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Effective slip in pressure-driven Stokes flow
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Nano-bubbles have recently been observed experimentally on smooth hydrophobic
surfaces; cracks on a surface can likewise be the site of bubbles when partially wetting
fluids are used. Because these bubbles may provide a zero shear stress boundary
condition and modify considerably the friction generated by the solid boundary, it is
of interest to quantify their influence on pressure-driven flow, with particular attention
given to small geometries. We investigate two simple configurations of steady pressure-
driven Stokes flow in a circular pipe whose surface contains periodically distributed
regions of zero surface shear stress. In the spirit of experimental studies probing
slip at solid surfaces, the effective slip length of the resulting flow is evaluated as a
function of the degrees of freedom describing the surface heterogeneities, namely the
relative width of the no-slip and no-shear stress regions and their distribution along
the pipe. Comparison of the model with experimental studies of pressure-driven flow
in capillaries and microchannels reporting slip is made and a possible interpretation
of the experimental results is offered which is consistent with a large number of
distributed slip domains such as nano-size and micron-size nearly flat bubbles coating
the solid surface. Further, the possibility is suggested of a shear-dependent effective
slip length, and an explanation is proposed for the seemingly paradoxical behaviour
of the measured slip length increasing with system size, which is consistent with
experimental results to date.

1. Introduction
The ability to design, fabricate, pattern and optically probe mechanical structures

with micrometre and nanometre length scales has led to many recent studies of
liquid motion adjacent to smooth surfaces, e.g. experiments (Pit, Hervert & Léger
2000; Baudry & Charlaix 2001; Zhu & Granick 2001; Bonaccurso, Kappl & Butt
2002; Cheng & Giordano 2002; Craig, Neto & Williams 2001; Raviv et al. 2002;
Tretheway & Meinhart 2002; Zhu & Granick 2002; Cottin-Bizonne et al. 2002) and
molecular dynamics simulations (Robbins 1990; Thompson & Troian 1997; Barrat &
Bocquet 1999; Cieplak, Koplik & Banavar 2001). The principal question addressed
by these investigations concerns the applicability of the no-slip condition at a solid–
liquid boundary. In particular, when the fluid does not completely wet an atomically
smooth substrate (i.e. non-wetting or partial wetting situations, so-called solvophobic
or hydrophobic conditions), then we might expect, or at least it has been conjectured,
that the flow may exhibit some manifestations of microscopic slip.

Because any surface treatment to promote slip may have defects where the boundary
condition is instead the usual no-slip condition, we were motivated to consider
special patterns of slip/no-slip regions where analytical calculations are possible.
Such configurations of slip and no-slip domains are also models for regions of
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reduced surface stress such as small bubbles attached to solid surfaces as discussed
further below. Here, we address the question of pressure-driven flow in a circular
pipe that is patterned with alternating regions of no-slip and perfect slip boundary
conditions. Such elementary models contain important characteristics features (the
slip and no-slip lengths scales) yet allow for simple calculations and some comparisons
with experiments can be made.

There have been a few studies of pressure-driven liquid flow in channels or
capillaries that exhibit results consistent with slip at the solid boundary; a review
of some aspects of this field has been given by Vinogradova (1999). Reports of
slip, generally in experiments with partially wetting fluids, have increased in recent
years and appear to be in contradiction with older studies which verified convincingly,
apparently always in complete wetting conditions, the validity of the no-slip boundary
condition (Bean 1972; Quinn et al. 1972; Idol & Anderson 1986; Knudstrup, Bitsanis
& Westermann-Clark 1995).

In most of the experiments probing slip, a slip length is or can be inferred from
measurements. A common definition of a (local) slip length λ at a rigid boundary,
with unit normal n directed into the fluid, linearly relates the velocity at the wall to
the wall shear strain rate

u = λn · ((∇u) + (∇u)T ), (1.1)

where λ is assumed to be a material parameter; note that it would also be reasonable
to think in terms of a relation between slip velocity and the wall shear stress. This
relation was first proposed by Navier (1823) for liquids and was also rigorously
derived by Maxwell (1879) in the case of gases, with a slip length of the order of the
mean free path of the gas molecules. Alternative models for the velocity–rate-of-strain
relationship at a fluid–solid boundary have also been proposed (see e.g. Thompson
& Troian 1997). Physically, the slip length is the local equivalent distance below the
solid surface at which the no-slip boundary condition would be satisfied if the flow
field were extended linearly outside of the physical domain.

The first systematic experimental study reporting slip was apparently reported by
Schnell (1956) who measured the flow rate of water in glass capillaries of radius of the
order 100 µm. When the capillaries were treated with dimethyldichlorosilane to make
them hydrophobic, larger flow rates were obtained and they were interpreted as a
sign of slip at the wall. The slip length consistent with the results from Schnell (1956),
inferred from the pressure drop versus flow rate measurements using equation (2.8)
below, can be evaluated to be of the order of 5 µm. Churaev, Sobolev & Somov
(1984) performed similar measurements for the flow of water in hydrophobic glass
capillaries and mercury in untreated glass capillaries of radius of the order of 1 µm.
In the case of water, results in agreement with the no-slip boundary condition were
obtained for low surface hydrophobicity (contact angle smaller than 70◦) but for high
surface hydrophobicity larger flow rates were obtained, consistent with slip lengths of
about 30 nm. In the case of mercury, with an advancing contact angle of 133◦, results
consistent with slip lengths of about 70 nm were obtained.

More recent investigations were reported by Watanabe, Udagawa & Udagawa
(1999) for the flow of aqueous solutions of glycerine through acrylic resin pipes with
radii of the order of a centimetre. When the walls of the pipe were treated to be
hydrophobic by silica surface coatings, larger flow rates were obtained which were
consistent with (very large) slip lengths of approximately 500 µm. In these experiments,
the contact angle was about 150◦, the surface roughness was about 10 to 100 µm,
and visible elongated cracks were present on the surface. Further, the observed drag
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reduction and also the inferred slip length were found to increase with the viscosity
of the solution and, perhaps surprisingly, with an increase in the radius of the pipe.

A physical picture that can be suggested (and was hinted at by Watanabe et al.
1999) is that the pipe surface may have air pockets trapped in the cracks along the
boundary, with these air pockets acting like a zero shear stress boundary condition;
the recently developed super-hydrophobic fractal surfaces contain similar features
(Onda et al. 1996). A variant of this picture may be applicable even when the
surface is smooth, as evidenced by the experimental observation of nano-bubbles on
hydrophobic surfaces (Ishida et al. 2000; Tyrrell & Attard 2001, 2002). Similar ideas
were proposed by Boehnke et al. (1999) as an interpretation for the measurement of
anomalously high sedimentation velocities of micron-sized spheres with solvophobic
surfaces in polar liquids.

Tretheway & Meinhart (2002) used micro particle image velocimetry to measure
velocities for the flow of water in rectangular glass microchannels; the measurements
included data within 450 nm of the channel surface. When the walls of the channels
were treated to be hydrophobic by a nanometre thick coating of OTS (contact angle of
120◦, surface roughness of about 2 Å) velocity fields with slip at the wall were reported,
consistent with a slip length of about 1 µm. Cheng & Giordano (2002) reported flow
rate versus pressure drop measurements for the flow of water and various oils (hexane,
tetradecane and silicone oil) in rectangular glass channels of width of about 10 µm
and various heights on the scale of tens to hundreds of nanometres. The results for
water were always consistent with the no-slip boundary condition but those for the
oils showed increased flow rates, consistent with effective slip lengths of order about
10 nm when the height of the channel was chosen smaller than approximately 200 nm;
the slip length was also seen to increase systematically with the molecular weight of
the oils, and therefore with their viscosity.

