amplitude of a sinusoidal wave-
form. Inserting the ansatz Z�s�= �b /2��sin�2�s� into the ef-
ficiency measure, Eq. �26�, and using Eqs. �28�–�30�, yields

� =
2

�
E�b2�, � = 1 −

b2

2
, PBending = 4�2�1 − �1 − b2� ,

�37�

where E�m� is the complete elliptic integral of the second
kind, �m� �0,1��. The slope amplitude b that maximizes the
efficiency is determined by setting �b�=0. The expression
for �b� is unwieldy so a rootfinding algorithm is used to
locate the optimal amplitude as a function of the bending
parameter and the resistance coefficient ratio rk. The results

are reported in Fig. 8. The optimal sinusoid when there are
no bending costs �AB=0� has an associated efficiency of
0.0782, which is smaller than that of the optimal sawtoothed
shape by only 9%. The total efficiency is seen to decrease
with increasing bending costs to a limiting value of 0.001 28
when AB=1, which is just barely smaller than the efficiency
of the fully optimal solution determined by the numerical
optimization ��=0.001 30�. Here again, the hydrodynamic
efficiency does not decrease significantly as the bending be-
comes more expensive, since the optimal shape does not
change dramatically. For AB→1, we find �H=0.0728.

The optimal amplitude decreases from a value of
bk=1.06 for AB=0 to a limiting value of bk=0.837 when
AB=1. This matches very nearly the previous result in the
numerical study �bk=0.87�. Figure 8�c� shows the midpoint
slope angle, which is monotonic in the bending parameter
AB, and decreases from 57° to 45° as AB→1, the latter result
again nearly matching the result for the fully optimal shape.

E. Finite internal sliding costs

We now turn our attention to the consequences of finite
internal sliding costs. Given the waveform periodicity the
time average of the sliding power may be simplified to an
integration against the initial waveform. Recalling the trav-
eling wave structure and using that the tangent angle has
zero mean, we have the expression

FIG. 6. �Color online� A closer look at the optimal waveform with the inclusion of bending �AB�0� but no sliding costs �AS=0�, and the departure from the
Lighthill result �dashed lines�.
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PSliding = �S�c

2 + �

0

1 �
0

1

�2�s,t�dsdt� . �38�

The inner integration may be written as independent of time
by a simple manipulation; defining ��s , t�=��s− t� we have

�
0

1 �
0

1

�2�s,t�dsdt = �
0

1 �
0

1

�2�s − t�dsdt

= �
0

1 �
−t

1−t

�2�s�dsdt �39�

=�
0

1 �
0

1

�2�s�dsdt = �
0

1

�2�s�ds

= �
0

1

�2�s,0�ds . �40�

In other words, the sliding displacement travels with the
waveform. In terms of the slope function g�s�,

PSliding = �S�c

2 + �

0

1

�sin−1�g�s���2ds� . �41�

We are now prepared to consider the variational deriva-
tive of the efficiency when the sliding cost is included

FIG. 7. �Color online� Properties of the optimal waveform for an infinite flagellum as the bending parameter AB is varied from 0 to 1, with no sliding cost
�AS=0�. �a� Normalized maximum curvature. �b� Absolute midpoint slope �in degrees�; the behavior here is illustrated in the third column of Fig. 6. �c�
Swimming efficiency � and hydrodynamic efficiency �H. �d� Swimming speed U. �e� Normalized waveform amplitude bk, with b=2��Z�� and k=1 /� the
wave number. �f� Odd-numbered Fourier coefficients �an� are shown to decay rapidly on a semilogarithmic scale, indicating the solutions to be infinitely
smooth. �Even-numbered modes are zero to working precision.�
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�AS�0� but the bending cost is ignored �AB=0�. The result is
once again an algebraic relation for the optimal shape:

c1g�s� + c2g�s��1 − g2�s� + c3 sin−1�g�s�� = 0, �42�

where we defined

c1 = �1 − ���1 − �1 − rk���2��1 − AS�rk + �AS/�S�PSliding� ,

�43�

c2 = rk�ˆ�1 − AS�rk���2 − 2��1 − �1 − rk��� + rk�
2�

− 2�AS/�S��1 − �1 − rk���PSliding‰ , �44�

c3 = AS��1 − ���1 − �1 − rk���2. �45�

The form of Eq. �42� indicates that �g�s��=g0 �constant�,
so that once again we recover a solution which is not smooth
at points where the slope switches sign. The inclusion of
internal sliding costs does not, therefore, regularize the opti-
mal swimming shape. For a sawtooth function we must have

�=�2=�1−g0
2. Inserting these values, the resulting expres-

sion is not amenable to analytical solution, but we apply a
simple root-finding algorithm to determine the slope g0 that
satisfies Eq. �42�.

