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A body immersed in a highly viscous fluid can locomote by drawing in and expelling fluid through
pores at its surface. We consider this mechanism of jet propulsion without inertia in the case of
spheroidal bodies and derive both the swimming velocity and the hydrodynamic efficiency.
Elementary examples are presented and exact axisymmetric solutions for spherical, prolate
spheroidal, and oblate spheroidal body shapes are provided. In each case, entirely and partially
porous �i.e., jetting� surfaces are considered and the optimal jetting flow profiles at the surface for
maximizing the hydrodynamic efficiency are determined computationally. The maximal efficiency
which may be achieved by a sphere using such jet propulsion is 12.5%, a significant improvement
upon traditional flagella-based means of locomotion at zero Reynolds number, which corresponds to
the potential flow created by a source dipole at the sphere center. Unlike other swimming
mechanisms which rely on the presentation of a small cross section in the direction of motion, the
efficiency of a jetting body at low Reynolds number increases as the body becomes more oblate and
limits to approximately 162% in the case of a flat plate swimming along its axis of symmetry. Our
results are discussed in the light of slime extrusion mechanisms occurring in many cyanobacteria.
© 2010 American Institute of Physics. �doi:10.1063/1.3469786�

I. INTRODUCTION

Locomotion at the micron scale, or in highly viscous
fluids, is constrained by the dominance of viscous dissipation
over inertial effects. Hence, the strategies utilized by micro-
organisms and engineered swimming devices must differ
from more familiar locomotive mechanisms such as the flap-
ping of wings.1–4 Instead of imparting momentum into a fluid
wake, which is not possible at zero Reynolds number, bodies
generally exploit drag anisotropy in order to propel them-
selves through the fluid. In particular, the undulation of fla-
gella and cilia are the most well-studied means of swimming
at low Reynolds numbers in nature. As shown in classical
explorations of flagellar locomotion,5,6 the maximum theo-
retical hydrodynamic efficiency which may be achieved by
flagellar propulsion is approximately 8%, and is generally
closer to 2% in real cells.5,7,8 For locomotion using cyclic
tangential surface distortions, the efficiency has a theoretical
bound of 75% in the case of a spherical body, a dramatic
improvement upon that granted by the use of flagella.9

Flagellar locomotion is not the only means of locomo-
tion at low Reynolds numbers and many authors have con-
sidered alternatives, either to help explain biological phe-
nomena, or to suggest designs for synthetic locomotor
systems on small scales. Examples of swimming bodies
which deform in a manner that breaks the important time-
reversal symmetry �a constraint known as the Scallop theo-
rem and without which no locomotion is possible in the ab-
sence of inertia� were presented by Purcell.2 These systems
include the motion of a three-link swimmer2,10–12 and a

treadmilling torus.2,13–16 Recently, Leshansky et al.17 have
considered the remarkably efficient locomotion of an elon-
gated treadmilling body, which can propel itself at nearly the
same velocity of the surface motion. Other simple propulsive
systems proposed for locomotion at zero Reynolds number
include a deformable two-dimensional loop;18 systems of
two,19–22 three,21,23,24 or N spheres;25 an oscillating body near
a deformable interface;26 a rehinging swimmer;27 and a
jellyfish-inspired bilayer vesicle.28 For a more complete list
of references, we refer the reader to Ref. 7.

Recently, it has been observed that certain types of bac-
teria, such as myxobacteria and cyanobacteria �blue-green
algae�, secrete mucilage through nozzlelike organelles while
gliding along a substrate �see Fig. 1�.29–34 This so-called
“slime extrusion” has been theorized as a primary propulsion
mechanism for adventurous motility in such organisms as M.
xanthus. The slime is a polyelectrolyte gel and has been
modeled after snail slime. Wolgemuth et al.33 have shown
that the osmotic expansion of the slime from the nozzle gen-
erates a sufficient force to propel the organism. As the slime
exits the nozzle, it adheres to the substratum, and further
slime extrusion produces a thrust. Though the primary acti-
vation is located near the poles of the elongated body, the
entire surface is covered with nozzles. Meanwhile, the mo-
tility mechanism employed by the motile marine cyanobac-
teria Synechococcus is still an open problem in
biophysics.9,35–37 Synechococcus is known to swim without
the presence of a substrate, without changing shape, and
without any observable external organelles, a puzzle to
which we shall return.

Inspired by the gliding locomotion of the cyanobacteria,
we consider in this paper the following questions: Can the
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extrusion of a Newtonian fluid be used as a propulsive
mechanism absent a solid surface? And if so, how efficient
would such a swimmer be? Herein we study the swimming
motion which may be achieved by the placement of surface
nozzles upon a body surface which act to both draw in and
expel fluid, as illustrated in Fig. 2. We refer to this locomo-
tion as extrusion swimming or noninertial jet propulsion. The
swimming mechanism is not unlike the more familiar jet
propulsion at higher Reynolds numbers, but involves a dis-
tinctly different flow structure and resultant �nonlocal� fluid-
body interactions. In classical high Reynolds number jet pro-
pulsion, a body propels itself by imparting momentum onto
the fluid opposite the direction of motion �as in the swim-
ming of jellyfish�.4,38–44 The low Reynolds number analog
studied here propels itself instead by taking advantage of the
viscous stresses induced by the jet motion on its surface.

The fluid being expelled from the body is assumed to be
Newtonian and identical to the surrounding fluid, and the
body is assumed to be well-separated from any surfaces. The
swimming velocity and hydrodynamic efficiency of such a
body are first derived formally using the Lorentz reciprocal
identity. We find that the maximal hydrodynamic efficiency
which may be achieved by a sphere using such jets is 12.5%,
a significant improvement upon most other means of swim-
ming at zero Reynolds number. Moreover, unlike many other
swimming mechanisms which rely on the presentation of a
small surface area in the direction of motion, we show that
the efficiency increases as the body becomes more oblate and
limits to approximately 162% in the case of a flat plate mov-
ing along its axis of symmetry.

The paper is organized as follows. In Sec. II, the swim-
ming velocity of an arbitrary body is shown to be dependent
on the fluid stress in a dual �but simpler� resistance problem,
and we present elementary examples for certain swimming
spheroids and a rotating “viscous pinwheel.” The hydrody-
namic efficiency of locomotion is also defined. In Sec. III,

we consider the behavior and efficiency of a spherical body
for the case of an entirely porous �i.e., jetting� surface, and
then for a partially porous surface. We also determine the
optimal jetting flow profile at the surface for maximizing the
swimming efficiency. In Secs. IV and V, we consider prolate
and oblate spheroidal bodies, respectively. Entirely and par-
tially porous surfaces are considered and jetting profile opti-
mization is performed. We conclude by applying the theoret-
ical results to the organism Synechococcus, which swims by
a yet-unknown mechanism, and show that while slime extru-
sion is important for gliding motility in related cyanobacte-
ria, extrusion of a Newtonian fluid cannot not properly ac-
count for its observed swimming speed.

II. GENERAL EXPRESSIONS FOR THE SWIMMING
VELOCITY AND EFFICIENCY

A. Description of fluid-jetting bodies
and fluid-body interactions

We begin our consideration by calculating the swimming
velocity of a jetting body of arbitrary shape. A fluid-jetting
body is illustrated in Fig. 2. The surface is composed of a
solid part �D0 and the m porous surfaces which allow for
inflow and outflow, �D�

i for i=1,2 , . . . ,m. A no-slip condi-
tion is assumed to hold on the surface �D0 and the porous
flow through the surfaces �D�

i is assumed to be driven by
internal mechanisms in the direction normal to the surface at
each point, either into or out of the body. The entire surface
is denoted by �D=�D0�i=1

m �D�
i .

The equations for incompressible fluid motion at zero
Reynolds number are the Stokes equations

� · � = − �p + ��u = 0 , �1�

� · u = 0, �2�

where �=−pI+2�E is the Newtonian fluid stress, p is the
dynamic pressure, u is the fluid velocity, E= ��u+�uT� /2 is
the symmetric rate-of-strain tensor, and � is the shear vis-
cosity. The boundary conditions are decomposed into rigid
body motion and a fluid extrusion �or jetting flow� compo-
nent

u�x� = U + � � x + ��x�n̂�x� �x � �D� , �3�

z

r

U

∂D2
δ

∂D1
δ
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n̂ ∂Di
δ
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FIG. 2. �a� A fluid-jetting body. The surface is composed of a solid part �D0

and the m porous surfaces, which allow for inflow and outflow, �D�
i for i

=1,2 , . . . ,m. The entire surface is denoted by �D=�D0�i=1
m �D�

i . Here, the
body draws in and expels fluid to the left and swims to the right with
velocity U. We denote by n̂ the unit normal vector pointing into the fluid. �b�
The surface �D�

i corresponds to the ith fluid jet or porous surface.