Another class of experiments probing flow in nanometre scale gaps uses squeeze
flow between atomically smooth surfaces. Experiments exhibiting significant slip,
usually shear-dependent, have been reported (Baudry & Charlaix 2001; Craig et al.
2001; Zhu & Granick 2001; Bonaccurso et al. 2002). We note that results with much
smaller slip lengths in these geometries, possibly zero, have also been reported (Chan
& Horn 1985; Raviv et al. 2002).

Most of the experiments summarized above deduce a slip length from macroscopic
flow rate versus pressure drop measurements and we prefer to refer to such slip lengths
as either ‘macroscopic’ or ‘effective’, which we will denote λeff. Since we attempt in this
paper to make quantitative comparisons with and between different experiments
reported in the literature, we therefore distinguish an effective macroscopically
deduced slip length λeff from theories elaborating more microscopic deductions of
a local slip (i.e. equation (1.1)) based upon, for example, molecular-dynamics-like
approaches. In the latter cases, molecular-scale phenomena are modelled to arrive
at a slip condition which is then used in, or proposed as, a macroscopic boundary
condition for the Navier–Stokes equations (e.g. see Koplik & Banavar 1995; Denniston
& Robbins 2001 and see also the criticism and discussion in Ganesan & Brenner
1999; Koplik & Banavar 1999; Brenner & Ganesan 2000). The slip boundary
condition, equation (1.1), is then to be applied at all points on the boundary of
a flow configuration.

As a difference, we wish to draw attention in the present paper to the role of
surface heterogeneities (and no violation of the no-slip condition between liquids and
solids or gas) as a possible explanation for the measured effective slip. The models
described in our paper assumes a priori that the boundary is heterogeneous in that
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S 1956 CSS 1984 WUU 1999 TM 2002 CG 2002

Liquids used Water Water Water + glycerin Water Water

Mercury Tetradecane

Hexane

Silicone oil

Type of surface Glass Quartz Acrylic resin Glass Glass

Surface treatment (CH3)2SiCl2 (CH3)3SiCl Hydrophobic silica CH3(CH2)17SiCl3 –

Contact angle – 70◦–110◦ 150◦ 120◦ –

Surface roughness – – 10–100 µm 2–3 Å 5 Å

System size R 250–800 µm 0.3–7 µm 6–12mm 30 µm 40–200 nm

Shear rate γ̇ 100–3000 s−1∗ 1–10 000 s−1∗ 25–100 s−1∗ 200 s−1∗ 300–5000 s−1∗

Slip length λeff 2–8 µm∗ 20–90 nm 200–450 µm∗ 1 µm 10–30 nm

Slip velocity 0.3–25mms−1∗ 0.02–500 µms−1∗ 1 cm s−1∗ 200 µm s−1∗ 3–150 µms−1∗

Ratio λeff/R 0.01 0.005–0.1 0.03 0.03 0.08–0.2

Slip percentage δλ 0.97 0.965–0.97 0.97 0.97 0.97

Periodicity Lλ 0.01 0.005–0.01 0.03 0.03 0.08–0.2

Slip size h 2.7–8.5 µm 34–175 nm 180–360 µm 902 nm 10–28 nm

Distance H 2.8–8.8 µm 35–180 nm 190–370 µm 930 nm 10–29 nm

Table 1. Summary of the parameters and results from the pressure-driven flow experiments
of Schnell (1956) (S 1956), Churaev et al. (1984) (CSS 1984), Watanabe et al. (1999) (WUU
1999), Tretheway & Meinhart (2002) (TM 2002) and Cheng & Giordano (2002) (CG 2002);
∗ results not directly reported but inferred from other experimental results. The last four lines
display the results of our model: the values of the slip percentage δλ and the dimensionless
periodicity Lλ that give the same dimensionless slip length for both the longitudinal and
transverse no-shear patterning models (see figure 2), and the resulting dimensional values for
the size of the slip regions h and their separation H .

regions of perfect slip (λ = ∞) exist along an otherwise no-slip (λ = 0) surface. An
effective slip length λeff �= 0 is then calculated using the same style of macroscopic
‘measurement’ as reported in most experiments.

Another issue that concerns microscopic and macroscopic boundary conditions
is the role of surface roughness. As shown by Richardson (1973) using continuum
arguments, a small amount of roughness can effectively produce a no-slip boundary
condition for the bulk equations, on length scales large compared to the surface
roughness, even if the detailed boundary condition is perfect slip on the scale of the
roughness (see also Jansons 1988). Robbins (1990) presents related ideas, but from
the perspective of molecular dynamics.

In order to understand similarities and differences between the experiments
reporting slip in capillaries or microchannels, we give many of their qualitative
and quantitative features in table 1; note that many of the entries in table 1 refer to
details of the discussion given in §3. Using our macroscopic model of a heterogeneous
slip/no-slip surface, and with reference to experimental observations of nano-bubbles
by Ishida et al. (2000) and Tyrrell & Attard (2001, 2002), we find quantitative results
consistent with an interpretation of the various experiments described above where
a large number of nano-size and micron-size slip domains cover the solid surface;
the suggested physical picture is therefore that of surface heterogeneities producing a
macroscopic effective slip. In addition, we suggest the possibility of a shear-dependent
effective slip length and finally, based on our model, we offer an interpretation of the
apparently paradoxical increase in the effective slip length with system size that has
been reported by Watanabe et al. (1999) and that is also evident when results from
different groups are examined (see table 1).
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Figure 1. Schematic views of the elementary models used: pressure-driven flow in a pipe of
radius R with distribution of no-shear regions of width h and separation H ; λ denotes the
microscopic slip length. (a) The no-shear regions are transverse to the flow direction. (b) The
no-shear regions are parallel to the flow direction.

The paper is organized as follows. The two elementary models considered are
presented in § 2. One is solved in detail in Appendix A and the solution of the second
one, from Philip (1972a), is recalled in Appendix B; comparison between these two
models is also presented in § 2. Because the model of surface heterogeneity motivates
several questions for interpreting experimental data, the results for the obtained
effective slip lengths are discussed in § 3, and comparison is made with and between
different experimental results. Finally, we summarize our results in § 4.

2. Model and effective slip
2.1. The two configurations of surface heterogeneity

We consider in this section two elementary configurations as illustrated in figure 1,
namely steady pressure-driven Stokes flow in a pipe of radius R where distributed
regions of zero surface stress of width h and separation H are present on the otherwise
no-slip surface of the pipe. These configurations are idealized yet they contain
the essential features that are needed for a simple model of the consequences of
surface heterogeneities on the effective properties of the flow: the length scale
of surface heterogeneities and the surface coverage. Note that the perfect slip regions
(local infinite slip lengths) are models for the typically small resistance to fluid motion
offered by a nearly planar gas–liquid interface.