FIG. 8. �Color online� Optimal sinusoidal waveforms of an infinite flagellum. �a� The efficiency � and hydrodynamic efficiency �H of the optimal sinusoid
are shown as functions of the bending parameter AB. �b� Normalized amplitude bk. �c� Midpoint slope.

FIG. 9. �Color online� The optimal infinite-length flagellar waveform with no bending cost �AB=0� but with nonzero cost of elastic sliding �AS�0�. �a� As
the sliding cost becomes more dominant �increasing AS� the slope of the resulting sawtoothed waveform decreases from 40.06° to a limiting value of
approximately 33° for zero base sliding �c
=0�. If the base sliding is larger the sliding cost is relatively less dependent on the waveform, and the optimal
solution does not change as significantly with increasing AS. �b� The total and hydrodynamic efficiencies for c
=0 are labeled. The efficiency decays
significantly with increasing AS from the Lighthill value �=0.0858, but the hydrodynamic efficiency only decreases to a limit 0.0803. Total efficiencies
corresponding to the c
 constants in �a� are included as dotted lines.
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The results are reported in Fig. 9, where we show the
resultant slope angle �=sin−1��g0�� as well as the total and
hydrodynamic efficiencies for a selection of constants c
. As
AS→0, the Lighthill solution is recovered in all cases:
��40° and �=0.0858. As the sliding cost becomes more
dominant we find that the total efficiency drops significantly,
and the optimal shape is a sawtooth function with a smaller
and smaller amplitude. The slope angle � decreases to nearly
33° for c
=0 when the sliding costs vastly outweigh the
hydrodynamic costs �AS→1�. For nonzero base sliding
�c
�0� the sliding cost is relatively less dependent on the
waveform, and the optimal solution does not change as sig-
nificantly with increasing AS.

The total efficiency decays significantly with increasing
AS from the Lighthill value �=0.0858 for c
=0, but the
hydrodynamic efficiency only decreases to a limit 0.0803.
Since the optimal shape for very large sliding costs is similar
to that when there are no sliding costs, it is not surprising to
find that the hydrodynamic efficiency only begins to notice-
ably decay for AS�10−1, and even then only to a limit
0.0803. If the base sliding is larger, however, the waveform
retains a nearly 40° slope, and the hydrodynamic efficiency
stays nearly constant for all values of AS. As AS→1 the
efficiency scales logarithmically in AS.

Figure 10�a� shows the sliding power PSliding /�S for the
same base sliding values shown in Fig. 9 as functions of the
slope angle, along with the rate of hydrodynamic work. For
large sliding parameters AS→1, the sliding power and rate of
hydrodynamic work both decrease, but at the expense of a
decrease in the swimming velocity. The swimming speed as
a function of the slope angle is shown in Fig. 10�b�.

IV. BODIES OF FINITE LENGTH

The passage of periodic waveforms down along a flagel-
lum of finite length introduces new degrees of freedom,
namely, vertical net motions and rotations. The introduction
of rotation can break time-reversal symmetry for bodies of
non-half-integer numbers of wavelengths. In order to gener-
alize the waveform for finite-length flagella, we include a
wavelength parameter in the specification of the shape. Spe-
cifically, for finite-size swimmers, we optimize over the first
n� Fourier modes describing the tangent angle:

��s,t� = �
n=1

n�

an cos�2�nk�s − t�� + bn sin�2�nk�s − t�� ,

�46�

where the wave number k is to be determined as part of the
optimization. Time is discretized into TM uniformly distrib-
uted points on the domain t� �0,1 /k�, and the body veloci-

ties ẋ0�t� and �̇�t� are determined at each time step by invert-
ing the three by three system, Eq. �7�. The number of time
steps must be sufficient to capture the activity of the highest
Fourier modes in the traveling wave solution. We also insert
an important constraint for optimal “swimming:” we require
��T�=��0� so that the organism does not rotate in circles
over many periods. However, as we will show, this does not
remove the possibility of a slow vertical drift perpendicular
to the initial body orientation. We generally use here
M =2400 spatial grid points, TM =160 time steps, and
n�=160 Fourier modes. The solutions reported here were
checked against simulations using more refined spatial and
temporal discretizations and greater numbers of Fourier
modes, when possible. The results did not vary significantly
with further resolution.