(a)

(b)

(c)

FIG. 1. Secretion of slime by myxobacteria. �a� Negatively stained electron
micrograph of an isolated M. xanthus cell envelope showing multiple ring-
like structures located predominantly at the poles of the cell. The inset
shows a higher magnification of the nozzle array in the region indicated by
the long arrow. �b� A gallery of electron micrographs of negatively stained
isolated nozzles. Each cylindrically symmetric nozzle has an outer diameter
of 14 nm. �c� Electron micrograph of a gliding cell. At higher magnification,
it can be seen that the slime trails are composed of several slime bands,
which are secreted from the sites at the cell pole, where the nozzles are
located �large arrow�. Reprinted with permission from C. Wolgemuth et al.,
Curr. Biol. 12, 369 �2002�. Copyright © 2002, Elsevier.

081902-2 S. E. Spagnolie and E. Lauga Phys. Fluids 22, 081902 �2010�



u�x� → 0, p → 0 �x → �� . �4�

The jetting flow profile ��x� has support only at the porous
surfaces x��i=1

m �D�
i , or ��x�=0 for x��D0. We denote by

n̂�x� the unit normal vector at the point x pointing into the
fluid, and U and � are the instantaneous rigid body velocity
and rotation rate resulting from the fluid extrusion. We define
the fluid-jetting fluxes �i.e., flow rates� qi via

�
�D�

i
��x�dS = qi, �5�

with dS the surface area element. The internal volume is
conserved if the inward and outward fluxes balance,

�
�D

n̂ ·���x�n̂�dS = �
i=1

m

qi = 0. �6�

Finally, to close this “swimming problem” we require that
the body be force-free and torque-free, i.e.,

�
�D

� · n̂dS = 0, �
�D

x � �� · n̂�dS = 0 . �7�

B. General expression for the swimming
velocity

An identity attributed to Lorentz may be used to deduce
the rigid body motion resulting from the porous jetting flow
on the body surface. This approach was used by Brenner45 to
compute the drag on a body in an arbitrary flow field, and by
Stone and Samuel9 to study the swimming of finite-size bod-
ies. The Lorentz reciprocal theorem is stated as

�
�D

ũ · �� · n̂�dS = �
�D

u · ��̃ · n̂�dS , �8�

where �u ,�� are the velocity and stress fields corresponding
to the swimming problem described above and �ũ , �̃� are the
velocity and stress fields corresponding to a different system,
but one which shares the same instantaneous immersed
boundary �see Refs. 46 and 47�. Let �ũ , �̃� be the solution to
the Stokes equations for rigid body motion of the immersed

body, so that the surface fluid velocity is ũ= Ũ+�̃�x and

the corresponding net forces and torques are F̃ and L̃, re-
spectively �the “resistance problem”�. Since the body is
force-free and torque-free in the swimming problem, the in-
tegral on the left hand side of Eq. �8� vanishes. The remain-
ing terms in the reciprocal identity are

0 = �
�D

�U + � � x + ��x�n̂� · ��̃ · n̂�dS . �9�

Since ��x�=0 for x��D0, we obtain

U · F̃ + � · L̃ = − �
�D

��x��n̂ · �̃ · n̂�dS

= − �
i=1

m �
�D�

i
��x��n̂ · �̃ · n̂�dS . �10�

In the event that a body is to translate or rotate with the
greatest velocity for a given set of jet fluxes qi, Eq. �10�
indicates that the jets should be placed precisely where the
body experiences its largest normal component of traction in
the corresponding resistance problem. Also of note, the con-
sequences on the flow and swimming velocities from inward
flowing jets are precisely opposite those of outward flowing
jets. Unlike at higher Reynolds numbers, where there is a
distinct asymmetry in the flow fields set up by an outward
flux and inward flux through a small opening �candles are
blown out instead of sucked out!�, at zero Reynolds number
sources and sinks near a wall produce identical streamlines.46

We proceed to consider a number of simple examples which
utilize Eq. �10�.

1. Example 1: A translating sphere

As a first example, consider the simple case of a trans-
lating sphere of radius a. The corresponding resistance prob-

lem is well-known: F̃=6��aŨ, L̃=0, and ��̃ · n̂�
=3� / �2a�Ũ on the body surface.46 Generally, then, the
swimming velocity of a jetting sphere may be written as

U = −
1

4�a2�
�D

��x�n̂dS . �11�

The largest swimming velocity for a given volume conserv-
ing fluid flux is therefore achieved by placing two jets of
equal and opposite strengths at the spherical poles along the
axis of locomotion �x1 and x2�,

��x� = q���x,x1� − ��x,x2�� , �12�

where ��x ,y� is the Dirac delta function with support at x
=y and q=q1=−q2. The corresponding swimming velocity is

U = −
q

2�a2 · �13�

While the flow profile ��x� stated above yields the largest
swimming velocity for a given q, it does not present the most
efficient means of moving the sphere through the fluid, as we
shall explore in Sec. III.

More generally, if the pores are small, S�
i 	1 �with S�

i the
surface area of the ith porous surface �D�

i �, then it is useful
to expand the stress from the resistance problem linearly
about the jet locations. For instance, near the ith porous jet,
we have

n̂�x� = n̂�xi� + O�S�
i � , �14�

��̃ · n̂��x� = ��̃ · n̂��xi� + O�S�
i � , �15�

and Eq. �10� may be written as

081902-3 Jet propulsion without inertia Phys. Fluids 22, 081902 �2010�



U · F̃ + � · L̃ = − �
i=1

m

qi�n̂ · �̃ · n̂��xi� + O�max
i

S�
i � . �16�

The swimming velocity of a sphere with m small fluid jets
acting on its surface is, from Eq. �16�,

U = −
1

4�a2�
i=1

m

qin̂�xi� + O�max
i

S�
i � . �17�

A jetting sphere may therefore move in any direction
spanned by the normal vectors at the jet locations by tuning
the fluxes qi and the resulting motion will be a simple trans-
lation in that direction. Regardless of their distribution and
strengths, jets acting normal to the body surface cannot,
however, be used to generate rotations of a sphere. For the
case of a rotating sphere of radius a, the resistance problem

has F̃=0, L̃=8��a3�̃, but also �n̂ · �̃ · n̂�=0, so that Eq. �10�
gives �=0, regardless of the jetting flow profile ��x�. In
order to rotate using porous extrusion, the body must not be
axisymmetric about the axis of rotation.

2. Example 2: A spheroid translating along its axis
of symmetry

The swimming velocity of a jetting spheroid translating
along its axis of symmetry can also be determined with ease.
Once again the corresponding resistance problem has a long
history.46 Consider a prolate spheroid with major and minor
axis lengths 2a and 2b, with its major axis aligned with the z

axis. Setting Ũ= Ũẑ, we have F̃=6��RŨ, L̃=0, and

�̃ · n̂ = − � 2�Ũ


c��0
2 − 
2����0

2 + 1�coth−1��0� − �0�
	n̂ �18�

on the body surface, where 
=cos��� �� is the polar angle�,
c=
a2−b2, �0=a /c, and

R =
8c/3

��0
2 + 1�log� �0 + 1

�0 − 1
� − 2�0

�19�

�see Ref. 46�. Equation �10� then gives the swimming veloc-
ity; after some algebra, we find that

U = −
1

2
�

−1

1

G�
���
�d
, G�
� = 

 �0
2 − 1

�0
2 − 
2 · �20�

The function G�
� is monotonically increasing in 
 for all
values of �0 with G�0�=0 and G�1�=1. Confirming intuition,
jets placed nearer to the poles contribute more significantly
to the swimming velocity. Placing jets only at the poles,
which expel and draw in fluid with fluxes q, the swimming
velocity �with U=Uẑ� is

U = −
q

2�b2 · �21�

For b=a, we recover the spherical swimming velocity, and as
the body becomes more slender, the swimming velocity in-
creases without bound �for fixed q�. This is the largest veloc-
ity which may be achieved by a jetting prolate ellipsoid in
the direction of its major axis for a given inward/outward

flux, and, as we will show in Sec. IV, is again not the most
efficient.

The swimming velocity of an oblate ellipsoid translating
along the symmetric axis can be obtained by applying to the
above the transformation �c ,�0�→ �ic ,−i�0� and reversing

the definitions of a and b so that �0=b /
a2−b2�0 �see Ref.
46�. In this case, the body swims with velocity

U = −
1

2
�

−1

1



 �0
2 + 1

�0
2 + 
2��
�d
 , �22�

which is again maximized by placing jets at the poles pass-
ing fluid with fluxes q, giving U=−q / �2�a2�. For fixed q,
the swimming velocity decreases without bound as the pre-
sented surface area and hence fluid drag �due to the large
no-slip surface area� increases.

