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Confinement and wall effects are known to affect the kinematics and propulsive characteristics of swimming
microorganisms. When a solid body is dragged through a viscous fluid at constant velocity, the presence of a
wall increases fluid drag, and thus the net force required to maintain speed has to increase. In contrast, recent
optical trapping experiments have revealed that the propulsive force generated by human spermatozoa is
decreased by the presence of boundaries. Here, we use a series of simple models to analytically elucidate the
propulsive effects of a solid boundary on passively actuated filaments and model flagella. For passive flexible
filaments actuated periodically at one end, the presence of the wall is shown to increase the propulsive forces
generated by the filaments in the case of displacement-driven actuation, while it decreases the force in the case
of force-driven actuation. In the case of active filaments as models for eukaryotic flagella, we demonstrate that
the manner in which a solid wall affects propulsion cannot be known a priori, but is instead a nontrivial
function of the flagellum frequency, wavelength, its material characteristics, the manner in which the molecular
motors self-organize to produce oscillations �prescribed activity model or self-organized axonemal beating
model�, and the boundary conditions applied experimentally to the tethered flagellum. In particular, we show
that in some cases, the increase in fluid friction induced by the wall can lead to a change in the waveform
expressed by the flagella, which results in a decrease in their propulsive force.
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I. INTRODUCTION

In the highly viscous environment inhabited by microor-
ganisms, locomotion is a difficult task, and one rarely
achieved in the absence of fellow organisms, boundaries, or
other obstacles. Because drag forces from the fluid domi-
nates inertia, swimming becomes a problem for microscopic
life qualitatively different from that of larger organisms such
as fish, and nature has evolved several strategies for solving
it. Flagellated organisms such as bacteria and spermatozoa
utilize the fluid drag anisotropy of slender filaments �flagella�
in order to propel themselves through a viscous fluid �1�.
From a biological standpoint, both prokaryotic and eukary-
otic flagella serve the same purpose, to propel the organism
through the fluid, but from a mechanical standpoint the fila-
ments are quite different. Bacteria such as E. coli and B.
subtilis actuate passive helical filaments using rotary motors
embedded in the cell walls, and whose rotation gives rise to
propulsion �2,3�. In contrast, spermatozoa �and more gener-
ally, eukaryotic� flagella are active filaments. They possess
an internal musculature, termed the axoneme, which deforms
in a wavelike fashion due to the action of molecular motors.
These motors generate time-varying and coordinated bend-
ing moments along the flexible flagellum, giving rise to trav-
eling waves, and propulsion of the cell �1,4�. In that case, the
waveform displayed by the cell is a physical balance be-
tween the motor activity, the flagellum elasticity, and the
fluid forces.

Near solid boundaries, the behavior of both types of
swimming cells is strongly affected. Since the governing

equations for inertialess fluid flow are time invariant, the
geometry of the system fully defines the hydrodynamics.
Bacteria swim in circles near a wall, as the chirality of the
flagellar rotation induces a hydrodynamic torque on the body
�5–7�. Boundaries also tend to hydrodynamically attract
swimming cells, and as a result the steady-state distribution
of motile cells strongly peaks near walls �8–13�. Near walls,
large arrays of cilia �short flagella� are known to synchronize
and display coordinated modes of deformation known as
metachronal waves �4,14–18�.

One topic of renewed interest concerns the dynamics of
spermatozoa in confinement, as relevant to the situation in
mammalian reproduction �19�. Early theoretical studies con-
sidered flagellated cells with waveforms unchanged by the
presence of walls. In that case, because of increased drag
forces, the cells have to increase their work against the fluid
to maintain their waveforms, and as a result they speed up
when near a boundary �10,20–23�. If instead the cells are
assumed to work with a fixed power, the presence of a
boundary leads in general to a decrease in the swimming
speed �20,21�.

Physically, the speed at which a cell swims is a balance
between the propulsive force generated by its flagellum and
the drag from the surrounding fluid. Near a boundary, both
the flow field generated by the flagellum and the subsequent
propulsion generated are expected to be modified, but in a
manner which has not been quantified yet.