For bodies of finite length there is an important degen-
eracy in the model in the pure hydrodynamic consideration
of �AB=AS=0�. Given a body of finite length, the optimal
solution must in fact be Lighthill’s sawtooth function with
infinitesimally small amplitude and infinitely many wave-
lengths. In this limit, there is no rotation, and hence there are
no hydrodynamical costs associated with rotational work
done on the fluid. Any nonzero bending costs will regularize
the geometry, and a competition between body rotations and
the bending costs associated with the number of wavelengths
expressed by the body will ensue. In contrast, as we have
shown above, the inclusion of a sliding cost �AS�0� does
not regularize the optimal body shape. Hence, the optimal
finite-length swimmer in the presence of a sliding cost must
be the degenerate case of a body with infinitely many wave-
lengths of infinitely small amplitude, with a slope as deter-
mined in the previous sections. This degeneracy was also
found in a recent optimization of a biflagellar swimmer as
the body was made increasingly flexible.45 We therefore con-

FIG. 10. �Color online� �a� The sliding power as a function of the slope angle ��� �degrees� for a selection of base sliding values c
, along with the rate of
hydrodynamic work �. �b� The swimming speed as a function of the slope angle, limiting to the Lighthill limit as AS→0 �����40�.
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sider below the influence of bending costs on the optimal
finite-size flagellar waveform. The waveforms are not limited
to any class of functions �other than periodic� and are deter-
mined by the numerical optimization.

Figure 11 shows the total and hydrodynamic efficiencies
associated with the optimal shapes for AB� �10−7 ,1�. The
optimal shapes for a selection of bending costs are also in-
cluded and presented for a more direct comparison in Fig.
12. When the bending cost is very large compared to the
hydrodynamic cost �AB�1�, the optimal shape is an approxi-
mate sinusoid and expresses just beyond a single wave-
length, k=1.08. As the bending costs begin to decrease the
optimal shape begins to express a slightly larger wave num-
ber, k=1.19 for AB=10−2. With further decreases in the
bending costs the optimal shape takes on a sharper profile
and approaches a half-integer wave number, k=1.42 for
AB=10−4.

While the shape appears to change continuously for
bending parameters in the range AB� �10−4 ,1�, we find a
surprising transition between AB=10−4 and AB=10−4.5. While
the efficiency appears to change continuously in this range of
bending costs, the optimal shape jumps discontinuously to

approximately the next half-integer wave number. Near
AB=10−6 there is yet another discontinuous transition to the
next half-integer wave number, and the optimal shape be-
comes more and more like the infinite sawtoothed solution
��=0.858�. We emphasize that this remarkable bias toward
half-integer wave numbers, which we observe over three full
jumps, is an output of the optimization and not an assumed
constraint.

We observed that while the efficiency appears to be con-
tinuous through the jumps in wave number, it is not smooth
�not shown here�. The total efficiency decreases to a limiting
value of �=7.68�10−4 as the bending becomes exceedingly
expensive �AB→1�. The hydrodynamic efficiency, on the
other hand, decreases monotonically to a limiting value of
�H=0.0606 for AB→1. The hydrodynamic efficiency de-
creases by 30% in this limiting case, a more dramatic change
than for the analogous body of infinite length. Here the extra
degrees of freedom, namely, rotations and vertical drift, are
more dependent on body shape, and lead to larger variations
in the dynamical work done to the fluid. Importantly how-
ever, this hydrodynamic efficiency of �6% is still signifi-
cantly above the efficiency of �1% typically displayed by
biological cells which utilize planar waves.3,4,33

Other properties of the optimal finite-length flagellum
are shown in Fig. 13. Data corresponding to the optimal
shape are shown as solid points, but we also include hollow
points to indicate values for certain locally optimal solutions.
Figure 13�a� shows the maximum curvature of the optimal
shapes. Through the jump transition in wave number there is
a small jump in the maximum curvature, but the overall trend
is preserved. As in the infinite-length case, the maximum
curvature of the finite-length body scales as approximately
	�AB