2.1.1. Transverse configuration

In the first configuration (figure 1a) the slip regions are distributed transverse to the
flow direction. They take the form of rings of width h transverse to the flow direction
and are distributed periodically along the pipe with a period H . The constant axial
mean pressure drop is denoted G = �p/H , with �p > 0 and we investigate this flow
in the limit of low Reynolds number, ρGR3/µ2 � 1. With this geometry and under
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the low-Reynolds-number assumption, the flow equations are those of incompressible
Stokes flow in a circular pipe µ∇2u = ∇p and ∇ · u = 0, together with the required
periodicity of length H . The boundary condition on the no-slip part of the domain is

u = 0 for r = R, 1
2
h < |z| � 1

2
H, 0 � θ < 2π. (2.1)

The boundary condition of ‘perfect slip’ on the other part of the domain is

t ·σσσ · n = 0 for r = R, |z| < 1
2
h, 0 � θ < 2π, (2.2)

where σσσ is the stress tensor, and n and t are, respectively, the unit normal and tangent
vectors to the surface. Together with the kinematic boundary condition at the surface
of the pipe, the boundary conditions can therefore be written as

ur = 0, σrz = σrθ = 0 for r = R, |z| � 1
2
h, 0 � θ < 2π. (2.3)

We non-dimensionalize the above equations and boundary conditions scaling distances
by R and velocities by (GR2)/µ. Below, we use all variables as above except from
now on they are dimensionless. Introducing the dimensionless lengths � = h/R and
L = H/R, the flow has now a spatial dimensionless periodicity of L and satisfies the
dimensionless Stokes and continuity equations

∇2u = ∇p, ∇ · u = 0, (2.4)

with the boundary conditions

u = 0 for r = 1, 1
2
� < |z| � 1

2
L, 0 � θ < 2π, (2.5a)

ur = 0, σrz = σrθ = 0 for r = 1, |z| � 1
2
�, 0 � θ < 2π. (2.5b)

The solution of (2.4)–(2.5) is accomplished by separation of variables and the solution
of dual series equations, and is presented in Appendix A. The azimuthal component
of the vorticity is derived in equation (A 6); this leads to an equation for the
streamfunction (A 12) which has unknown degrees of freedom that can be found
by applying the mixed boundary conditions on the slip/no-slip regions (A 13). The
final result for the streamfunction (and therefore both the pressure and velocity fields)
is an infinite Fourier series with coefficients satisfying a dual series equation (A 18);
such an equation is not in standard form and has to be solved numerically.

2.1.2. Longitudinal configuration

In the second configuration (figure 1b) the slip regions are distributed parallel to
the flow direction. They take the form of infinite stripes of width h parallel to the
flow direction and are distributed periodically across the pipe with a period H . The
solution to this problem was derived by conformal mapping in Philip (1972a) and is
recalled in Appendix B.

2.2. Effective slip length

For the slip/no-slip patterning displayed in figure 1, we want to evaluate the effective
slip length of the flow. In the case of a parallel uniaxial flow in a pipe of radius R

satisfying the slip equation (1.1) everywhere on the pipe wall r = R with a slip length
λ, the solution for the dimensionless velocity profile is

u(r) =
1

4
(1 − r2) +

1

2

λ

R
. (2.6)
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The dimensionless total flow rate Q is therefore equal to the Poiseuille flow rate π/8
augmented by a flow rate due to slip at the wall

Q =
π

8

(
1 +

4λ

R

)
. (2.7)

For a general flow with mixed slip/no-slip boundary conditions such as the
configurations shwon in figure 1, we define the ‘effective slip’ length as the slip
length of the parallel flow which satisfies (1.1) and (i) is driven by the same pressure
gradient and (ii) has the same flow rate as the flow of interest. The effective slip length
λeff is therefore related to the increase in flow rate given by (2.7) and is defined by

λeff

R
=

1

4

(
8Q

π
− 1

)
, (2.8)

where Q is the total dimensionless flow rate. Equation (2.8) is effectively how
experimental data on pressure drop versus flow rate is converted to a slip length.

By dimensional analysis, and for both configurations shown in figure 1, the
dimensional slip length λeff can be expressed as λeff = Rf (δ, L), where L = H/R

is the dimensionless distance between the slip domains and δ = h/H the percentage
of the surface that is perfect slip. When the slip domains are distributed in a
longitudinal fashion along the pipe, an exact solution for the effective slip length,
denoted λeff,‖, can be derived from the analytical solutions of Philip (1972a, b) (see

also Appendix B). It is given by

λeff, ‖

R
=

L

π
ln

(
sec

(
δ

π

2

))
, (2.9)

which is valid for all δ and L < 2π.
When the slip domains are transverse to the flow direction, the effective slip

length, denoted λeff, ⊥, has to be calculated numerically by solving the dual series
equation (A 18) and the details are described in Appendix A, §§ A.2 and A.3.
Because no general analytical solution is available, it is enlightening to determine
the asymptotic behaviours for the slip length as a function of δ and L in different
regions of the parameter space. This is achieved in Appendix A § A.4 and we find
four distinct asymptotic limits:

λeff, ⊥

R
∼ δ

4
when δ → 0 and L fixed, (2.10a)

λeff, ⊥

R
∼ 1

4(1 − δ)
when δ → 1 and L fixed, (2.10b)

λeff, ⊥

R
∼ L

2π
ln

(
sec

(
δ

π

2

))
when L → 0 and δ fixed, (2.10c)

λeff, ⊥

R
∼ δ

4(1 − δ)
when L → +∞ and δ fixed. (2.10d)

2.3. Comparison between longitudinal and transverse slip regions

In the longitudinal case, equation (2.9) leads to asymptotic behaviours for large and
small δ, with L fixed, of the form

λeff, ‖

R
∼ Lπ

4
δ2 as δ → 0, (2.11a)

λeff, ‖

R
∼ −L

π
ln(1 − δ) as δ → 1. (2.11b)
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When the percentage of slip is small, the effective slip length decreases more quickly to
zero in the case of longitudinal slip slots (equation (2.11a), quadratic dependence on δ)
than in the case of slip rings (equation (2.10a), linear dependence on δ). Consequently,
a small amount of slip leads to a much more significant additional flow rate in the case
of transverse patterns than in the case of longitudinal patterns. Furthermore, when the
percentage of slip is large, the slip length in the case of longitudinal slip slots diverges
much more slowly to infinity (equation (2.11b), logarithmic divergence) than in the
case of transverse regions (equation (2.10b), algebraic divergence). Consequently, a
small density of no-slip defects on the otherwise no-shear surface of a pipe has a
much more significant impact on the friction caused by the pipe when the defects are
aligned with the flow direction (the effective slip length is only logarithmically large)
than when perpendicular to it.

Note also that the obtained formula, (2.9), is exactly twice that given by equation
(2.10c); in the limit of small separation between slip regions, longitudinal slip regions
result in an effective slip length λeff, ‖ which is exactly twice the slip length λeff, ⊥
obtained when the slip regions are distributed in a transverse direction to the flow,
i.e. λeff, ‖ = 2λeff, ⊥. The factor of 2 can be interpreted in the following fashion. As a
consequence of the spatial structure of the Stokeslet, the fundamental flow field due
to a point force, an elongated body sedimenting due to its own weight falls twice as
fast if it is oriented vertically than if it is oriented horizontally; said differently, for
a given velocity of the body in the fluid, an elongated body exerts twice as much
force on the fluid when it is aligned perpendicularly to its direction of motion than
when it is aligned parallel to it. As a consequence, for a given wall slip velocity and
in the case of small L where the slip regions are approximately two-dimensional, the
shear in the longitudinal case will be twice as large as the shear in the transverse case,
and therefore the slip length in the parallel case is expected to be twice that in the
perpendicular case, i.e. λeff, ‖ = 2λeff, ⊥.

3. Discussion of experimental results
In light of the two configurations introduced in § 2, we analyse here the different

experiments described in § 1: flow in capillaries (Schnell 1956; Churaev et al. 1984;
Watanabe et al. 1999) and flow in rectangular micro and nanochannels (Cheng &
Giordano 2002; Tretheway & Meinhart 2002). These experiments motivate a general
discussion of ideas related to slip in § 3.1 and we then use in § 3.2 the models from
§ 2 to offer a possible quantitative interpretation of experimental results. Finally, we
address the possibility of shear-dependent slip lengths in § 3.3 and we propose in § 3.4
an explanation for the reported increase of effective slip lengths with system size.