Recently, an experimental investigation was carried out
using optical trapping on human spermatozoa to investigate
the influence of boundaries on force generation. Briefly, sper-
matozoa cells swimming near and parallel to a cover glass
�with distance about 5 �m� were optically trapped, and then
moved to a predefined distance of up to 100 �m from the
glass surface. As the flagellum of the trapped cell continu-

*aevans@physics.ucsd.edu
†elauga@ucsd.edu

PHYSICAL REVIEW E 82, 041915 �2010�

1539-3755/2010/82�4�/041915�12� ©2010 The American Physical Society041915-1

http://dx.doi.org/10.1103/PhysRevE.82.041915


ously beat, the trap power was then gradually attenuated un-
til the cell escaped. The magnitude of the propulsive force
applied by the cell, equal to the minimum force required to
hold the cell in place by the optical trap, was found to be
decreased by the presence of the glass surface �24�. These
results indicate that the cells do not maintain their wave-
forms, as for a cell with a fixed waveform the propulsive
force would increase near the wall. This experimental result
suggests therefore that, for eukaryotic cells, the interplay be-
tween flagellum elasticity, internal actuation, and hydrody-
namics can lead to a nontrivial relationship between the en-
vironment �here, confinement� and the propulsive force
generated by the cells.

In this paper, we use a series of simple models to examine
the propulsive effects of a solid boundary on passively actu-
ated filaments and model flagella. Our work aims at captur-
ing the essential physics that describes the geometric effects
on the body and builds on previous studies of flagellar loco-
motion far from external influences, both for passive fila-
ments �25–29� and for active flagella �30–34� �see also Ref.
�1� and references therein�. By considering different model-
ing approaches for the filament actuation and by quantita-
tively including the change in viscous friction due to the
presence of the wall, we predict analytically the change in
flagellar waveform, as well as the resulting change in pro-
pulsive force. We demonstrate that the relationship between
the wall-flagella distance and the propulsive force it gener-
ates is in general nonmonotonic. For the case of passive fla-
gella actuated at one end, the presence of the wall increases
the propulsive forces generated by the filament dynamics for
displacement-driven actuation, but decreases them in the
case of force-driven actuation. In contrast, for active fila-
ments we demonstrate that the manner in which a solid wall
affects propulsion cannot be known a priori, but is instead a
complicated function of the flagella frequency, wavelength,
their boundary conditions, and the manner in which the mo-
lecular motors self-organize to produce oscillations.

The paper is organized as follows. We start with a sum-
mary of the general class of elastohydrodynamics problems
and prescribe our course of action for determining the pro-
pulsive force and force gradients in the presence of a wall for
our models �Sec. II�. Following this we consider a passive
filament actuated at one end and the modification of the
thrust it produces in the presence of the no-slip boundary
�Sec. III�. We then consider two models for active flagella
swimming very close to the wall: first the case of a pre-
scribed internal sliding force, and then the more realistic case
of flagellar beating via self-organization of molecular motors
in the axoneme �Sec. IV�. In both cases, we determine the
propulsive force and how it is modified by the presence of
the wall. We finish with a discussion of our results in the
context of spermatozoa locomotion �Sec. V�

II. ELASTOHYDRODYNAMICS AND SETUP

A. Setup

The physical system that we will investigate is illustrated
schematically in Fig. 1. We consider a single flagellated cell
�or a synthetic device with a flagellum-like filament�, for

which the flagellum undergoes planar beating a distance h
from the surface of a solid boundary. The plane of actuation
is assumed to remain parallel to the plane of the wall �direc-
tions x and y in Fig. 1�. In the experiment of Ref. �24�, when
the cells are trapped, their plane of beating is parallel to the
surface, and thus it is a reasonable approximation to assume
that it remains so at different heights. We will consider both
cases of a passive filament actuated at one end �Sec. III� as
well as an active filament with internally distributed actua-
tion �Sec. IV�.

B. Hydrodynamics

Since the Stokes equations are time invariant, the geom-
etry of the system completely defines the fluid dynamics at
zero Reynolds number. Although the governing equations are
themselves linear, nonlinearities in the shapes of swimming
organisms can make calculating the flow difficult. Further-
more, because the flow is determined by the instantaneous
shapes of the surfaces immersed in the flow, nonlocal hydro-
dynamic effects can make the calculations impossible to do
without numerical analysis.