−1/2 as AB→0. However, particularly given the jumps
in maximum curvature as the wave number increases discon-
tinuously, the true asymptotic behavior as AB→0 may not
yet be well represented in this regime. As shown in Fig.
13�b� there is a distinct trend for decreasing bending costs
toward half-integer wave numbers, and there are also jumps
to shapes of larger half-integer multiples at critical bending
parameters. The left-right symmetry in shapes of half-integer
wave number serves to significantly decrease the body rota-
tions throughout the motion. With smaller rotations, the body
undulations can contribute more directly to forward locomo-

FIG. 11. �Color online� Swimming efficiencies for the optimal flagellum of
finite length as a function of the bending cost AB: total ��, solid line� and
hydrodynamic ��H, dashed line� efficiencies.
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FIG. 12. �Color online� Optimal finite-size flagellar waveforms for a selection of bending costs AB. As bending becomes less costly �decreasing AB�, the
optimal shape expresses larger wave numbers and sharper profiles, with a bias towards half-integer wave numbers.
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tion without performing much rotational work on the sur-
rounding fluid.

The swimming speed is shown in Fig. 13�c�. The locally
optimal solutions with k�1.5 �shown in circles� give way to
the globally optimal solutions with k�2.5 �squares� at ap-
proximately AB=10−4.5. The rate of increase in swimming
speed for decreasing AB becomes more rapid with the larger
wave-number solutions, so that the swimming speed appears
continuous but nonsmooth. The swimming speeds are for all
AB smaller than the swimming speeds determined in the
infinite-length consideration, as expected, since there are
body rotations in the finite case which generally act to im-
pede the lateral swimming motion. Figures 13�d� and 13�e�
show the maximum rotation angle ���t��� and the vertical
shift �or slope of the velocity vector� as functions of the
bending cost. Given sinusoidal or sawtooth waveforms with
integral numbers of wavelengths, it has been shown for
small-amplitude motion that the rotation angle decreases
with wave number as ���t����1 /k2.30 We also found this
scaling to hold for large amplitude waves �not shown�. We
observe nonmonotonicity in the maximum rotation angle for

AB�10−1 and AB�10−6. The vertical drift also exhibits non-
monotonicity in the same regions. The behavior near AB=1
is likely due to the transition from the extreme case of a
single sinusoidal wavelength to the nearby �hydrodynami-
cally preferred� half-integer wavelength. The small vertical
drift of the swimming motion �also noted in Ref. 32� is an
effect which is third order in the wave amplitude for small
amplitude waves, while the swimming velocity is second or-
der in the amplitude; hence in small amplitude studies this
drift is generally not observed. The drift decreases as the
body takes on greater wave numbers and undergoes smaller
rotations.

The hydrodynamic benefits of half-integer spatial modes
are illustrated in Fig. 14. For k�1 the body experiences
a large rotation through the periodic motion, while the
k�1.5 mode for AB=10−3 shows damped rotations and a
more effective motion toward the left. The vertical drift is
visible in the first case.

Finally, Fig. 13�f� shows the wavelength-normalized am-
plitude of the optimal finite-length flagellum, bk=2��Z��k.
Perhaps surprisingly, even with the large rotations seen at
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small wave numbers the optimal amplitude behaves very
much like in the infinite-length case. For AB=1 the wave
amplitude is bk�0.89, just larger than the infinite-length re-
sult. As the bending costs decrease the optimal waveform
approaches approximately the same limiting amplitude seen
in Fig. 7�e�, and for AB=10−7 we find bk=1.315. Each jump
to larger wave numbers is accompanied by a jump in �Z��.
Hence, the optimal waveform appears to degenerate toward
Lighthill’s infinite-length sawtooth solution in a self-similar
fashion.

V. DISCUSSION

In this paper, we have offered a physically motivated
derivation of the optimal flagellar shape. We have considered
the optimal shapes of periodic, planar flagellar waves of both
infinite and finite length in a model which, in addition to
hydrodynamic dissipation, incorporates energetic costs of in-
ternal bending, sliding, and fluid dissipation. For bodies of
infinite length, we have shown that the inclusion of a bend-
ing cost �or dissipation due to the presence of an internal
fluid� regularizes the classical Lighthill sawtooth solution,
and that the optimal waveform becomes very nearly �but not
quite� a sinusoid. The inclusion of a sliding cost has been
shown to decrease the amplitude of the optimal waveform,
but the optimal shape is still a sawtooth with a jump in the
slope at a finite number of points. For bodies of finite length,
we have shown that a degenerate solution, in which the body
takes on infinitely many small amplitude waves, is regular-
ized by the addition of any bending cost �or internal fluid
dissipation cost�. With the exception of the case in which the
bending is exceedingly expensive, the optimal shape has
been shown to express an approximately half-integer number
of wavelengths, with a shape tending in a self-similar man-
ner toward that of the infinite-length sawtoothed shape. This
surprising result underlines the importance of minimizing the
rotational work done on the surrounding fluid during forward