3. Example 3: A prolate spheroid translating
along its minor axis

As a third example, we determine the motion of a prolate
spheroid translating along its minor axis. We consider the
same prolate spheroid as in the previous example and com-
pute the swimming velocity U=Ux̂ when two jets �with
fluxes q� are placed at x= bx̂. The resistance problem
has a tractable solution and representation using the singu-
larity methods described by Chwang and Wu.48 In that work,
it was shown that a prolate spheroid translating along its

minor axis with velocity Ũ= Ũx̂ generates flow and pressure
fields given by

u = Ũx̂ − �B1x̂ − �x 1

R2
−

1

R1
�ẑ − �xrB3r̂

+ ���x� z − c

r2 R1 −
z + c

r2 R2 + B1�	 , �23�

p = 2��
x

r2 z − c

R2
−

z + c

R1
� , �24�

where c=
a2−b2, r=
x2+y2, r̂= �xx̂+yŷ� /r, R1

=
�z+c�2+r2, R2=
�z−c�2+r2,

B1 = log�R2 − �z − c�
R1 − �z + c��, B3 =

1

r2 z + c

R1
−

z − c

R2
� , �25�

and, finally,

� =
2�e2

1 − e2 = Ũe2�e + �3e2 − 1�tanh−1�e��−1, �26�
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with e=c /a as the eccentricity. From the flow and pressure
fields, the stress tensor �̃ may be computed without much
difficulty. Integrating the stress over the body surface results
in the expression

F̃ = 6��CŨx̂ , �27�

where

C =
8a

3
e3�e + �3e2 − 1�tanh−1�e��−1. �28�

We need only determine the fluid stress in the resistance
problem at the jet locations x= bx̂ in order to compute the
velocity in the swimming problem. After some algebra, we
find that �with n̂=  x̂ at the jet locations�

�n̂ · �̃ · n̂��x =  bx̂� = − p + 2��n̂ · E · n̂� �29�

= 
4�e�

a
1 − e2
 2�� 2e�e2 − 2��e�eŨ − �� + �� − 3e2��tanh−1�e��

a
1 − e2�e + �3e2 − 1�tanh−1�e��
	 , �30�

Inserting the above into Eq. �10� and simplifying, the swim-
ming velocity of the jetting prolate ellipsoid is found to be

U = −
q

2�ab
· �31�

4. Example 4: A viscous pinwheel

A sufficiently asymmetric body can be made to rotate by
appropriate placement of the jetting nozzles. The rotational
velocity of a prolate spheroid driven about its minor axis, a
viscous pinwheel, can be determined using Eq. �10�. Con-
sider the same prolate spheroid as described in the previous
example, but with its major axis aligned with the x axis. The
body volume is V�e�=�a3�1−e2�, with e=
a2−b2 /a as the
eccentricity. Pure rotation about the z axis may be driven
with outward flowing jets at x1= �x̄ ,−r�x̄� ,0� and

x2= �−x̄ ,r�x̄� ,0�, with r�x�=
1−e2
a2−x2. In order to main-
tain internal volume conservation, suction jets �inward flow-
ing jets� are placed symmetrically at x3= �x̄ ,r�x̄� ,0� and x4

= �−x̄ ,−r�x̄� ,0� and we write ��x�=q���x ,x1�+��x ,x2�
−��x ,x3�−��x ,x4��. The flow at all four nozzles act with
equal strength to drive the rotation. The corresponding unit

normal vectors are n̂o= �−r��x̄�x̂� ŷ� /
1+r��x̄�2 at the

outward flowing jets and n̂i= �−r��x̄�x̂ ŷ� /
1+r��x̄�2 at
the inward flowing jets.

The torque acting on the body centroid required to rotate

the prolate body about the z axis with angular velocity �̃ �the
resistance problem� is

L̃ =
16���ae�3�1 − e2��̃

3�e − �1 − e2�tanh−1�e��
ẑ �32�

�see Refs. 49 and 50�. During this rotation, the pointwise
fluid stress on the rotating solid �̃ has an analytical expres-
sion, which may be deduced using the singularity method of
Chwang and Wu48 �though it is unwieldy and not included
here�. Assuming that the nozzles are small, only the normal
component of the traction at the nozzle locations are relevant
in setting the rotational velocity in the swimming/jetting
problem �=�ẑ, and so we have

� = −
3�e − �1 − e2�tanh−1�e��

16���ae�3�1 − e2��̃
�
i=1

4

q�n̂ · �̃ · n̂��xi� . �33�

Figure 3�a� shows the rotational velocity of a spheroid with
aspect ratio b /a=1 /2 �e�0.866� as a function of the jet
placement distance from the particle center along the major
axis. Here, � is normalized by the relative flux per body
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FIG. 3. �Color online� �a� Rotational velocity response to two jet pairs positioned symmetrically at x̄, for a body of aspect ratio b /a=
1−e2=1 /2. The
rotational velocity is normalized by the relative flux per body volume. �b� Normalized maximal rotational velocity as a function of eccentricity e �with
V�e�=�a3�1−e2�� and corresponding nozzle placement position �inset�.
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volume. The result confirms intuition: there is no rotation
when the jets are placed symmetrically along either major or
minor axis, and hence there exists an optimal jet placement
for inducing a body rotation. Figure 3�b� shows the maximal
angular speed ��, which may be obtained by appropriate jet
placement for bodies of eccentricity e, along with the opti-
mal jet placement location x̄� �inset�. As the body becomes
spherical, the optimal jet placement limits to x̄� /a=1 /
2,
though the rotation response becomes increasingly small. As
the body becomes more elongated, the optimal jet placement
moves closer to the poles, where the resulting forces can
produce the largest torque on the body; along with the van-
ishing torque on a rotating slender body as e→1, the maxi-
mal rotational velocity increases without bound.

C. Hydrodynamic efficiency

We have shown that the velocities of a jetting body are
dependent only on the normal tractions in corresponding re-
sistance problems, through Eq. �10�. The issue of hydrody-
namic efficiency is rather more involved. We define here an
efficiency used in many other works in low Reynolds num-
ber locomotion and consider for simplicity only translational
motion in what follows �see Ref. 3�. The efficiency is defined
as a ratio comparing the rate of mechanical work done onto
the fluid in the resistance problem to that done in the swim-
ming problem when the bodies are moving at the same ve-
locity U,

E =
U · F

��Du · �− � · n̂�dS
· �34�

The difficulty in computing the efficiency, compared to sim-
ply computing the swimming velocity, is seen plainly in Eq.
�34�. Instead of integrating the fluid velocity in the swim-
ming problem against the stress in the resistance problem, as
in Eq. �8�, here we must integrate against the stress in the
swimming problem which depends intricately on the precise
form of the jetting flow profile. A theoretical bound on the
above measure of E=75% was found by Stone and Samuel9

when the surface deformations act tangentially to the surface
and the body is spherical. Since E is a mechanical and not a
thermodynamic efficiency, motion with E�1 is theoretically
possible, in particular when the no-slip condition does not
hold everywhere on the body surface and there are sources or
sinks of fluid or surface material. For example, Leshansky
et al.17 showed that a slender treadmilling spheroidal body
can locomote with arbitrarily large efficiency by continu-
ously introducing and removing surface material at the poles.

Since the body is force-free and torque-free in the swim-
ming problem, the efficiency still requires only knowledge of
the force component normal to the porous surfaces, and we
have

E =
U · F

�i=1
m ��D

�
i ��x��− n̂ · � · n̂�dS

· �35�

As expected, the work done by the swimmer is the work
done by the jets against the normal stresses in the fluid. Note
that Eq. �35� is only the external efficiency and it does not

include, for example, the internal work done to create the
jetting flows in the first place. In the remainder of the paper
we focus on axisymmetric spheroids, for which the swim-
ming velocity and efficiency may be determined analytically,
and we maximize the swimming efficiency through numeri-
cal optimization.

III. SPHERICAL BODY SHAPE

A. General solution

In Sec. II, we showed that the velocity of a spherical
body for a given inward/outward flux q is maximized by
placing two small jets at the poles along the axis of locomo-
tion. We now present an analysis of the dynamics and effi-
ciency of a spherical body of radius a with an arbitrary axi-
symmetric fluid-jetting profile. We consider only jetting
profiles which are fore/aft asymmetric and therefore volume
conserving. We also assume the jets, and the resulting flow,
to be axisymmetric. Swimming spheres with arbitrary veloc-
ity boundary conditions have been studied in a more general
setting by Lighthill51 and Blake.52 Magar and Pedley53 and
Ishikawa et al.54 have recently considered the behavior of
swimming spheres with only tangential surface distortions,
so-called squirmers, also using a similar analysis to that pre-
sented below.

We set x1= ẑ, x2=−ẑ, S�
1=S�

2=S�, and q=−q1=q2 as be-
fore. Hence, the spherical body translates along the ẑ direc-
tion and the Stokes equations may be solved in axisymmetric
spherical coordinates �r ,��, with r� �a ,�� as the radial dis-
tance and �� �0,�� as the polar angle. For notational con-
venience, we again define 
=cos���. The porous surfaces are
taken to have spherical cap heights of lengths �a, as illus-
trated in Fig. 4, with �� �0,1�. Hence, S�=2�a2� and the
polar angle illustrated in Fig. 4 has 
0=cos��0�=1−�.