Fortunately, for flagellated organisms the slenderness of
the swimming surface in question leads to several simplifi-
cations that can be made to the fluid dynamics. Using the
asymptotic limit of a slender filament, the force acted by the
fluid on the moving filament is approximately given by �35�

f fl = − ���t̂t̂ + ���I − t̂t̂�� · v , �1�

where �� and �� are the force-velocity resistance coefficients
derived from resistive force theory ��� ���� �1� and account-
ing for filament motion perpendicular and parallel to the fila-
ment axis, respectively; here t̂ is the unit tangent vector
along the filament, I is the identity tensor, and v is the ve-
locity of the filament as it moves through the quiescent fluid.

In addition to slenderness, for small amplitudes of the
flagellar beat the geometric terms simplify considerably. Al-
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FIG. 1. �Color online� Schematic diagram of a flagellated cell
�or passive flexible filament� in the presence of a stationary no-slip
boundary. �a� 3/4 view of the model system. The planar beating of
the flagellum or filament takes place parallel to the plane of the wall
�x ,y�, and the cell is located at a distance h from the surface. For
simplicity we ignore the head effects in this work; this is a reason-
able assumption as many experiments to measure the propulsive
force would anchor the head in place �e.g., an optical trap or mi-
cropipette�. �b� Side view of the model system. Note that from this
angle the flagellum or filament appears only as a straight rod, as it
is assumed to beat along the y direction.
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though real flagella beat with a large amplitude, experiments
and numerics have shown that corrections to linearized dy-
namical shape equations are subleading �29,36,37�. In the
linearized regime, only the normal velocity component of the
filament is important for calculating the fluid force, as the
tangential motion enters only for higher-order curvature or
bending of the filament. In that case, we can represent the
amplitude of the filament perpendicular to the propulsive di-
rection as a function y�x , t�, and the fluid drag on the filament
can be simply expressed in terms of the amplitude y as
f fl�−���y /�tey.

C. Flexibility and activity

In order to model propulsion, we need to balance the ex-
pression for the fluid force on the filament with the internal
forces fint of the model flagellum. In the case of a passive
filament actuated at one end, only the elastic forces contrib-
ute to this term. For a model of spermatozoa, the internal
distribution of molecular motors in the axoneme leads to an
active bending moment that contributes to force and torque
balance. In the inertialess realm of low Reynolds number
that is inhabited by the swimming cells that we examine, the
total force on each infinitesimal element of the flagellum
sums to zero, and therefore mechanical equilibrium is written
as

f fl + fint = 0. �2�

Thin passive filaments are well modeled by the elastic beam
theory �38�. Their elastic strain energy associated with defor-
mation is given by

Eel =
A

2
�

0

L

��s�2ds , �3�

where A is the bending rigidity of the filament, L is its
length, and ��s� is its local curvature along the arclength s.

For an active filament that is powered by an internal mus-
culature, such as a eukaryotic flagellum, we must consider
not only similar elastic restoring forces, but also any internal
actuation forces. We use in this paper the model of Camalet
and Jülicher �32� to address the mechanics of active fila-
ments, as illustrated in Fig. 2. The active filament is assumed
to be composed of two inextensible elastic beams which are
attached to the basal �or head� region, but allowed to bend
relative to one another, and acted upon by a distribution of
equal and opposite active force f�s�. As the filaments bend,
they induce a distribution of sliding displacements ��s�
given geometrically by

��s� = �
0

s

a��s��ds�, �4�

where a is the fixed distance between the filaments at the
base. The work done by the filament against the internal
forces is then added to the enthalpy functional, and we get

E = �
0

L

ds�A

2
�2�s� + f��s�	 . �5�

In the case of a passively actuated filament, the internal
forces are zero, and thus only the elastic contributions enter
the equations of motion. Extremizing the energy given by
Eq. �5�, for a particular form of the active forces, yields the
total internal force per length on the flagellum, fint, which
must then be equal and opposite to the fluid force.