The orders of magnitude of the experimental parameters and results obtained by
each group, either directly reported or inferred from their papers, are displayed in
table 1; in particular, we refer to the slip length reported as an effective value since
it is either based upon flow rate versus pressure drop considerations (four out of
the five papers) or velocity measurements cross-correlated and averaged in space
(Tretheway & Meinhart 2002). The variability of the parameters and corresponding
results have to be noted: large variations in the typical system size (more than 5 orders
of magnitude in pipe radius or channel width), typical shear strain rates (4 orders of
magnitude), typical values for the wall slip velocity (almost 6 orders of magnitude),
and effective slip lengths (more than 4 orders of magnitude). However, the variation in
the dimensionless slip length λeff/R, where R is the characteristic channel dimension,
is seen to be small; there is only a ratio of 40 between its maximum and minimum
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values. Furthermore, the dimensional effective slip length increases systematically with
system size from one experiment to the other. This result is also evident in the results
reported by Watanabe et al. (1999).

3.1. Comments on the correction to no-slip measurements

With regard to experimental evidence of slip, we first note that for a given effective slip
length λeff, a set of experimental measurements (whether direct velocity measurements
or indirect measurements through determination of friction factors) will only be able
to significantly capture the magnitude of the slip if the correction of the flow due to
the slip at the wall is much larger than the typical experimental error. If a typical
experimental error on pressure, flow rate or velocity measurement is, say, about 1%,
the influence of the slip at the wall will only be deducable with confidence from such
measurements if the magnitude of the modified flow rate is at least, say to fix ideas,
2% of its no-slip value (note that this is a conservative estimate as experimental
errors can sometimes be much larger, such as the 15% uncertainty reported in Cheng
& Giordano 2002). From equation (2.7), it is straightfoward to see that such values
correspond to a slip length of at least λeff/R ≈ 1/200. As a consequence, in order to
detect slip of liquids, values for the typical size R of the pipe or channel are limited to
R < 200 λeff, otherwise the change in flow rate due to slip is falling within experimental
errors based on complete no-slip conditions. Since apart from the results reported by
Watanabe et al. (1999), slip lengths for Newtonian flow in closed or open geometries
have always been reported, to the best of our knowledge, to be of about 5 µm or
less, this restriction on system size corresponds to the necessity to limit the size of the
apparatus to approximately 1 mm. This observation allows us to understand why the
influence of slip at the wall is usually not addressed or perhaps even easily measurable
in studies of flow through channels or pipes of larger size.

It is worth also recognizing another possible source of error when interpreting
experimental results, namely the error in the measured shear viscosity of the fluid.
The value of the viscosity is extremely sensitive to the temperature; for example,
near room temperature (25◦C) the viscosity of water decreases approximately by 3%
per degree Celsius increase in temperature. A change in temperature may have two
distinct origins, an increase because of viscous heating or an increase or decrease
due to a similar change in the room temperature. Let us first examine the latter;
everything being equal, the dimensional flow rate in the pipe scales as the inverse
of the viscosity. To fix ideas, say the temperature in a water experiment at room
temperature was to increase by one degree Celsius, the shear viscosity would decrease
by 3% which would lead to an increase in the flow rate of 3% approximately. From
equation (2.7), we see that this increased flow rate could be misinterpreted as being
due to slip at the wall with an effective dimensionless slip length λeff/R ≈ 0.0075; this
magnitude is, for example, of the order of what is reported in Churaev et al. (1984).

In addition to a change in room temperature, viscous heating of the fluid in the
apparatus can contribute to a decrease in viscosity (e.g. Gavis & Laurence 1968). In the
case of a steady flow, the order of magnitude of the rate of loss of mechanical energy
per unit volume due to viscous effects (µγ̇ 2) is equal to the rate of change of internal
energy due to conduction of temperature, k�T/R2; here γ̇ and R are, respectively,
the typical values of the shear rate and the system size, T is the temperature and k

is the thermal conductivity of the fluid. Let us assume an exponential law for the
dependence of the viscosity on temperature µ = µ0 exp(−β(T − T0)/T0) where β is
a dimensionless order one coefficient which measures the sensitivity of viscosity to
variations in temperature and T0 is a reference temperature. It is then straightforward
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to obtain an order of magnitude for the relative change of viscosity due to viscous
heating

�µ

µ0

≈ β

T0

(ν

κ

) (γ̇ R)2

cp

, (3.1)

where ν is the kinematic viscosity, κ the thermal diffusivity and cp the specific heat
of the fluid. In all of the experiments summarized above, this dimensionless change
of viscosity due to viscous heating varies between O(10−9) and O(10−3) which does
not lead to a significant change in flow rate when compared with that measured due
to effective slip and reported in table 1. Note, however, that the change in viscosity
given by equation (3.1) increases as the square of the shear rate, and it is therefore
possible that at higher shear than those of the experiments presented in table 1, the
contribution to the increased flow rate due to viscous heating will be significant.

3.2. Comparison of the models with experiments

As described in § 1, one physical picture for the flow over a hydrophobic (or
solvophobic) surface may be that, if the surface is rough, it can support significant
surface slip due to gas pockets residing along the boundary. A variant of this picture
seems to hold even when the surface is nearly smooth, as evidenced by the recent
observation of the presence of nano-bubbles on hydrophobic surfaces (see Ishida
et al. 2000; Tyrrell & Attard 2001, 2002). Although the question of stability of
these nano-bubbles remains an unresolved issue (e.g. Lauga & Brenner 2002) and
their actual three-dimensional structure may provide additional viscous dissipation,
we might envisage that such bubbles act like regions of (almost) zero shear stress
along the surface, as modelled approximately by the configurations in § 2. Finally, a
third theoretical possibility for mixed no-slip boundaries is simply that of a surface
treatment that chemically promotes slip but yet may have defects where the boundary
condition is instead the usual no-slip condition.

Let us assume therefore that the experimental results from table 1 can be
approximately described by the model similar to these described in figure 1 with both
longitudinal and transverse no-shear patterning; we assume that the hydrophobic
surfaces described in the experiments can be characterized by two sets of free
dimensional parameters for the distribution of h and H describing, respectively,
the typical extent of the slip regions (bubble or surface treatment) and the typical
distance between them. The slip regions can be thought of as distributed somewhat
randomly on the surface, both in size and orientation, and therefore the effective slip
lengths obtained are presumably intermediate between those given by a distribution
of transverse slip domains λeff, ⊥ and those given by longitudinal slip domains λeff, ‖.
Out of the numerous degrees of freedom available for patterning of the surface, one
possibility which can be addressed by the present study is the following: what is the
uniform isotropic slip/no-slip patterning that would have to be considered in order to
lead to the experimental results displayed in table 1? In this case, the set of unknown
parameters is reduced to two unknown scalar quantities (h and H ) and the effective
slip length should be the same for all possible relative orientations of the slip and
no-slip regions; in particular, to arrive at estimates for interpreting data, we assume
λeff, ‖ = λeff, ⊥.

With the model problems of transverse and longitudinal stripes of slip and no-slip
regions, there are an infinite number of ways to distribute slip such that the resulting
flow has a fixed slip length: for a given value of the dimensionless effective slip length,
either in the longitudinal case (λeff, ‖/R) or in the transverse case (λeff, ⊥/R), there
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Figure 2. Set of coefficients of slip percentage δ and dimensionless periodicity L that lead to
the same dimensionless slip length λeff/R for the transverse shear patterning model (numerical
integration of (A 18), symbols) and the longitudinal no-shear patterning model (analytical
formula (2.9), solid curve); the results are displayed in the case λeff/R = 0.1.

are an infinite number of slip percentages δ = h/R and dimensionless periodicities
L = H/R that can give such slip. This result is illustrated in figure 2 for the value
λeff/R = 0.1 where the set of acceptable coefficients (L, δ) is evaluated numerically in
the transverse case (symbols) and analytically in the longitudinal case (solid curve).
We see, however, in figure 2 that there is only one value of the pair (Lλ, δλ) that results
in the same value for the effective slip length in both cases, λeff, ‖(Lλ, δλ) = λeff, ⊥(Lλ, δλ).