In order to determine the efficiency E we will solve the
Stokes equations Eqs. �1� and �2� with the general boundary
conditions Eqs. �3� and �4�. Exploiting the linearity of the
Stokes equations, we decompose the problem into two parts,
setting �=��+��. The first problem �for ��� corresponds to
axisymmetric rigid body motion in the swimming direction,

aθ0

ẑ

 a

FIG. 4. �Color online� A fluid-jetting sphere of radius a. The porous surfaces
have equivalent spherical cap heights of lengths �a, with �� �0,1�. The
surface area of each porous cap is S�=2�a2� and 
0=cos��0�=1−�.
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while the second problem �for ��� corresponds to the flow
generated by a jetting sphere, which is fixed in space cen-
tered at the origin. The separation of the problem into a rigid
body motion and a jetting flow component is the same sepa-
ration used to determine the swimming velocity in Sec. II.

The first problem has a well-known solution. The
stream-function for flow due to a solid sphere translating
through a quiescent fluid with velocity Uẑ is

�� =
U

4
r2�1 − 
2��a

r
�3

− 3a

r
�� , �36�

with associated pressure and normal strain-rate tensor com-
ponent �see Ref. 46�

p� =
3

2a
�U
, r̂ · E · r̂ = Err� = 0. �37�

In order to solve the second problem for ��, we write the
fluid velocity in a fixed spherical coordinate system as u
=urr̂+u�ê� and define an axisymmetric stream-function,
such that

ur = −
1

r2 sin���
���

��
, u� =

1

r sin���
���

�r
· �38�

The use of the stream-function ensures that the incompress-
ibility condition �Eq. �2�� is automatically satisfied, and Eq.
�1� becomes

D2�D2��� = 0, �39�

where

D2 =
�2

�r2 +
1 − 
2

r2

�2

�
2 · �40�

The boundary conditions on the body surface are the jetting
profile in the direction normal to the surface and zero tan-
gential surface velocity

ur�r = a,�� = ��
�, u��r = a,�� = 0. �41�

The general solution to Eq. �39�, for flows which decay in
the far-field and have bounded tangential velocities at the
poles, may be written as

�� = �
n=2

� � An

rn−1 +
Bn

rn−3�Gn�
� , �42�

with Gn�
� as the nth Gegenbauer function of the first
kind.46,55

The Gegenbauer functions are related to the Legendre
polynomials Pn�
� via

Gn�
� =
Pn−2�
� − Pn�
�

2n − 1
�43�

for n�2. Under this representation, the radial and tangential
components of velocity are written as

ur = − �
n=2

�  An

rn+1 +
Bn

rn−1�Pn−1�
� , �44�

u� = − �
n=2

� ��n − 1�
An

rn+1 + �n − 3�
Bn

rn−1� Gn�
�

1 − 
2

· �45�

We denote the inner product of the radial velocity boundary
condition on the body surface and the nth Legendre polyno-
mial by cn

cn = �ur,Pn� = �
−1

1

��
�Pn�
�d
 . �46�

Thus, by successive inner products of Eqs. �44� and �45�, we
find

An =
�2n − 1��n − 3�

4
an+1cn−1,

�47�

Bn = −
�2n − 1��n − 1�

4
an−1cn−1.

The corresponding pressure field, which may be found by
integrating Eq. �1�, is

p = − ��
n=2

�
2�2n − 3�

n

Bn

an Pn−1�
� , �48�

and the symmetric rate-of-strain tensor E= 1
2 ��u+�uT� has

an r̂r̂ component

Err = r̂ · E · r̂ = �rur�r=a

= �
n=2

� ��n + 1�
An

an+2 + �n − 1�
Bn

an�Pn−1�
� . �49�

B. Efficiency and optimization of an entirely
porous sphere

The swimming efficiency E from Eq. �34� may now be
determined by combining the two problems, �=��+��. The
rate of mechanical work performed on the fluid in the full
swimming problem is

� = �
�D

u · �− � · n̂�dS

= − 2�a2�
−1

1

��
��− �p + p�� + 2�Err�d
 , �50�

where we have used that the swimming body imparts no
force or torque onto the fluid. Inserting the expressions from
above, we have

− �p + p�� + 2�Err = ��
n=2

� �2�n + 1�
An

an+2 + 2n + 2 −
6

n
�Bn

an�
�Pn−1�
� −

3

2a
�U
 , �51�

and after further simplification and a shift in the summation,
we find
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� = �a��
n=1

�

�2n + 1���2n + 1� +
3

n + 1
�cn

2

+ 3��aU�
−1

1


��
�d
 . �52�

The swimming velocity, from Eq. �10�, and related towing
force are

U = −
1

4�a2�
�D

��x��ẑ · n̂�x��dS = −
1

2
�

−1

1


��
�d
 , �53�

F = 6��aU = − 3��a�
−1

1


��
�d
 . �54�

The sphere moves with a nonzero velocity if and only if the
jetting profile ��
� contains the first Legendre polynomial
mode. Moreover, this is the only component of the jetting
velocity that contributes to the swimming speed. The hydro-
dynamic efficiency, on the other hand, does depend on the
full nature of the jetting profile ��
�, and we find

E =
��−1

1 
��
�d
�2

8��
−1

1


��
�d
�2

+
2

3�
n=2

�

�2n + 1�2n + 1 +
3

n + 1
���

−1

1

Pn�
���
�d
�2
· �55�

As a simple example consider an entirely porous sphere ��
=1�, which is propelled with the jetting profile

��
� =
q

�a2 P1�
� =
q

�a2
 . �56�

The jetting profile satisfies the flux constraints

�
�D

��x�dS = 2�a2�
−1

1

��
�d
 = 0,

�57�

�
�D�

1
��x�dS = q, �

�D�
2

��x�dS = − q .

Streamlines generated by the jetting body held fixed at the
origin are shown in Fig. 5�a� �for q�0�, and in Fig. 5�b�
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FIG. 5. The optimal jetting sphere �cross section�, with
��
�= P1�
� /S�. �a� Streamlines for a jetting sphere
which is fixed at the origin u�r=a ,��=��
�n̂. �b�
Streamlines for a swimming sphere u�r=a ,��=Uẑ
+��
�n̂. �c� Distribution of surface fluid velocity for the
fixed body as in �a�. �d� Distribution of surface velocity
for the swimming body as in �b�.
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when the body is swimming freely through the fluid. The
dipolar fluid structure in the latter is evident. The distribution
of fluid velocities at the body surface in each case are shown
in Figs. 5�c� and 5�d�. The corresponding swimming velocity
and hydrodynamic efficiency are

U = −
q

3�a2 , E =
1

8
= 12.5%· �58�

The swimming speed is smaller than the largest possible
swimming speed as discussed in Sec. II by a factor of 2/3.
However, it is simple to see that this jetting profile is in fact
the most hydrodynamically efficient jetting profile possible.
Every component of ��
� which has a nonzero inner product
with the nth Legendre polynomial, for n�2, contributes
positively to the denominator of E in Eq. �55�, without in-
creasing the swimming velocity. Hence, the optimal surface
jet pattern will only have the first Legendre polynomial com-
ponent. Moreover, the decrease in the efficiency with the
inclusion of any other Legendre modes in the jetting profile
is dramatic, as can be seen by the form of Eq. �55�. The
higher Legendre modes do not contribute to the swimming
velocity, but introduce large wavenumber variations in the
fluid flow, corresponding to an increased viscous dissipation
of energy into the fluid. As an example, streamlines associ-
ated with the third Legendre mode are shown in Fig. 6, from
which the corresponding increase in viscous dissipation may
be intuited.

In fact, the flow field generated by a swimming sphere
with the optimal jetting flow described above may be ex-
pressed by placing a fundamental singularity at the body
center, x0. Specifically, placing a �potential� source doublet
there with strength and direction p=−qa / �3��ẑ gives

u�x� = � 1

�x − x0�3
− 3

�x − x0��x − x0�T

�x − x0�5 �p �59�

�see Ref. 46�. Upon insertion of p and using �x−x0�=a, we
see that the rightmost term accounts for the jetting profile
�q
 / ��a2�ẑ� and the leftmost term accounts for the rigid
body motion �−q / �3�a2�ẑ, matching Eq. �58��. In this one
particular case, the swimming velocity may be determined
by mere inspection. Given that the fundamental singularity
above corresponds to a potential flow solution, we have that

the optimal jetting sphere generates no vorticity in the fluid
bulk.

C. Efficiency and optimization of a partially
porous sphere

Organisms or man-made swimming devices utilizing
noninertial jet propulsion might be constrained to draw in
and expel fluid from only some parts of the surface. Here we
consider the efficiency and optimal jetting profiles of spheri-
cal bodies with ��1 �see Fig. 4�.

The efficiency derived in Sec. III B, Eq. �55�, is general
and applies to such a partially porous body. We first note that
the swimming efficiency is zero if the surface fluid velocity
is discontinuous in 
. Physically, this corresponds to solu-
tions with nonintegrable stress singularities at the edge of the
pore �the Legendre modes needed to represent ��
� do not
decay at a sufficient rate to give a finite value of the effi-
ciency�. A discontinuous jetting profile is considered in Ap-
pendix A. The Legendre modes decay as cn�n−3/2 and, as
expected the sum in the denominator of Eq. �55�, diverges.