D. Propulsion and wall effects

Given a system, either the passive or active filament, and
a set of boundary conditions for the flagellum corresponding
to a given physical situation, the elastohydrodynamics bal-
ance allows us to solve for the flagellar beating pattern and
thus for the propulsive force. For small-amplitude motion,
the propulsive force, defined as the force acted by the beating
flagellum on the surrounding fluid when it is beating but not
swimming, is given by

F = ���� − ����
0

L �y

�t

�y

�x
dx	ex, �6�

where ex is the unit vector along the average position
of the beating filament �28� �see Fig. 1�. In particular, if
y�x , t� deforms as a pure traveling wave propagating
in the +x direction, y�x , t�=y0�x−ct�, we get
F= ����−���c
0

L��y0 /�x�2dx�ex. In that case, the force on the
fluid is in the +x direction, and therefore the force on the
filament, and the swimming direction if it was free to swim,
is in the −x direction.

To determine the values of �� and �� in Eq. �6�, we look at
previous work calculating friction coefficients for slender
bodies near walls �4�. For a slender body of radius a and
length L in an unbounded fluid the drag coefficients can be

∆(s)

a
f(s)

−f(s)

FIG. 2. �Color online� Schematic of a flagellated microorganism
swimming via an active flagellum. The inset shows the model of the
active filament that we use in this analysis �adapted from Ref. �32��.
The two pieces of the filament slide past one another, each exerting
an equal and opposite active force f�s� that is dependent on the
position along the flagellum �the arclength s�. This produces a slid-
ing displacement �. In the simplest case, that of purely elastic re-
sponse, and for small amplitude motion, this displacement � in-
duces a restoring force that is proportional to the magnitude of f�s�.
The distance between filaments, a, has been exaggerated for view-
ing purposes.
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calculated asymptotically in the slender limit a�L and are
given by

����� �
4	�

ln�2L/a� + C1
, ����� �

2	�

ln�2L/a� + C2
, �7�

where � is the fluid viscosity and C1 and C2 are O�1� con-
stants that depend on the specific geometry of the filament.
Near a boundary, if h is the distance between the filament
and the wall, the situation relevant to the experiments in Ref.
�24� is that of h
L. In this near-field limit, the resistance
coefficients relevant to the planar beating geometry consid-
ered in Fig. 1 are given by

�� �
4	�

ln�2h/a�
, �� �

1

2
��. �8�

The far-field limit, h�L, yields only a small correction to the
values of �� and �� in Eq. �7� which would likely be too
small to be measured experimentally, and thus we will not
consider this case here. For a comprehensive account of
these calculations, see Ref. �4� and references therein. Ex-
periments on sedimenting cylinders near boundaries were
considered in Ref. �39�, where it is shown that the difference
in drag between a cylinder far from a wall and one in the
near-field regime that we consider can easily be as much as
50%. In particular, the result of Eq. �8� implies that there is a
gradient in the fluid friction if the body changes its distance
h from the wall. The friction gradient is given by

d��

dh
= −

��
2

4h	�
, �9�

which is always negative, reflecting physically that viscous
forces are increased by the presence of a solid boundary.

For a slender rod dragged through a viscous fluid with a
fixed velocity, the sign of this force gradient implies that
moving the rod closer to the wall will increase the force
required to maintain its speed. For an actuated filament, fric-
tion from the surrounding fluid plays a dual role. It first
affects the propulsive force, as given by Eq. �6�, through
change in the drag coefficients. In addition, for either bound-
ary or internally actuated filaments, the change in �� and ��

in Eq. �1� modifies the force balance �Eq. �2��, thereby
changing the shape of the flagellum and therefore affecting
the propulsion in Eq. �6� through a modification of y�x , t�. It
is this interplay between viscous friction, elasticity, and ac-
tivity that we propose to quantitatively analyze in this paper.
As we detail below, it usually results in a nontrivial and
nonmonotonic relationship between wall distance and pro-
pulsive force.

III. PASSIVE FILAMENTS

We first consider the case of a passive elastic filament
driven at one end. In that case, the elastic energy is

Eel = �
0

L A

2
� �2y

�x2�2

dx , �10�

where the linearized regime allows for the approximation of
the curvature � by the concavity of the function y�x�. Calcu-

lating the functional derivative of the energy in Eq. �10�
leads to the elastic force density which, when balanced with
the fluid force density, results in the linearized dynamics
equation

��

�y

�t
= − A

�4y

�x4 , �11�

as obtained in previous studies �25,28�. We will consider a
harmonic driving with frequency �, and by focusing only on
post-transient effects, we will assume a similar periodic dy-
namics for the filament.