It is then possible to calculate numerically the set (Lλ, δλ) for each of the experiments
described earlier; the results are displayed in the last four lines of table 1, along with
the estimated sizes of the slip and no-slip regions. The obtained values for δλ are
all within 0.5% of δλ = 0.97, meaning that with this interpretation, only about 3%
of the surface would be no-slip in all of the experiments; the extent of the slip
regions obtained by this interpretation varies between 0.5% and 20% of the typical
system size. It is worth commenting on two aspects of these results, namely the slip
percentage and the size of the ‘bubbles’.

First, the value δλ = 0.97 is large. A possible indication of the relevance of this value
may be found in Tyrrell & Attard (2001, 2002). They used atomic force microscopy
to obtain images in water of nano-bubbles on smooth glass surfaces hydrophobized
by dichlorodimethylsilane (angle of contact 110◦). Tyrrell & Attard (2001) observe
that ‘the nano-bubbles do not occur in isolation with small surface coverage; they
literally cover the surface, and it is difficult to see the bare substrate anywhere’; they
further note in Tyrrell & Attard (2002) that ‘a surprising finding is that the coverage
of the surface by nano-bubbles is near 100%’. These observations indicate that the
high surface coverage we obtain with our model by fitting available experimental data
may not be so unreasonable. Note, however, that the distribution of the nano-bubbles
in Tyrrell & Attard (2001, 2002) is qualitatively different (larger surface coverage)
from those found by Ishida et al. (2000) on silicon wafer surfaces hydrophobized
by OTS. Furthermore, the percentage of slip that we infer from our model for the
experiments is much larger than the fraction of the surface that is covered with cracks
in Watanabe et al. (1999), which is approximately 10% (see their figure 4); in this
case, the possibility of connected bubbles in their system would certainly have to be
considered.
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Secondly, we have to consider the sizes of the slip regions obtained that are inferred
with our model. Out of the five experiments, our model leads to typical bubble sizes
for three of them which are in good quantitative agreement with the size of the
nano-bubbles obtained by Ishida et al. (2000) and Tyrrell & Attard (2001, 2002) who
obtained, respectively, bubbles sizes of h = 50–600 nm and h = 70 nm. In particular,
for the experiments of Churaev et al. (1984) our model predicts h =34–175 nm, for
the experiment of Tretheway & Meinhart (2002) we find h = 902 nm, and for the
experiment of Cheng & Giordano (2002) we find h = 10–28 nm. The experiment of
Schnell (1956) leads to an estimate of bubble size h = 2.7–8.5 µm which is larger
by almost an order of magnitude than the previous values, but we do not think
this difference by itself is too significant since the slip lengths were not reported in
this publication but we had to infer them from plotted pressure drop versus flow
rate curves and, perhaps most importantly, details of the surface roughness in this
experiment are not known. Finally, our model applied to the results of Watanabe
et al. (1999) leads to micro-bubble sizes h = 180–360 µm, which far exceeds those
of observed nano-bubbles, but which are consistent, however, with the pictures of
elongated cracks along the surface (of size 10 µm by up to 200 µm approximately)
presented in figure 4 of their article.

3.3. Shear-dependent effective slip lengths

At higher shear rates and if the measured slip at the wall is indeed due to surface-
attached air bubbles, we argue that the effective slip length should be expected to
be shear-dependent. This dependence has, however, not been clearly reported in
pressure-driven flow experiments and only Churaev et al. (1984) briefly mentions
results consistent with this idea. However, the dependence of the slip length with
the fluid viscosity reported in Watanabe et al. (1999) and Cheng & Giordano (2002)
suggests the possible importance of surface stresses.

For all of the cases displayed in table 1, the typical ‘bubble’ capillary number Ca
defined by Ca = µγ̇ h/σ can be estimated and is much smaller than unity (10−10 to
10−4); here µ is the fluid shear viscosity, σ the gas–liquid equilibrium surface tension,
h the typical size of the slip regions obtained from our model, and γ̇ the shear rate
at the wall. As a consequence, the bubbles would not be deformed significantly and
their typical size along the flow direction is the same as their typical size across
the flow. For higher shear rates, however, as soon as the capillary number reaches
O(10−2) (see e.g. Taylor 1934) the bubbles will become elongated in the direction of
the flow; because of this distortion, the bubble surface area will increase (at leading
order the relative change in surface area is proportional to the capillary number) and
therefore the percentage of the surface δ over which the fluid slips would be expected
to increase. Consequently, the slip length, which is always an increasing function
of δ, would increase with the shear. A shear-independent slip length can therefore
be considered as the zero shear limit of a more general slip behaviour, obtained
at high shear rates. A similar idea was previously proposed (based on different
ideas) in the context of molecular dynamics simulations by Thompson & Troian
(1997).

It is finally worth emphasizing that in squeeze flow experiments, on the contrary,
strongly shear-dependent slip lengths have been reported (Craig et al. 2001; Zhu &
Granick 2001; Bonaccurso et al. 2002). Such results have recently been argued to be
consistent with the dynamic response to pressure fluctuations of possible gas bubbles
coating the solid surfaces (Lauga & Brenner 2003).
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Figure 3. (a) Variation of the dimensionless slip length λeff, ⊥/R with the slip percentage δ
(log scale) for L = 1, (b) variation of the dimensionless slip length with the dimensionless
periodicity L (log scale) for δ = 0.5.

3.4. Dependence of effective slip length on system size

Finally, we want to comment on the increase of the slip length with system size
reported by Watanabe et al. (1999) in their study of flow through circular pipes; note
that this feature also appears to be consistent with the trends in results from different
experimental groups as summarized in table 1. The results may be understood using
the following argument. Let us assume that the same surface treatment is used for all
the pipes used in Watanabe et al. (1999). The process that is responsible for the large
hydrophobicity of the pipe walls is described, for simplicity, by the typical values of
two scalar quantities h and H , set by the experimental method and independent of
the system size; h can be thought of as the typical size of an air pocket residing
along the boundary or the typical size of a slip surface treatment, and H the typical
distance between them, set by the surface roughness or by the defects in the surface
treatment. Increasing the system size R leads to a decrease in the dimensionless
periodicity L =H/R, but δ = h/H remains unchanged. In the longitudinal case, and
with reference to the analytical formula (2.9), we see that, for a constant δ, λeff, ‖/R is
proportional to L, therefore λeff, ‖ is proportional to H and does not vary with system
size. In the transverse case, however, referring to the asymptotic formula (2.10c) for
small L, and the general variation of λeff, ⊥/R with L displayed in figure 3, we see that
λeff, ⊥/R is also proportional to L at the origin (L = 0) but is concave and increases
with L less rapidly than L. The variation of λeff, ⊥ with respect to the system size R

can be evaluated formally and is given by

1

L

dλeff, ⊥

dR
=

1

L

(
λeff, ⊥

R

)
− d

dL

(
λeff, ⊥

R

)
· (3.2)

Because λeff, ⊥/R is a concave function of L, it is always located below its tangent
curve; as a consequence, the right-hand side of (3.2) is positive and dλeff, ⊥/dR > 0:
the dimensional transverse slip length λeff, ⊥ increases with the size the system. The
overall slip length λeff, which is expected to be intermediate between λeff, ‖ and λeff, ⊥
(which are not necessarily the same if the distribution is not isotropic), increases
therefore with the system size.
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We note that this dependence of the slip length on the system size for characterizing
a macroscopic experiment illustrates an essential difference between the purely
microscopic slip length (see equation (1.1)), such as those determined by molecular
dynamics-like approaches, which are characteristic properties of the surfaces, and
the macroscopic effective slip lengths considered here which attempt to consider the
consequences of surface heterogeneities.