To see the general scaling of the efficiency with the po-
rous surface area, consider the following form for the jetting
profile which has ��
�=0 at the porous surface edges �so that
the surface fluid velocity is continuous on 
=cos���
� �−1,1��:

��
� =
q

�a2�
��1 −

�1 − 
�
�

���
��1−�,1��

− �1 −
�1 + 
�

�
���
��−1,−1+���	 , �60�

where � is the indicator function, which would correspond to
the quadratic profile of pressure driven flow through a single
open pore as �→0 �see Ref. 46�. The corresponding swim-
ming velocity is

U = −
1

2
�

−1

1


��
�d
 =
− �3 − ��q

6�a2 , �61�

and we have

cn =
q�1 − �− 1�n�

�a2�
�

1−�

1 �1 −
�1 − 
�

�
�Pn�
�d
 . �62�

The resulting efficiency E as a function of � is shown in Fig.
7�a� as a solid line. The efficiency is monotonically increas-
ing with the size of the porous cap height and limits to the
optimal value for a spherical jetting body of E=1 /8
=12.5% as the body becomes entirely porous ��→1�. Even
for �=0.2 ��0�36°�, the body achieves efficiencies on the
same order as those mechanisms employed by biological or-
ganisms E�3%.

The optimal jetting profile cannot be determined as di-
rectly as in the entirely porous case, which was determined
by simple inspection of Eq. �55�. Instead, we seek the opti-
mal jetting profile numerically by determining the values of
��
� at a finite number of points 
i �i=1,1 , . . . ,M� which
yield the greatest efficiency E. Specifically, for a jetting pro-
file given at points 
i corresponding to the M-point Gaussian
quadrature nodes, E is found using Gaussian quadrature to

�4 �2 0 2 4�4

�2

0

2

4

r/a

z

a

FIG. 6. Streamlines for flow generated by jetting profile ��
�� P3�
�.
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compute each integral and keeping only the first N terms in
the summation in the denominator of Eq. �55�. The profile is
subject to the constraints of Eq. �57� and ��
�=0 for �
�
�1−�. The optimal profile is selected using sequential qua-
dratic programming �a quasi-Newton line search method
built into the MATLAB optimization toolbox�. The number of
discretization nodes M and summation terms N are increased
until there is no discernible variation in the result.

The optimal jetting profiles so obtained, denoted by
���
�, are shown in Figs. 7�b�–7�d�, and correspond to the
efficiencies shown as a dashed line in Fig. 7�a�. The entirely
porous case �=1 returns the expected result, a profile which
scales linearly with 
. Under the scaling indicated by the
axes in Fig. 7�d�, it appears that the optimal jetting distribu-
tion through small pores at the poles ��→0� is limiting to the

form ��
�=3q / �4�a2��
1− �1−
� /�, which is shown as a
dashed line. The maximal efficiency shown in Fig. 7�a� does
not deviate dramatically from the example of previous
consideration.

IV. PROLATE BODY SHAPE

The efficiency of swimming at low Reynolds number is
known to depend significantly on body shape. The drag on a
solid body of a given volume is minimized when the shape is
approximately a prolate spheroid with aspect ratio �1 /2, but
with conical end points.56,57 Swimming organisms can enjoy
a decreased fluid drag by selecting a similarly streamlined

shape. However, in a departure from the more common
shape-drag relationship, the propulsive mechanism of a
fluid-jetting body is such that the efficiency decreases as the
body becomes more prolate, as we shall show. We begin by
solving for the efficiency exactly for one particular jetting
profile, then move on to consider a more general framework
for studying the fluid-jetting dynamics and efficiency. Fi-
nally, as in the case of a spherical body shape, we will de-
termine numerically the optimal jetting profile for both en-
tirely and partially porous jetting surfaces.

A. An exact solution

We proceed just as in the spherical case, but the Stokes
equations are now solved in prolate spheroidal coordinates.46

The appropriate coordinate system is given by the conformal
mapping

z + ir = c cosh�� + i�� , �63�

and we set

� = cosh���, 
 = cos��� , �64�

for clarity. The surface defined by �=�0�1 is a confocal
spheroid with foci cẑ and we have �� �1,��, 
� �−1,1�.
For a spheroid with major and minor axis lengths 2a and 2b,
respectively, we have �0=a /c=a /
a2−b2, the inverse eccen-
tricity as in Sec. II. The Stokes stream-function satisfies the
biharmonic equation
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FIG. 7. �Color online� �a� Efficiency as a function of � for the jetting profile ��
�=q /�a2���1− �1−
� /����
��1−�,1��− �1− �1+
� /����
��−1,−1+���� as a solid line
and the numerically determined optimal efficiency as a dashed line. �b� Optimal jetting profiles. Relative distance from the body indicates jetting flow velocity
at the surface. Individual profiles are scaled for presentation purposes. �c� Optimal jetting profiles ���
� as a function of 
 for �=0.5, �=0.2, and �=0.1. �d�
Same as in �c�, but scaled. The optimal flow profile through an increasingly small porous surface area appears to limit to the noted function and is shown as
a dashed line.
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D4� = 0, �65�

where

D2 =
1

c2��2 − 
2�
���2 − 1���� + �1 − 
2��

� . �66�

Writing the velocity in the new coordinates u=u��̂+u
�̂,
where

�̂ =
�
1 − 
2


�2 − 
2
r̂ +



�2 − 1

�2 − 
2

ẑ , �67�

�̂ = −


�2 − 1

�2 − 
2

r̂ +
�
1 − 
2


�2 − 
2
ẑ , �68�

we set

u� =
1

c2
��2 − 
2���2 − 1�
��

�

,

�69�

u
 = −
1

c2
��2 − 
2��1 − 
2�
��

��
,

so that the incompressibility condition is automatically satis-
fied. Also of use are the relations ��= ��2−1�1/2�� and
��=−�1−
2�1/2�
. The surface area element is dS=J�
�d
d�,

with J�
�=c2
��0
2−1���0

2−
2�=b
a2− �a2−b2�
2.
An exact solution can be derived for the particular jet-

ting profile

��
� =
q

�




J�
�
=

q

�




c2
��0
2 − 1���0

2 − 
2�
, �70�

which limits to the linear profile as studied in the spherical
case, Eq. �56�, as b→a. Once again we split the problem into
two parts �=��+��. The first problem for �� is again that of
rigid body motion along the axis of symmetry with swim-
ming velocity Uẑ. Here, the solution is also known,46 and we
have

�� = −
Uc2

2
�1 − 
2���2 − 1�

�

��0
2 + 1�/��0

2 − 1�log� � + 1

� − 1
� −

2�

�2 − 1

��0
2 + 1�/��0

2 − 1�log� �0 + 1

�0 − 1
� −

2�0

�0
2 − 1

· �71�

The corresponding pressure field may be found by integrat-
ing Eq. �1� in the appropriate coordinates, leading to

�p

��
=

�

c��2 − 1�
�
�D2�� , �72�

�p

�

= −

�

c�1 − 
2�
���D2�� , �73�

yielding, upon insertion of ��,

p���,
� =
2�U


c��2 − 
2����0
2 + 1�coth−1��0� − �0�

· �74�

The �̂�̂ component of the symmetric rate-of-strain tensor is

E��� = �̂ · E� · �̂ =

�2 − 1

c��2 − 
2�1/2
�u�

��
−



1 − 
2u


c��2 − 
2�3/2 · �75�

Inserting Eq. �69� and simplifying, we find on the surface �
=�0 that E��� ��0 ,
�=0. The pressure above corresponds to the
stress used in the example of a prolate spheroid translating
along its axis of symmetry in Sec. II. As shown in that ex-
ample, the stress on the body during rigid body motion is
sufficient information for determining the swimming speed
in the full swimming problem.

From Eq. �10�, we have as in the example of Sec. II

�replacing U with Ũ in p� and E��� �,

ŨU =
− 1

6��R
�

�D

��x��− p� + 2�E��� �dS

=
− c2

3�R
�

−1

1

���
��− p����=�0

��0

2 − 1���0
2 − 
2�d
 , �76�

leading to the general expression

U = −
1

2
�

−1

1

G�
�����d
, G�
� = 

 �0
2 − 1

�0
2 − 
2 . �77�

As b→a, we recover G�
�=
 as found for the spherical
body. Inserting the jetting profile from Eq. �70�, we finally
obtain

U = −
q�0

2��0 coth−1��0� − 1�
a2�

· �78�

The velocity limits to that of the spherical body as �0→�
and increases without bound �for fixed q� as the body be-
comes infinitely slender.

In order to determine the efficiency, we must now solve
the second problem �for ���, that of a jetting spheroid fixed
in space at the origin,

D4�� = 0, �79�

�
����0,
� = J�
���
�, ������0,
� = 0, ���� → �,
� = 0.