Since the filament is driven only at one end, the boundary
conditions at the tail �x=L� end are

A
�2y

�x2 �L,t� = 0, �12�

A
�3y

�x3 �L,t� = 0. �13�

This guarantees that the ends of the filament are force- and
torque-free. At the driving position �x=0�, different types of
physical actuation could be implemented experimentally,
leading to different boundary conditions. If the tangent angle
is prescribed, with the position of the filament fixed in place,
the boundary conditions are

y�0,t� = 0, �14�

�y

�x
�0,t� =  cos �t , �15�

where �1 is the magnitude of the tangent angle deviation
from horizontal and � is the driving frequency �pivoted
case�. Alternatively, for experiments that involve manipulat-
ing a passive filament via optical tweezers, the driving posi-
tion would be made to oscillate harmonically under torque-
less conditions, leading to the boundary conditions

y�0,t� = y0 cos �t , �16�

A
�2y

�x2 �0,t� = 0, �17�

where y0 is the magnitude of the oscillation in space
�tweezed case�. Finally, we could also consider the case
where an oscillating force or torque is applied to the driving
end, leading to boundary conditions

y�0,t� = 0, �18�

A
�2y

�x2 �0,t� = M0 cos �t �torqued� , �19�

A
�3y

�x3 �0,t� = F0 cos �t �forced� . �20�

Here, M0 and F0 are the magnitudes of the time-varying
torque and force, respectively. These boundary conditions
described above are experimentally realizable, for example,
using micropipettes.
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Since we ignore transient effects, the steady solution for
the amplitude can be written as y�x , t�=Rỹ�x�e−i�t�. Addi-
tionally, we can define a natural length scale through the
dimensionless “sperm number” Sp=L /��, where
��= �A /����1/4; Sp is the only dimensionless number in this
problem, and as such it fully governs the filament dynamics.
For Sp�1, the penetration length �� is much larger than the
length of the filament, and thus oscillations will not decay
along the length of the flagellum. For a passive filament, this
is equivalent to a very rigid rod being actuated back and
forth. Conversely, for Sp�1, oscillations decay very quickly,
indicating a floppy string or very viscous fluid. For an active
filament, there are additional length scales that must be con-
sidered, as will be discussed later.

We nondimensionalize time by 1 /�, the direction x along
the filament by L, and the filament amplitude by y0, which is
specified in the tweezed case and can be related to the forc-
ing parameters in the other three cases. Specifically we have
y0=L for pivoted actuation, y0=F0L3 /A for forced actua-
tion, and y0=M0L2 /A for the torqued condition. By doing so,
we obtain the following dimensionless equation for the am-
plitude ỹ:

ỹ� − i Sp4 ỹ = 0. �21�

The dimensionless boundary conditions for the tail are thus
given by

ỹ��1� = 0, �22�

ỹ��1� = 0, �23�

while the various possible boundary actuations at the driving
end are

ỹ�0� = 0, ỹ��0� = 1 �pivoted� ,

ỹ�0� = 1, ỹ��0� = 0 �tweezed� ,

ỹ�0� = 0, ỹ��0� = 1 �forced� ,

ỹ�0� = 0, ỹ��0� = 1 �torqued� .

With a solution to the amplitude equation �Eq. �21��, we find
the total force exerted on the filament by the fluid. Because
we consider harmonic actuation, we only look at the time-
averaged propulsive force, which is given, in a dimensional
form, by

�F� =
1

4

���y0
2I�Sp�

Sp4 , �24�

where I�Sp� is a dimensionless integral defined by

I�Sp� = Re� 1
2 ỹxxỹxx

� − ỹxỹxxx
� � �x = 0� , �25�

where an asterisk denotes the complex conjugate and Re de-
notes the real part. This expression is a direct consequence of
the integral for the propulsive force �Eq. �6��, being a total
derivative when the filament is passive, and thus the function
depends only on the nondimensional amplitude ỹ evaluated
at the end points �25�; the free end x=1 does not contribute
because of Eqs. �22� and �23�.