4. Conclusion
The possibility of slip at solid–liquid interfaces has received considerable attention in

recent years, particularly now that it is common to fabricate fluid-carrying components
on the micrometre and nanometre length scales. In this paper, we began by observing
that small bubbles fixed at the solid boundary would act as local regions of slip
embedded in an otherwise no-slip boundary. The possible existence of such bubbles
has been suggested either from atomic force microscope measurements of the liquid
adjacent to hydrophobic surfaces or because visual cracks are sometimes observed in
the surfaces used; these cracks are even used as a design tool for super-hydropobic
surfaces (Onda et al. 1996).

We considered two simple configurations of steady pressure-driven Stokes flow in
a circular pipe with periodically distributed regions of perfect slip (infinite local slip
length) and no-slip (zero local slip length), which were used to establish from pressure
drop versus flow rate considerations the dependence of an effective slip length on
the geometric parameters. The calculated effective slip length is to be contrasted with
a molecular scale slip length which is to be applied pointwise along a solid–liquid
boundary in a Navier relation (equation (1.1)).

The deduction of an effective slip length, based solely on the idea of macroscopic
heterogeneities such as surface-attached bubbles, motivated a reconsideration of
experimental results obtained by different groups (table 1). Several conclusions may
then be drawn and several consequences are suggested: (i) in order to probe possible
fluid slip at a solid boundary significantly, system sizes in the submillimetre range
generally have to be considered, along with an appropriate temperature monitoring
and low shear rates to avoid viscous heating; (ii) a model of uniform slip/no-slip
patterning such as the one considered in this paper along with the one described
in Philip (1972a) is able to reproduce sizes of slip domains consistent with the
experimental observation of nano-bubbles on hydrophobic surfaces (Ishida et al.
2000; Tyrrell & Attard 2001, 2002) (and surface roughness in the case of Watanabe
et al. 1999); (iii) the possibility of a shear-dependent effective slip length is suggested,
based on the idea that the surface area of surface-attached bubbles, which set the
amount of effective slip, depends on the wall shear stress; (iv) finally, based on the
same model, we proposed an explanantion for the seemingly paradoxical increase
of slip length with system size reported by Watanabe et al. (1999) as well as the
approximate trend in table 1 for the various experiments considered.

In closing, the model presented here, and its possible extension in terms of surface-
attached bubbles, neglects the three-dimensional structure of the bubbles in order to
allow for simple calculations and to interpret experimental results. It is clear that this
idealization underestimates the viscous dissipation, and consequently overestimates
the effective slip length; however, because the typical length scales of the slip/no-slip
domains are not found to be much smaller than the system size, the arguments
of Richardson (1973) or Jansons (1988) predicting no-slip independently of the
microscopic structure of the wall-boundary condition probably do not apply; note
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also that the nano-bubbles observed by Ishida et al. (2000) and Tyrrell & Attard
(2001, 2002) are not spherical but very flat, which reduces the influence of their
geometry.

Finally, the more general issue of the stability of micro- and nano-bubbles on solid
surfaces remains unclear. In particular, even though such bubbles have been observed,
classical physics would predict their diffusion into the bulk almost instantaneously.
Other mechanisms have therefore to be considered; in particular, both electrical effects
in polar liquids and long-range intermolecular forces might play an important role in
stabilizing these gas bubbles on the nanometre scale.

The authors acknowledge many fruitful discussions with M. Brenner, T. Squires
and J. Ashmore and helpful conversations with S. Granick, U. Raviv, C. Denniston
and M. Robbins. We thank J. Brady and J. Anderson for providing us with some
useful references. We also thank the Harvard MRSEC (and so NSF) for support of
this research.

Appendix A. Flow in a pipe with periodic transverse distributions of slip
Let us consider the configuration shown in figure 1(a). The equations to solve in

order to characterize the velocity field are (2.4) and (2.5). An analytical solution is
obtained in § A.1. The numerical method used to solve the final set of dual series
equations is described in § A.2 and typical results are given in § A.3. Finally, § A.4
presents numerical calculations and asymptotic formulae for the effective slip length
as a function of the dimensionless parameters δ and L, which were introduced in § 2.

A.1. Analytical solution

Because of the symmetries of the problem, the velocity field is axisymmetric and has a
zero azimuthal component. It is therefore possible to define a streamfunction ψ(r, z)
by

ur =
1

r

∂ψ

∂z
, uz = −1

r

∂ψ

∂r
. (A 1)

Since we are interested in the modification of the Poiseuille integral properties due
to the mixed boundary conditions, a natural way to solve this linear problem is to
calculate the perturbation streamfunction ψ̃(r, t) to the Poiseuille flow (Ψp):

ψ(r, z) = Ψp(r) + ψ̃(r, z), Ψp(r) = 1
16

(r4 − 2r2 + 1). (A 2)

The boundary conditions for ψ̃ are

ψ̃ = 0 for r = 1, all z (A 3a)

∂ψ̃

∂r
= 0 for r = 1, 1

2
� < |z| � 1

2
L, (A 3b)

1

2
+

∂

∂r

(
1

r

∂ψ̃

∂r

)
= 0 for r = 1, |z| � 1

2
�. (A 3c)

To solve for the perturbation streamfunction ψ̃(r, z), we first determine the azimuthal
perturbation vorticity ω̃ = ω̃(r, z)eθ , and then use the definition of the vorticity to
solve for the streamfunction ψ̃ , with the required boundary conditions (A 3a), (A 3b)
and (A 3c). The equation for the perturbation vorticity is

eθ · ∇2(ω̃(r, z)eθ ) =

(
∂2

∂z2
+

1

r

∂

∂r

(
r

∂

∂r

)
− 1

r2

)
ω̃ = 0. (A 4)
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The solutions to this equation can be found using separation of variables
ω̃(r, z) = fn(r) cos(knz), with kn = 2nπ/L, n= 0, 1, 2, . . . required by periodicity and
fn satisfying a modified Bessel equation of order 1,

r2f ′′
n + rf ′

n −
(
1 + k2

nr
2
)
fn =0, so f0(r) = a0r, fn(r) = anI1(knr) + bnK1(knr), n � 1.

(A 5)

Here, Ii and Ki are, respectively, the modified Bessel functions of the first and second
kind of order i. Because the vorticity must be bounded at the origin r = 0, we take
bn = 0 and therefore the vorticity is expressed as a Bessel–Fourier series

ω̃(r, z) =
∂ũr

∂z
− ∂ũz

∂r
= a0r +

∞∑
n=1

anI1(knr) cos(knz). (A 6)

The definition of the vorticity in terms of the streamfunction is

ω̃(r, z) =

(
1

r

∂2

∂z2
+

∂

∂r

(
1

r

∂

∂r

))
ψ̃. (A 7)

The streamfunction can therefore be expressed using the same separation of variables
as the vorticity with the result

ψ̃(r, z) = 1
8
a0r

4 + c0r
2 + d0 +

∞∑
n=1

an

k3
n

gn(knr) cos(knz). (A 8)

By substituting equation (A 8) into (A 7), we find that the gn(x) are equal to the same
function g(x), which satisfies the ordinary differential equation

x2g′′ − xg′ − x2g = x3I1(x). (A 9)

The general solution to equation (A 9) is g(x) = C2xI1(x) + C3xK1(x) + xH (x) where
H (x) is given by

H (x) = I1(x)

∫ x

0

tK1(t)I1(t) dt + 1
2
x2K1(x)(I0(x)I2(x) − I1(x)2). (A 10)