swimming. In addition, for both the infinite- and finite-length
cases, we have shown that the change in the hydrodynamic
efficiency is relatively small and remains well above the hy-
drodynamic efficiency of typical biological cells.

The model presented here uses some simplifying as-
sumptions and leaves a number of open questions. First, the
hydrodynamic description could be improved on by the in-
clusion of nonlocal effects, for example, using slender body
theory, or a more complete three-dimensional method for
thicker organisms such as nematodes. The work of Tam33

appears to indicate that the sawtooth form may not be regu-
larized by the nonlocal fluid interactions in the limit of zero
bending costs, but that the number of expressed wavelengths
may be decreased. Another exclusion in the work presented
here is the possible presence of a head. Although most sperm
cells have relatively small cell bodies �such as in human
spermatozoa�, they can be large for some microorganisms
and generally act to damp rotations imposed by the flagellar
beating. In addition, the expression we used for the bending
energy becomes invalid when the radius of curvature ap-
proaches the body radius. The formation of material or struc-
tural singularities has been considered by other authors, and
this can also provide a barrier to the degeneracy mentioned
above.39

In our opinion, the two most important implications of
our study for the biophysics of swimming cells are the fol-
lowing. First, we have shown that a physically motivated
measure of internal elastic cost for the deformable flagellum
regularizes the hydrodynamically optimal solution of
Lighthill, and that this is done with only a small loss in
hydrodynamic efficiency. Second, our results show the emer-
gence of small numbers of wavelengths in the optimal solu-
tion when bending is at all costly �see Fig. 11�. This result,
which is likely to remain robust to improvements on the
modeling such as those discussed above, is consistent with
observations on the morphology of eukaryotic flagella, in
particular for spermatozoa �see the review in Ref. 21�. As an
example, we reproduce in Fig. 15 the spermatozoon shapes
of two marine invertebrates �Lytechinus and Chaetopterus�
from Ref. 18. In both cases, although the shapes are different
from our optimal solutions, the presence of the half-integer
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FIG. 14. �Color online� Transition in the optimal waveform for a finite-size
swimmer. �a� With AB=1, the increased cost of bending leads to a smoother
waveform, and in turn to significant rotation. T=0.994 is the fundamental
period of this first shape. �b� For AB=10−3, bending is not as energetically
costly, and a higher spatial mode is observed to be optimal. This corresponds
to a reduction in rotation, and thus a more efficient motion opposite the
direction of the traveling wave. Nearly half-integer wave numbers benefit
from their approximate left-right symmetry, which significantly decreases
rotations. T=0.994, as in �a�, for comparison.

FIG. 15. Spermatozoa of two marine invertebrates. �a� Superimposed im-
ages of the headless spermatozoon of Lytechinus. �b� Spermatozoon of Cha-
etopterus exhibits nonintegral spatial wave numbers. �Reproduced with per-
mission from C. J. Brokaw, J. Exp. Biol. 43, 455 �1965�. Copyright © 1965,
The Company of Biologists.�
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wave-number morphology �k�1.5� is apparent. Our work
constitutes therefore an attempt at a physical rationalization
of this observed feature of eukaryotic flagella. We also ob-
serve that our optimal solutions display hydrodynamic effi-
ciencies which are significantly above those of biological
swimming cells, which are typically in the 1% range. Our
solution could therefore also be considered as an appropriate
“initial condition” for further �more directly biological� op-
timization, at the expense of hydrodynamic efficiency.

Finally, we note that another �less common� means of
eukaryotic propulsion involves the passage of periodic heli-
cal waves down along the length of a flagellum. In this case,
in addition to the costs discussed here, there may also be
costs due to a twisting of the material, and dynein motors
have been observed in some cases to exert twisting moments
on the axoneme.46 The optimal shape of a helical flagellum
under these energetic constraints will be considered in a fu-
ture work.
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