If we then define a scaling function Z�Sp�= I�Sp� /Sp4 to
contain all of the dependence on Sp for the propulsive force,
we have that the four cases are given by

�F� =
1

4
���2L2Z�Sp� �pivoted� , �26�

�F� =
1

4
���y0

2Z�Sp� �tweezed� , �27�

�F� =
1

4

���F0
2L6

A2 Z�Sp� �forced� , �28�

�F� =
1

4

���M0
2L4

A2 Z�Sp� �torqued� , �29�

and each of the scaling functions is unique to the four bound-
ary conditions that solve the amplitude equation �21�

We can now examine how the propulsive force changes as
the filament changes its distance h to the wall. Using the
chain rule, the force gradient is given by

d

dh
�F� =

1

4
�y0

2�d��

dh
Z + ��

�Z

�h
� �30�

=
1

4
�y0

2�d��

dh
Z + ��

�Z

� Sp

� Sp

���

d��

dh
� �31�

=
1

4
�y0

2d��

dh
�Z +

1

4
Sp

�Z

� Sp
� , �32�

where we have used the definition of Sp to take a partial
derivative with respect to the resistive coefficient. Since Sp
is monotonic in the resistive coefficient ��, and from Eq. �8�,
we see that �� itself is a monotonic function of h, we can
examine the qualitative behavior of the force gradient by
recasting the derivatives with respect to h in terms of the
dimensionless number Sp. It is important to note at this point
that the variation of Sp with the distance between the flagel-
lum and the wall is weak, with a scaling Sp��log h /a�−1/4,
and thus even large changes in the distance from the wall
will produce small changes in Sp. Quantitative details are
discussed in Sec. IV A, and for a bull spermatozoa cell with
Sp�7 away from a boundary, bringing the cell closer to the
wall will lead to a typical increase in Sp of about 10%.

The force gradient is now composed of two terms: the
first is due entirely to the changing fluid friction and the
second is a more complicated effect that incorporates the
elasticity of the filament through the shape change. This term
reflects the fact that, in the presence of a wall, the elastohy-
drodynamic penetration length is a function of the distance
from the wall. Changing that distance changes the essential
character of viscous-induced oscillation in the filament. Due
to the competition between these terms, it is now not neces-
sarily the case that this gradient be negative, as we would
expect for the case of the rigid rod. From a dimensional
standpoint, we can write
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d

dh
�F� =

1

4
�y0

2�d��

dh
�Z�, �33�

where we have therefore, since d�� /dh is negative
�see Eq. �9��,

Z� = − �Z +
1

4
Sp

�Z

� Sp
� · �34�

To represent the change in the force with the wall distance,
we plot in Fig. 3 the dimensionless force Z �top, blue solid
line� and force gradient Z� �bottom, red dashed line� for all
four different boundary conditions. Representative shapes of
the filament over an entire period of oscillation are also
shown for various values of Sp. For low values of Sp, the
filament behaves like a rigid rod, while for larger values the
decay length of the actuated filament becomes apparent. In
both the pivoted and the tweezed cases, there is a maximum
propulsive force �blue curve� that occurs for Sp�1: Sp�4
for the tweezed case and Sp�2 for the pivoted case. For the
torqued and forced cases, the maxima occur for Sp�1, and
as Sp approaches zero these conditions leave the linearized
regime, and the model breaks down.

As can be seen in Fig. 3, Z is always positive meaning
that the actuation at x=0 leads to filament dynamics pushing
against the fluid always in the +x direction. In addition, we
see that Z� is always negative for the pivoted and tweezed
cases �displacement-driven actuation�, indicating that the
force �or Z� is a decreasing function of the distance to the
wall, h. The time-average propulsive force �Eq. �24�� gener-
ated is therefore always increased by the presence of a
boundary. As such, it is somewhat similar to the increase in
the drag on a body driven at a constant velocity by the pres-
ence of a boundary. Note however that Z� displays a non-
monotonic dependence on Sp �and therefore on h since Sp is
a monotonically decreasing function of h�, which is due en-
tirely to the change in the filament shape accompanying the
change in height. In contrast, in the torqued and forced cases
�force-driven actuation�, we see that Z� is positive, indicating

that the opposite is true, and the propulsive force is now
decreased by the presence of the wall. These results are remi-
niscent of early work showing a similar contrast between
two-dimensional swimming with fixed kinematics or fixed
hydrodynamic power �20–23�.