Because the streamwise component of the velocity uz must be bounded, we need
x−1g′(x) bounded everywhere inside the pipe which leads to C3 = 0, and the general
solution for the perturbation streamfunction is therefore given by

ψ̃(r, z) = 1
8
a0r

4 + c0r
2 + d0 +

∞∑
n=1

knr

[
an

k3
n

H (knr) + cnI1(knr)

]
cos(knz). (A 11)

Moreover, since ψ̃ is the perturbation streamfunction, it results in a zero mean
pressure gradient, and therefore a0 = 0. The remaining set of unknown constants
(c0, d0, {an}, {cn}) has to be determined using the mixed boundary conditions (A 3a),
(A 3b) and (A 3c). Applying the boundary condition (A 3a) leads to c0 + d0 = 0 and
cnI1(kn) + anH (kn)/k3

n = 0 and therefore to the general form of the streamfunction

ψ̃(r, z) = α0(1 − r2) +

∞∑
n=1

αnknr [I1(kn)H (knr) − H (kn)I1(knr)] cos(knz), (A 12)

where we have simply relabelled coefficients αn = an/(k
3
nI1(kn)) and α0 = c0. The set

of coefficients {αn} remains to be determined. They cannot be inferred from any
other condition inside the pipe; therefore the coefficients will be determined by the
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boundary conditions (A 3b) and (A 3c), and will depend on both the values of � and
L. Boundary condition (A 3b) on the no-slip portion of the domain and (A 3c) on the
no-shear portion of the domain lead to dual series equations for the coefficients {αn},

−α0 +

∞∑
n=1

αnR(kn) cos(knz) = 0 for 1
2
� < |z| � 1

2
L, (A 13a)

1
16

+

∞∑
n=1

αnS(kn) cos(knz) = 0 for |z| � 1
2
�, (A 13b)

where the functions R(x) and S(x) are given by

R(x) = 1
4
x3

(
I 2
1 (x) − I 2

0 (x)
)

+ 1
2
x2I0(x)I1(x), S(x) = 1

8
x3I 2

1 (x). (A 14)

Note that the identity K0(x)I1(x) + K1(x)I0(x) = 1/x was used to obtain (A 14). The
dual series equations (A 13a)–(A 13b) do not have a standard form (see Sneddon 1966)
and therefore have to be solved numerically for each value of � and L. After the set
of coefficients {αn} is determined, the dimensionless velocity field can be evaluated
and is given by

ur (r, z) = −
∞∑

n=1

αnk
2
n [I1(kn)H (knr) − H (kn)I1(knr)] sin(knz) (A 15)

and

uz(r, z) = 1
4
(1 − r2) + 2α0 −

∞∑
n=1

αnk
2
n [I1(kn)M(knr) − H (kn)I0(knr)] cos(knz), (A 16)

with

M(x) = I0(x)

∫ x

0

tK1(t)I1(t) dt + 1
2
x2K0(x)(I1(x)2 − I0(x)I2(x)). (A 17)

A.2. Numerical integration of the dual series equations

In order to solve equations (A 13) it is convenient to make the change of variable
x = z/L and define δ = �/L = h/H ; δ is therefore the total fraction of the surface
that is perfect slip and we have 0 � δ � 1. The dual series equations become

−α0 +

∞∑
n=1

αnR(kn) cos(2nπx) = 0 for 1
2
δ < |x| � 1

2
, (A 18a)

1
16

+

∞∑
n=1

αnS(kn) cos(2nπx) = 0 for |x| � 1
2
δ. (A 18b)

The solution depends therefore not only on δ, but also on how this slip is distributed
(a different number of rings for a given slip percentage, i.e. different values of L for
a given δ). To solve this equation for {αn} numerically, we truncate the dual series
equation at αN−1 and calculate its inner product on the interval x ∈ [0, 1/2] with
cos(2mπx), with m ∈ [0, N −1]. We then obtain a linear system of equations for the αn

coefficients. However, as written in equation (A 18), the system is not well suited to a
numerical integration because both the functions R and S diverge rapidly to +∞ when
n becomes large. However, the asymptotic behaviours of Bessel functions for large
arguments are known and we can use them to rescale the dual series equations and
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look for new well conditioned unknowns. Near x ∼ +∞, we have (see Abramowitz
& Stegun 1972)

Iν(x) ∼ ex

√
2πx

{
1 − 4ν2 − 1

8x

}
, (A 19)

so it is therefore straightforward to obtain

R(x) ∼ xe2x

8π

{
1 − 3

8x

}
, S(x) ∼ x2e2x

16π

{
1 − 3

4x

}
(x → +∞). (A 20)

The dual series equation is then solved by dividing R(kn) and S(kn) by the asymptotic
behaviour xe2x/8π and therefore modifying the definitions of αn for n � 1. The
resulting system is then found to be well conditioned and calculations are found to
converge upon truncation refinement.

A.3. Calculation of the slip length

In the case studied here, the additional flow rate Q̃= Q − π/8, independent of z by
mass conservation, can be calculated using the definitions of the streamfunction (A 1)
and (A 12) and the definition of the slip length (2.8), and we obtain

Q̃ = 2π

∫ 1

0

rũz(r, z) dr = 2πψ̃(0) = 2πα0 and therefore
λeff, ⊥

R
= 4 α0. (A 21)

With the numerical procedure described in § A.2, the slip length was found to converge
quickly to a final value upon increasing the truncation number of the dual series
equations.

A typical calculation for the dimensionless slip length λeff, ⊥/R is depicted in
figure 3(a) as a function of the no-slip percentage 1 − δ, for the case L =1. When
the slip percentage δ → 0, the slip length decreases to zero and the flow profile tends
to the Poiseuille profile. When δ increases, the slip length increases also as expected
and when δ → 1, the slip length diverges to +∞ as the flow tends to a plug flow
profile. A similar calculation for the dimensionless slip length λeff, ⊥/R as a function
of the dimensionless period L is displayed in figure 3(b), for the case δ = 0.5. When
L → 0, the slip length goes to zero, which is also the case for a pressure-driven pipe
flow with longitudinal regions of slip and no-slip (see Philip 1972b and § 3). When L

increases, the slip length increases and tends to an asymptotic value when L → + ∞,
which depends only on the slip percentage δ, as derived in the next section.

A.4. Asymptotic behaviours for the dimensionless slip length

We determine in this section the asymptotic behaviours for the slip length as a
function of δ and L in four different regions of the parameter space: small and
large amounts of slip δ and small and large distances between the slip regions L.
In all cases, the obtained asymptotic behaviours are found to agree with numerical
calculations.

A.4.1. Limit of small amount of slip

Let us first calculate the asymptotic behaviour for the dimensionless slip length
in the case where the distance between the rings is fixed and the percentage of the
surface which is slip δ goes to zero. In this case, the flow tends to the Poiseuille flow
profile and the slip length decreases to zero. The mean value of the entire dual series
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equations (A 18a, b) leads to the equality

δ

∞∑
n=1

αn(S(kn) − R(kn)) W (nπδ) = α0 − δ
(
α0 + 1

16

)
, (A 22)

where W (x) = sin(x)/x. Since in the limit δ → 0, the left-hand side of equation (A 18b)
becomes an exact Fourier series for the function 0, each of the coefficients {αn} is zero
in this limit. The function W (x) being bounded by 1 and the set of coefficients R(kn)
and S(kn) not depending on δ, we therefore obtain when δ → 0 that the left-hand
side of equation (A 22) is much smaller than δ; the order O(δ) of the right-hand side
of equation (A 22) has therefore to vanish, which leads to the asymptotic behaviour
α0 ∼ δ/16, and so by (A 21), we obtain a linear asymptotic behaviour for the slip
length

λeff, ⊥

R
∼ δ

4
(lim δ → 0). (A 23)

As expected, the slip length decreases to zero in the limit of vanishing perfect slip
regions; furthermore, its asymptotic behaviour depends on the distance L =H/R

between the slip regions only through δ = �/L. A numerical validation of the
dependence (A 23) for the slip length as a function of the slip percentage δ is provided
in figure 4(a) for L = 0.01 and 1. The results are displayed on a log–log scale and
confirm the theoretical linear dependence of λeff/R with δ.