�80�

The form of the velocities on the body surface suggests the
following ansatz for the stream-function:

�� = �1 − 
2�g��� , �81�

and after some manipulations we arrive at the solution

�� =
q

2�
�1 − 
2�

�� + ��2 − 1�coth−1��� − 2��0 coth−1��0��
��0

2 + 1�coth−1��0� − �0
·

�82�

The corresponding surface pressure is, upon integration of
Eqs. �72� and �73�,
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p��0,
� =
2q
���0 coth−1��0� − 1�

c3���0
2 − 
2����0

2 + 1�coth−1��0� − �0�
, �83�

and the normal component of the traction is �from Eq. �75��

E�� =
q
�0�1 + 
2 − 2�0

2�
c3���0

2 − 
2�2��0
2 − 1�

· �84�

We now have the required information for determining the
hydrodynamic efficiency in the full swimming problem. The
work done on the fluid by the swimming body is

� = − 2��
−1

1

��
��− p + 2�E�� − p��J�
�d
 �85�

=−
4�q2

c3�
�

−1

1 
�0�1 + 
2 − 2�0
2�

��0
2 − 
2�2��0

2 − 1�

d


=
4�q2

c3�
� �0 − ��0

2 + 1�coth−1��0�
�0

2 − 1
� . �86�

Meanwhile, using F̃=6��RŨ with R as defined in Eq. �19�,
we find the efficiency

E =
2��0

2 − 1���0 coth−1��0� − 1�2

��0 − ��0
2 + 1�coth−1��0��2 · �87�

The efficiency is found to decrease monotonically to zero as
the body becomes more slender �see Fig. 9�a� below as a
dashed line�. In the spherical limit �as b→a�, we recover E
→12.5% as expected.

As previously noted, it is unusual that a moving body’s
hydrodynamic efficiency decreases monotonically with its
slenderness. The reader may have already guessed this result,
however, given the nature of the propulsive mechanism. The
jetting flow through the body is constrained to act locally in
the direction normal to the body surface. As the body be-
comes more prolate in shape, the nozzles on the surface be-
come oriented in a direction more perpendicular to the direc-
tion of motion and become much less useful for propulsion.
From this observation, it is thus expected that the efficiency
will increase as the body becomes more oblate in shape, even
though the surface area presented to the fluid is increasing in
that case. This will be the subject under consideration in Sec.
V. First, though, we develop a general framework for study-
ing prolate bodies with arbitrary jetting profiles and deter-
mine numerically the optimal actuation for both entirely and
partially porous body surfaces.

B. Efficiency and optimization of an entirely
porous body

The dynamics and efficiency of a prolate jetting body for
an arbitrary jetting profile, and for partially porous surfaces,
requires a different approach to solving the jetting problem
for ��. The general solution to Eqs. �79� and �80� may be
expressed using spheroidal harmonic functions Rn and Sn,
themselves expressed in terms of the Legendre polynomials
of the first and second kind, Pn and Qn, respectively �see Ref.
58�,

�� = A1R1���R1�
� + �
n�1

�Bn + B̃n��2 + 
2��Rn�
�Sn��� ,

�88�

where

Rn�x� = �1 − x2�Pn��x� = − nxPn�x� + nPn−1�x� , �89�

Sn�x� = �1 − x2�Qn��x� = − nxQn�x� + nQn−1�x� , �90�

Qn�x� = Pn�x��
x

� d�

Pn���2��2 − 1�
· �91�

As discussed in more detail in Appendix B, the boundary

conditions are used to determine the coefficients Bn and B̃n.
Subsequently, the pressure is found through integration of
Eqs. �72� and �73�, and for arbitrary ��
� we find that

E����0,
� = � �0�1 + 
2 − 2�0
2�

c��0
2 − 
2�3/2��0

2 − 1�1/2���
� . �92�

Meanwhile, the solution to the rigid body problem for ��
�Eq. �71�� does not depend on the jetting profile outside of
the dependence of U on ��
�, and the results of Sec. III carry
over here. For a given jetting profile ��
�, the first N coeffi-

cients Bn and B̃n are determined numerically and the effi-
ciency is then found using a Gaussian quadrature �see Ap-
pendix B�.

Given the framework described above, the optimal jet-
ting profile was selected by a similar sequential quadratic
programming quasi-Newton line search method as the one
used for optimizing the spherical swimmer. The optimal pro-
file ���
� so found �normalized by the geometric scaling
J�
� /q� is shown for a body of aspect ratio b /a=0.3 in Fig.
8�a�, along with the optimal profile for the spherical case
�b /a=1�. As the body becomes more slender in shape, the
only jets which contribute appreciably to the swimming ve-
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Ĵ
(ζ
)

q
φ
∗ (
ζ
)

J
(ζ
)

q
φ
∗ (
ζ
)

FIG. 8. �Color online� �a� The optimal geometry-
normalized jetting profiles for a sphere �dashed line�
and a prolate spheroidal body �solid line�. �b� The same
as �a� for a sphere �dashed line� and an oblate spheroi-
dal body �solid line�.

081902-12 S. E. Spagnolie and E. Lauga Phys. Fluids 22, 081902 �2010�



locity, via Eq. �77�, are those near the fore and aft poles.
However, along with increased jetting velocities near the
poles comes dramatically increasing viscous stresses there,
and hence more work is done on the fluid. Since J�
�
�e
1−
2 for e=b /a	1, the optimal profile shown in Fig.
8�a� requires a much more significant placement of jetting
nozzles near the fore and aft poles, with a slight reduction of
flow strength at 
= 1.

The optimal efficiencies for a range of aspect ratios are
shown in Fig. 9�a� as filled circles, along with the exact
efficiency calculated for the particular jetting profile ��
�
=q
 / ��J�
�� from Eq. �87� as a dashed line. �The other plot-
ted values correspond to partially porous bodies, as discussed
in Sec. IV C.� While the optimal profile differs from that as
studied analytically in the previous section, the efficiency
increases only very slightly for each aspect ratio by approxi-
mately 10−3. The integrated form of the efficiency measure
appears to be insensitive to the precise form of the jetting
flow profile for prolate jetting bodies, provided the general
behavior of approximate geometry-normalized linear growth
in 
.

C. Efficiency and optimization of a partially
porous body

Just as in the spherical case, we can ask about the opti-
mal jetting profile and maximal efficiency when the swim-
ming body’s surface is only partially porous. Here we as-
sume that the body is porous near the fore and aft poles in
the regions �
��1−� �or �z�� �1−��a� and satisfies a no-slip
condition along �
��1−�. The parameter � is the analog of
the spherical cap height parameter from Fig. 4 and the ver-
tical measure of the porous cap height is again �a. The op-
timization is performed numerically as before, but including
the constraint that ��
�=0 for �
��1−�.

The maximum efficiency E� is shown for a range of
aspect ratios b /a and dimensionless cap lengths � in Figs.
9�a� and 9�b�. For a given �, the efficiency decreases as the
body becomes more slender for the reasons already dis-
cussed. For a given aspect ratio, the maximal efficiency must
not increase as the body becomes less porous, since the op-
timal profile for a more porous body could have ��
�=0
wherever necessary. The efficiency becomes less sensitive to
the porous surface size as the body becomes more prolate in
shape, even though the jetting profile changes rather signifi-
cantly as � is decreased. Compared to the efficiencies of
many other propulsive mechanisms at low Reynolds number,

including those exploited by nature, the fluid-jetting body
compares favorably for all but the most slender of bodies, or
the smallest of porous cap lengths.

The optimal jetting profiles are illustrated for a body
with b /a=0.2 for �=1, �=0.5, and �=0.2 in Fig. 10�a�. For
each value of �, the distance of the curve from the body
surface corresponds to the jetting flow speed there. �The dis-
tance is scaled differently in each case for clarity of presen-
tation.� The profile varies slowly in 
 in the fully porous
case, and much more dramatically in the �=0.2 case. How-
ever, all three profiles correspond very nearly to E�1% as
indicated in Fig. 9�a�.

V. OBLATE BODY SHAPE

Generally, efficient swimming in viscous fluids requires
a streamlined body shape and drag anisotropy is frequently
utilized for propulsion. We have seen in Sec. IV that the
hydrodynamic efficiency of a jetting body decreases as the
body shape becomes more prolate, due to the reduction in the
presented surface area in the direction of motion. The jet
nozzles becomes less aligned with the swimming direction
and only the nozzles near the poles may be used for propul-
sion, adding significantly to the hydrodynamic work done on
the fluid in the process. We now explore bodies in the shape
of oblate spheroids and determine the consequences on
swimming efficiency. We proceed just as in Sec. IV, benefit-
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ing from a simple correspondence between the prolate sphe-
roidal and oblate spheroidal coordinate systems.