A.4.2. Limit of large amount of slip

We next calculate the asymptotic behaviour for λeff, ⊥/R in the case where the
distance between the rings is fixed and the percentage of the surface on which the fluid
slips goes to 100%, i.e. δ → 1. In this case, the tube offers almost no resistance to the
fluid, and therefore the flow tends to a plug flow profile corresponding to λeff → + ∞.
Equation (A 22) can now be rewritten as

∞∑
n=1

αn(S(kn) − R(kn))

[
sin(nπδ)

nπ

]
= α0(1 − δ) − δ

16
. (A 24)

Moreover, when evaluating equation (A 18b) for x = 0, we obtain
∑

αnS(kn)+1/16 =
0, which is valid for all values of δ, and therefore valid also for the limit δ → 1.
Since the function S(x) is never equal to zero, the coefficients αn are therefore always
bounded for n � 1. Moreover, when δ → 1, sin(nπδ) → 0. Consequently, when taking
the limit δ → 1 with L fixed, the left-hand side of equation (A 24) goes to zero. The
O(1) limit of the right-hand side of (A 24) has therefore to be zero, which leads to
(1 − δ)α0 ∼ 1/16, and corresponds to the asymptotic behaviour for the slip length

λeff, ⊥

R
∼ 1

4(1 − δ)
(lim δ → 1). (A 25)

As expected, the slip length increases to +∞ in the limit of a large amount of slip and,
again, its asymptotic behaviour depends on the periodicity L only through δ = �/L.
The obtained variation (A 25) of the slip length as a function of the no-slip percentage
(1 − δ) is confirmed numerically in figure 4(b) for L =0.01 and 1.

A.4.3. Limit of small distance between slip regions

Let us now calculate the asymptotic behaviour for the dimensionless slip length
in the case where the slip percentage is fixed, but the distance between the rings
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Figure 4. Asymptotic behaviours for the dimensionless slip length λeff, ⊥/R for fixed L.
(a) Limit of no-slip δ → 0 calculated numerically (symbols, log–log scale) with the theoretical
prediction (A 23) (dashed); (b) limit of perfect slip δ → 1 calculated numerically (symbols) with
the theoretical prediction (A 25) (dashed). In each case, the results are reported for L =0.01
(squares) and L = 1 (circles).

goes to zero. Using the asymptotic forms (A 20) for the functions R and S and the
set of coefficients {αn} rescaled as proposed in § A.2, it is clear that when L → 0
then kn → + ∞ and therefore R(kn) and S(kn) can be replaced in the dual series
equations (A 18a) and (A 18b) by their asymptotic behaviours R(kn) ∼ 1 and S(kn) ∼
kn/2. After performing the change of variable y = 2πx in (A 18a) and (A 18b), the
dual series equation can then be rewritten in a standard form (see Sneddon 1966)

−α0 +

∞∑
n=1

αn cos(ny) = 0 for δπ < y � π, (A 26a)

L

16π
+

∞∑
n=1

nαn cos(ny) = 0 for y � δπ. (A 26b)

The new dual series equations (A 26) can be solved exactly (see Sneddon 1966) to
obtain

λeff, ⊥

R
∼ L

2π
ln

(
sec

(
δ

π

2

))
(lim L → 0). (A 27)

For a given slip percentage, the slip length λeff, ⊥ decreases to zero as the periodicity
L → 0, which confirms the general trend from figure 3(c). Note also that two
different expressions are obtained for the two asymptotic limits (1) L fixed, δ → 0
(equation (A 23)) and (2) δ fixed, L → 0 (equation (A 27)). A numerical confirmation
of equation (A 27) for the slip length as a function of the periodicity L is provided in
figure (5a) for δ = 0.2. The results are displayed on a log–log scale and show both the
linear dependence of λeff, ⊥/R with L and the theoretical dependence of the asymptotic
behaviour with the slip percentage δ (i.e. the slope of the curve in figure 5a).

A.4.4. Limit of large distance between slip regions

Finally, let us consider the case where the amount of slip δ is fixed, but the distance
between the rings diverges to +∞. To derive the result for this asymptotic limit we
need to evaluate R(kn) and S(kn) when the argument kn = 2πn/L → 0. The asymptotic
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Figure 5. Asymptotic behaviours for the dimensionless slip length λeff, ⊥/R when δ is fixed.
(a) Limit of small periodicity L → 0 calculated numerically (squares, log–log scale) with
the theoretical prediction (A 27) (dashed) for δ =0.2. (b) Limit of large periodicity L → +∞
calculated numerically (symbols, log–log scale) with the theoretical predictions (A 29) (dashed),
for δ = 0.25 (circles), 0.5 (triangles) and 0.75 (squares).

behaviour of the modified Bessel function near the origin is (see Abramowitz &
Stegun 1972)

Iν(x) ∼
(

1
2
x
)ν

�(1 + ν)

{
1 +

�(1 + ν)

�(2 + ν)

x2

4
+ O(x4)

}
, (A 28)

and therefore, when x → 0+, the functions R and S have the same asymptotic
behaviour R(x) ∼ S(x) ∼ x5/32. Hence, the coefficients R(kn) and S(kn) in the dual
series equations (A 18a) and (A 18b) have the same behaviour as L → +∞. Since we
can always rescale the set of unknown coefficients {αn} by the asymptotic behaviour
above, we can replace, without loss of generality, R(kn) and S(kn) by 1 in the limit
of large L. Taking the mean value of the obtained dual series equation leads to the
asymptotic behaviour for the dimensionless slip length

λeff, ⊥

R
=

δ

4(1 − δ)
(lim L → +∞). (A 29)

As a consequence, when the separation between the slip regions becomes large but the
amount of slip is fixed, the dimensionless slip length tends to an asymptotic constant
which is independent of L. In the limit where δ → 0 and δ → 1, the results of § A.4.1
and A.4.2 are recovered. The theoretical prediction for the asympototic limit (A 29)
of the slip length obtained above is confirmed numerically in figure 5(b) for δ =0.25,
0.5 and 0.75.

Appendix B. Flow in a pipe with periodic longitudinal distributions of slip, by
Philip (1972a, b)

We now consider the case where the no-slip domains are distributed in a longitudinal
fashion, such as illustrated in figure 1(b). The solution is derived in Philip (1972a)
and we recall it here. Consider the Poiseuille flow in the z-direction in a pipe of radius
R modified by the presence of m equally spaced longitudinal no-shear bands, each of
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half-angle α. The velocity in the pipe is given by

uz(r, θ) = − R2

4µ

dp

dz

{
1 −

( r

R

)2

+
4

m
Im

{
cos−1

(
cos(Λ)

cos(mα/2)

)
− Λ

}}
(B 1)

with

Λ = − 1
2
im ln

(
reiθ

R

)
, (B 2)

and where Im denotes the imaginary part of the function. In this case, the effective
slip length λeff, ‖ can be calculated exactly from the pressure drop versus flow rates
formulae given in Philip (1972b) and is given by

λeff, ‖

R
=

2

m
ln

(
sec

(mα

2

))
. (B 3)

Other calculations are offered in Philip (1972a) for different geometrical configurations
and distribution of slip and no-slip regions. We have also tabulated these solutions
using notations consistent with the rest of the present paper and the interested reader
can contact the authors.
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