A. An exact solution

The results from Sec. IV may be used to determine the
swimming velocity and efficiency for an oblate spheroid
which is moving along the direction of its symmetric axis.
The prolate spheroidal coordinate system is transformed to
an oblate spheroidal coordinate system by replacing c by ic,

� by −i� �so that �0=b /c=b /
a2−b2�, and reversing the
roles of a and b so that a�b in both cases. The surface

area element becomes dS= Ĵ�
�d
d�, with Ĵ�
�
=c2
��0

2+1���0
2+
2�=a
b2+ �a2−b2�
2.

The exact solution in the prolate case is simply con-
verted to the oblate spherical coordinate system and we as-

sume the analogous jetting profile ��
�=q
 / ��Ĵ�
��. The
swimming velocity is then

U =
− q�1 − �0 cot−1��0��

c2�
· �93�

As the body becomes spherical �b→a ,�0→��, the swim-
ming speed limits to the expected value U=−q / �3�a2�. If
instead we consider the limiting case of a flat plate moving
along its axis of symmetry �b→0,�0→0�, we find that the
swimming speed becomes U=−q / ��a2�. This result may not
be surprising, given that as �0→0 the jetting profile becomes
��
�=q / ��a2�H�
�, where H�
� is the Heaviside function
with a jump at 
=0. The flow speed is constant everywhere
on the body surface outside the disk edge 
=0 and the swim-
ming speed is precisely that opposing this jetting flow speed.

The efficiency of an oblate spheroidal jetting body with
this jetting profile becomes, transforming Eq. �87�,

E =
2��0

2 + 1���0 cot−1��0� − 1�2

���0
2 − 1�cot−1��0� − �0�2 · �94�

In the spherical limit, the efficiency becomes E=12.5% as
expected, and as the body becomes a flat plate, we find

lim
�0→0

E =
8

�2 � 81%. �95�

Even without further optimization of the jetting velocity pro-
file, the jetting body outperforms such ubiquitous propulsive
mechanisms as flagellar undulations by an order of magni-
tude in this measure.

B. Efficiency and optimization of an oblate
jetting body

The jetting profile is now optimized numerically as in
Sec. IV. Figure 11�a� shows the maximal efficiency found as
a function of the aspect ratio a /b for an entirely porous body
��=1�, along with the efficiency from the exact values from
the previous section for the particular jetting profile consid-
ered there �as a dashed line�. Unlike for prolate bodies, here
there is a dramatic increase in the efficiency for very oblate
bodies upon optimization.

The profile used to find an exact solution in Sec. IV
limits to a Heaviside function as the body becomes a flat
disk. A flat disk moves through the fluid at precisely the
same rate but in the opposite direction as the jetting flow, and
does not disturb the surrounding fluid. In this limiting case
we find E=�. However, since an oblate ellipsoid has a con-
tinuously varying surface normal at its edges, local variation
in fluid jetting there leads to high wavenumber dissipation
and the efficiency of an oblate body of arbitrarily small
thickness is in fact bounded �the E=� limit is a singular one
from the space of oblate ellipsoids�. We theorize, then, that
the optimal jetting profile for a body of finite thickness
should have a tapered magnitude near the curve 
=0. This
suspicion is confirmed numerically, as shown in Fig. 8�b� for
a jetting body with aspect ratio a /b=8. Outside a region near


=0, the optimal profile �normalized by Ĵ�
� /q� is approxi-
mately linear in 
.

We find that the numerically determined optimal jetting
profiles for increasingly oblate bodies fall increasingly close
to the form

��
� �
q
4/3

�6�/7�Ĵ�
�
· �96�

We may insert Eq. �96� into the framework developed above
and determine the corresponding swimming efficiency for
any range of aspect ratios. The result is shown in Fig. 12.
The efficiency corresponding to the above jetting profile is
significantly larger than that of the previously considered
analytical case, appearing to slowly limit as the body be-
comes a flat plate to a value of E�162%, which is well
above 1. This value is also confirmed by our optimization
results. For oblate-shaped bodies, the swimming efficiency is
therefore quite sensitive to the �geometry-normalized� form
of the jetting profile. Presumably, a plate with finite thickness
�i.e., a cylinder with very small height relative to its radius�
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can have E�162%. For such a body, the normal vector is
aligned with the direction of motion on the entirety of its top
and bottom surfaces, just as in the flat-plate limit and unlike
for an oblate spheroid of finite thickness.

Finally, the partially porous case is considered for oblate
spheroidal bodies. The maximal efficiencies are shown in
Figs. 11�a� and 11�b� for a range of aspect ratios a /b and cap
distances � �where the surface is porous again on �
��1−�,
or �z�� �1−��b�. The optimal profiles are illustrated in Fig.
10�c� for �=1 �entirely porous� and �=0.5. As in the previ-
ous considerations, the efficiency can only decrease with de-
creasing �. However, for a given porous surface area, we find
that the efficiency does not vary dramatically as the body
becomes more oblate. When the entire surface is porous, we
have already seen that tapering the jet strength near 
=0 can
have a sizable impact on the swimming efficiency. If the
body is only partially porous, the jetting profile near the
edges is already zero and the primary consequence of in-
creasing the oblate aspect ratio must be a variation in the
work done in the resistance problem. Since the drag on an
oblate spheroidal body changes very little with the body as-
pect ratio, the slowly varying efficiency profiles might not be
surprising.

VI. DISCUSSION

A. Summary of our results

In this paper, we have shown that a body can swim with
remarkable efficiency by drawing in and expelling fluid at
zero Reynolds number using noninertial jet propulsion. Op-
timization of the jetting velocity profile at the surface yielded
�external� swimming efficiencies of E=12.5% for a fully po-
rous spherical body, and as much as E�162% as the body
becomes very oblate in shape. In comparison to other com-
mon mechanisms utilized at low Reynolds numbers such as
flagellar undulations, noninertial jet propulsion thus presents
an improvement of two orders of magnitude.6,7 In other
words, for a given distance traveled, an optimized jetting

body does much less work on the fluid external to its surface
than most other means of locomotion in highly viscous
fluids.

B. A locomotion mechanism
for all Reynolds numbers

An interesting aspect of jet propulsion, unlike such
mechanisms as an undulating flagellum, is that a fluid-jetting
body can self-propel at all Reynolds numbers, and it does so
by exploiting distinct physical regimes. For large Reynolds
numbers, the motion of bodies generated by the expulsion of
fluid jets has generated a vast literature, both in the explora-
tion of jet propulsion in nature and for engineering purposes
�see, for example, Refs. 38 and 40–44�. Unlike at zero Rey-
nolds number, where the swimming efficiency is independent
of the fluid flux q, greater thrust and efficiency may be
achieved at higher Reynolds numbers by tuning properly the
vortex ring formation in a pulsatile jetting locomotion.44 At
low Reynolds numbers, the noninertial jet propulsion utilizes
the generation of viscous stresses in the surrounding fluid for
propulsion, while at higher Reynolds numbers, the mecha-
nism shifts to the transmission of momentum into the fluid
opposite the body motion. In contrast, the locomotion of a
rotating helix, for example, while effective in a Stokesian
realm, is all but useless at higher Reynolds numbers.

C. The locomotion of Synechococcus

A strain of cyanobacteria, Synechococcus, swims in
fluid, but does so without the use of flagella.9,35–37 In fact,
their motility mechanism is still an open problem in biophys-
ics. Stone and Samuel9 proposed a model where Synechoc-
occus was assumed to locomote by compressive surface dis-
tortions, i.e., the passage of traveling waves, tangentially
along the body surface. Here we have shown that another
mechanism of motility, one which includes a surface flow
which acts in the direction normal to the body, can also pro-
vide an efficient locomotion. The motility of slime-extruding
organisms such as cyanobacteria and myxobacteria �see Fig.
1� appears experimentally to depend significantly on the non-
Newtonian rheology of the extruded slime and the presence
of a substrate. However, Synechococcus is known to swim
absent the presence of a substrate without changing shape
and without any observable external organelles.

Given the recent observations of porous fluid extrusion
in the biological community,29–34 the work presented here
might suggest an alternative motility mechanism for Syn-
echococcus, that of noninertial jet propulsion. To this end, let
us approximate the swimming speed and efficiency of Syn-
echococcus under the assumption that it utilizes fluid extru-
sion as a propulsive mechanism. The organism shape is ap-
proximately that of a prolate spheroid with aspect ratio b /a
�1 /2, with cell length 2a�10−4 cm. Wolgemuth et al.33

note that a related organism has nozzles everywhere on the
surface, but Fig. 9 indicates that the efficiency is not exceed-
ingly dependent on the porous surface size. For the wide
range 0.2���1, we recover an optimal swimming effi-
ciency of 2%–5%, well within the range of efficiencies
reached by other microorganisms, if not slightly larger. To
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compute the swimming speed we need the flux q. To ap-
proximate the value of q we use the estimated figures of
Wolgemuth et al.33 for a related organism M. xanthus.
Namely, that there are approximately N=500 nozzles around
the circumference of each end of the cell, each nozzle has
cross-sectional area A�3�10−13 cm2, and the fluid exit ve-
locity is u�10−5 cm /s. This yields a fluid flux at each end
of the cell of q=NuA�1.5�10−15 cm3 /s. From Eq. �78�
and assuming that jet propulsion is indeed the main locomo-
tion mechanism, the swimming velocity would be approxi-
mately �U��0.2q /a2=1.2�10−7 cm /s=0.0012 �m /s. This
swimming speed is many orders of magnitude smaller than
the observed swimming speed of Synechococcus, which is
closer to 10 �m /s. In order for the swimming velocity to
match that of Synechococcus, the flux would have to be q
�10−11 cm3 /s, which would require a volume equivalent to
the internal body volume to be expelled in an exceedingly
fast time t�10−2 s. We can therefore conclude that the ex-
pulsion of a Newtonian fluid is unlikely to be the propulsive
mechanism utilized by Synechococcus, giving support to
other theories such as the passage of traveling surface waves
of tangential displacements and of small amplitude.9

D. Directions for future work

Exciting directions which this line of inquiry may take
include optimization and control for jetting motions in three
dimensions. For example, for a body with a known general-
ized resistance matrix, how best to utilize a finite collection
of surface jets to move from one point to another in space?
Separately, interaction dynamics may yield unexpected dy-
namics for low Reynolds number swimming behavior given
the possibility of drawing in fluid just expelled by other
swimmers. Finally, in the physical realization of such a
swimmer, the internal mechanisms for driving the flow both
into and out of the body must be addressed. A more detailed
efficiency analysis would then be of great interest, where
internal costs are considered in addition to the hydrodynamic
work performed on the external fluid.

We have seen that a fluid-jetting body can swim with
remarkable efficiency. The constraint that fluid flow in and
out along the direction everywhere normal to the body sur-
face led to a bound on the efficiency of 12.5% for a spherical
body and approximately 162% as the body becomes a flat
plate. Imagine this constraint to be removed. In this case, the
body could draw in and expel fluid everywhere upon its sur-
face precisely in the direction of motion and the surrounding
fluid would go undisturbed �see Fig. 13�. Hence, the work
done externally on the surrounding fluid would be zero and
the motion would correspond to an infinite hydrodynamic
efficiency. Generally, the muted fluid disturbance even with
the normal-jetting constraint hints at another very intriguing
aspect of this form of locomotion: the body does not strongly
signal its presence at any distance as it swims through the
fluid. The noninertial jetting body as portrayed in Fig. 13
would be the perfect stealth swimmer.
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APPENDIX A: DISCONTINUOUS JETTING PROFILE

A discontinuous jetting profile on a smooth body surface
results in zero swimming efficiency. As an example, consider
a spherical body of radius a with the jetting profile

��
� =
q

2�a2 ���
��0,1�� − ��
��−1,0��� , �A1�

where � is the indicator function. The swimming velocity is,
from Eq. �11�,

U = −
1

4�a2�
�D

�ẑ · n̂���x�dS = −
1

2
�

−1

1


��
�d


= −
q

4�a2 . �A2�

Inner products against the Legendre polynomials give

cn = �
−1

1

��
�Pn�
�d
 =
�1 − �− 1�n�q

2�a2 �
0

1

Pn�
�d


=
�1 − �− 1�n�q
2�a2n�n + 1�

d

d

Pn�
��
=0, �A3�

and we note the identities

d

d

Pn�
��
=0 = nPn−1�0� , �A4�

Pn�0� =
�− 1�n/2�n − 1�!!

n!!
�n even� , �A5�

with n ! !=n · �n−2� · , . . . , ·4 ·2. Since Pn�0��n−1/2 for n
→�, we have

U(E = ∞)

−U

−U

FIG. 13. �Color online� An arbitrarily shaped body does not disturb the fluid
and swims with infinite external hydrodynamic efficiency if the surface
distortion velocity is constant and unidirectional.
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cn =
�1 − �− 1�n��− 1��n−1�/2�n − 2�!!

�n + 1��n − 1�!!  q

2�a2�
� n−3/2 �n → �� . �A6�

Thus, the sum in the denominator of Eq. �55� diverges. Tak-
ing the first N Legendre modes to approximate ��
�, the
efficiency is made arbitrarily small, with E→0 in the limit of
the discontinuous jetting profile ��
�. A stress singularity
associated with the jump in surface velocity results in infinite
work being done on the fluid.

APPENDIX B: FRAMEWORK FOR GENERAL
SOLUTION FOR SPHEROIDAL BODIES

We present here the framework used to determine the
behavior and efficiency of prolate spheroidal jetting bodies.
The methodology for oblate spheroidal bodies is identical,
under the mapping �� ,c�→ �−i� , ic�, and switching the roles
of a and b �see Fig. 8�.

The general solution to Eqs. �79� and �80� may be ex-
pressed using spheroidal harmonic functions Rn and Sn,
themselves expressed in terms of the Legendre polynomials
of the first and second kind, Pn and Qn, respectively,

�� = A1R1���R1�
� + �
n�1

�Bn + B̃n��2 + 
2��Rn�
�Sn���

�B1�

�see Sec. IV�. From the Legendre differential equation, we
have Rn��x�=−n�n+1�Pn�x� and Sn��x�=−n�n+1�Qn�x�. For a
decaying fluid velocity as �→�, we must have A1=0. If the
jetting profile ��
� is assumed to be odd about 
=0, then we

may set Bn= B̃n=0 for all n even.
Due to the exponential decay of the terms Qn��0� and

Sn��0� as n→�, it is helpful to define the normalized coeffi-
cients

Cn = BnnQn��0�, C̃n = B̃nnQn��0� , �B2�

noting the tractable behavior of the ratio

Sn��0�
nQn��0�

=
Qn−1��0�
Qn��0�

− �0. �B3�

Differentiating the expression Eq. �B1�, the boundary condi-
tions �Eq. �80�� therefore yield

0 = �
n�1

2�0C̃nRn�
�� Sn��0�
nQn��0��

− �n + 1��Cn + C̃n��0
2 + 
2��Rn�
� , �B4�

J�
���
� = �
n�1

2
C̃nRn�
�� Sn��0�
nQn��0��

− �n + 1��Cn + C̃n��0
2 + 
2��Pn�
�� Sn��0�

Qn��0�� .

�B5�

We determine the coefficients Cn and C̃n numerically by en-
forcing the conditions above at a finite number of nodes in


� �−1,1�, corresponding to the Gaussian quadrature nodes
of order M, and keeping the first N terms in each summation.
The resulting linear system is inverted using simple Gaussian
elimination.

With the coefficients Cn and C̃n in hand �and hence Bn

and B̃n�, we may determine the pressure and the �̂�̂ compo-
nent of the rate-of-strain tensor E. Associated with the
stream-function in Eq. �B1�, Eq. �73� gives

�p

�

= �

n

− 2n�n + 1��B̃n

c3�1 − 
2���2 − 
2�2 �2
�1 − 
2�Pn�
�

��n�n + 1���2 − 
2�Qn��� + 2�Sn����

− Rn�
�†�
4 + 2�2 + 3�4 + 
2�2 − 8�2��Qn���

− 2���2 − 
2�Sn���‡� , �B6�

which is integrated to within machine precision accuracy us-
ing Gaussian quadrature. The integration constant may be set
to zero since the pressure must be an odd function about

=0.

From Eq. �75�, the desired rate-of-strain tensor compo-
nent may be written as

E����0,
� =
1

c3��0
2 − 
2�2��0

2 − 1�

� ��0�1 + 
2 − 2�0
2�����
 + 
��0

2 − 1������

+ ��0
2 − 
2���0

2 − 1������
���→�0
. �B7�

This component of the stress is dependent on the jetting pro-
file in a straightforward manner. Namely, using the �arbi-
trary� jetting boundary conditions for ��, we find that

E����0,
� = � �0�1 + 
2 − 2�0
2�

c��0
2 − 
2�3/2��0

2 − 1�1/2���
� . �B8�

Finally, the efficiency is determined by numerically integrat-
ing the rate of work done on the fluid

�2 �1 0 1 2�5

�4

�3

�2

�1

0

log(E)

log(b/a)

FIG. 14. �Color online� Exact efficiency as a function of aspect ratio �with
a denoting the longer semiaxis length in both the prolate and oblate cases� is
shown as a dashed line. The computed efficiencies using M =100 and N
=40 are shown as filled circles, showing excellent agreement over a wide
range of aspect ratios.
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� = − 2��
−1

1

��
��− p + 2�E�� − p��J�
�d
 , �B9�

and using the definition of Eq. �34�,

E =
6��RU2

�
· �B10�

The terms p�, R, and U are just those as shown in Eqs. �74�,
�19�, and �77�, respectively.

The numerical approach is compared to the exact solu-
tions of Eqs. �87� and �94� in Fig. 14, using the jetting profile
��
�=
q / ��J�
��. Here we used M =100 and N=40. The
computed efficiencies show excellent agreement with the
analytical results over a wide range of body aspect ratios.
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