IV. ACTIVE FLAGELLA

We now turn to the case of an active filament as a model
for a eukaryotic flagellum and investigate how the changes in
hydrodynamic drag induced by the wall and the response of
the flagellar amplitude couple to the internal activity. As be-
fore, we examine force balance, but for an active flagellum
we retain the internal forcing term, and the linearized dy-
namics equation becomes �31,32,37�

��

�y

�t
= − A

�4y

�x4 + a
� f

�x
· �35�

Since the total force and moment on the filament must van-
ish, this imposes boundary conditions on the distal, or “tail,”
end as

− A
�3y

�x3 �L,t� + af�L� = 0, �36�

− A
�2y

�x2 �L,t� = 0. �37�

Regarding the other side of the flagellum �its “head” side�,
we will examine two different types of boundary conditions,
either clamped or hinged. For a clamped filament, physically
corresponding to a cell that is immobilized via a micropi-
pette, both the head and its tangent angle cannot change, and
the boundary conditions are thus

y�0,t� = 0, �38�

(a) Pivoted (b)Tweezed

(c) Torqued (d) Forced

Z

Z Z

Z

Z
′

Z
′

Z
′

Z
′

Sp

Sp

Sp

Sp

FIG. 3. �Color online� Passive filament: nor-
malized propulsive force Z �blue solid line/top
curve� and propulsive force gradient Z� �red
dashed line/bottom curve� as functions of the di-
mensionless parameter Sp, for all four boundary
conditions. Shapes of the filament for different
Sp’s are superimposed. �a� Pivoted case; �b�
tweezed actuation; �c� torqued condition; �d�
forced boundary condition. In the case of
displacement-driven actuation, dZ /dh is nega-
tive; since �� is also a decreasing function of h
�see Eq. �9��, the time-average propulsive force
�Eq. �24�� is a decreasing function of h, and the
presence of a boundary always increases the pro-
pulsion of the filament. On the contrary, for
force-driven actuation, the sign of dZ /dh is posi-
tive, indicating that the presence of the boundary
decreases the propulsive force.
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�y

�x
�0,t� = 0. �39�

In the hinged case, the head remains fixed, but the tangent
angle can move torquelessly. This is the situation that would
take place in the presence of an optical trap, so the boundary
conditions become

y�0,t� = 0, �40�

A
�2y

�x2 �0,t� + a�
0

L

f�x�dx = 0. �41�

If we nondimensionalize x by L and time by 1 /� as in the
previous section, but additionally scale the magnitude of the
flagellar beat y0 by af0L3 /A, where f0 is the magnitude of the
internal force, then the equation for mechanical equilibrium
becomes

ỹ� − i Sp4 ỹ =
� f̃

�x
· �42�

The dimensionless versions of the boundary conditions are

− ỹ��1� + f̃�1� = 0, �43�

ỹ��1� = 0, �44�

for the tail end, and ỹ�0�=0 and one of the following for the
head:

ỹ��0� = 0 �clamped� , �45�

ỹ��0� + �
0

1

f̃�x�dx = 0 �hinged� . �46�

In order to consider the response of the flagellum due to
changing the distance from a wall, and thus changing the
friction of the fluid, the mechanism of the axoneme itself
must be taken into account, i.e., a model for f must be pre-
scribed. We proceed in the next two sections by considering
two such models.

A. Prescribed activity

In the first approach, we consider that the active force per
unit length takes the form of a prescribed traveling wave,
i.e., f�x , t�=Rf0eikx−i�t� �31�, whose frequency ��� and
wave number �k� are not modified by the presence of a
boundary. This enables us to completely specify the filament
shape, its propulsive force, and the propulsive force gradient,
with two dimensionless numbers: Sp and kL. The dimension-
less equation of mechanical equilibrium is now written as

ỹ� − i Sp4 ỹ = ikLeikLx, �47�

with boundary conditions

ỹ�0� = 0, �48�

ỹ��1� = eikL, �49�

ỹ��1� = 0, �50�

and either of the following:

ỹ��0� = 0 �clamped� , �51�

ỹ��0� = −
�1 − eikL�

ikL
�hinged� . �52�

It is then straightforward to calculate the propulsive force
on the fluid due to the active filament, which is given by

�F� = 1
4���y0

2��Sp,kL� , �53�

where the scaling function ��Sp,kL� is defined as the dimen-
sionless integral

��Sp,kL� = Im��
0

1

ỹ�
� ỹ

�x
dx	 · �54�

Here, Im denotes the imaginary part. Note that the amplitude
of the flagellar beat is proportional to the magnitude of the
active force, and thus the propulsive force scales quadrati-
cally with it. This dependence has been scaled out of the
propulsive force and is assumed to remain constant.

As in the previous section, the force gradient can be cal-
culated using the chain rule and we get

d

dh
�F� =

1

4
�y0

2�d��

dh
� + ��

d�

dh
� �55�

=
1

4
�y0

2d��

dh
�� +

1

4
Sp

��

� Sp
� · �56�

The main difference between Eqs. �56� and �32� is that the
scaling function � is a function of both the elastohydrody-
namic length scale parametrized by Sp and an active length
scale defined by kL; the interaction of these two lengths leads
to several nonintuitive results, as shown below. From a di-
mensional standpoint, we can write

d

dh
�F� =

1

4
�y0

2�d��

dh
���, �57�

where, as above, we have defined the dimensionless force
gradient as

�� = − �� +
1

4
Sp

��

� Sp
� · �58�

Anticipating that the mean force �F� can change sign, we
compute the gradient in the norm squared of the force and
get

d

dh
�1

2
�F�2	 =

1

16
�2y0

4�d��

dh
������, �59�

so that ��� is the dimensionless gradient in the norm
�squared� of the propulsive force.

In Fig. 4�a� we display � �top blue line�, �� �middle red
line�, and ��� �bottom black line� for Sp=5 �solid line� and
Sp=9 �dashed line� as functions of kL in the case of clamped
boundary conditions. In Fig. 4�b� we show the same system,
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only this time several representative values of kL are chosen
and the resulting dimensionless force and force gradients are
plotted as functions of Sp. Similar results are shown in Fig. 5
in the case of hinged boundary conditions.

First, we observe that although the activity wave is always
traveling from the body of the cell to the tip of the active
filament �� /k=c�0�, the propulsive force can change sign:
��0 means a force on the fluid in the same direction as the
wave, and therefore �if the cell was free to move� swimming
in the direction opposite to the wave. As a difference,
��0 means the generation of a force on the fluid opposite to
the wave propagation, and therefore swimming along the di-
rection of the wave propagation. Recall that in the passive
case analyzed in the previous section, we always had a posi-
tive force. We also observe here, in general, a nonmonotonic
variation of the propulsive force with both the activity wave-
length �through kL� and frequency �through Sp�. We further
note the importance of the boundary conditions as markedly

different results are obtained in Figs. 4 and 5.
The second important results to note from Figs. 4 and 5

are the variations in the sign of the force gradient. In all
cases where the product ����0, the presence of the bound-
ary causes the magnitude of the propulsive force to decrease.
The opposite is true in all cases where ����0. It should be
obvious from Figs. 4 and 5 that the sign of the force gradient
displays a complex dependence on the parameters �Sp,kL�,
as well as on the type of boundary conditions considered.

To demonstrate the physical significance of our results,
we consider as an example the case of bull spermatozoa. For
such a cell, we have L�60 �m, A�10−21 N m2,
��10 Hz, and the “bare” resistive coefficient
������10−3 N s /m2 far from the wall, leading to Sp��7
�4�. As discussed above, the wall increases fluid drag, and
thus it increases the value of Sp. Since it is possible to
change the drag coefficient by as much as 50%, and since
Sp��1/4, the change in the value of Sp can be as high as

Clamped(a) (b)

kL = 3π

kL = 8π

kL

Υ

Υ′

ΥΥ′

Υ

Υ′

ΥΥ′

Sp

Sp = 5

Sp = 9

FIG. 4. �Color online� Active filament with
prescribed activity and clamped boundary condi-
tions: dimensionless force �, force gradient ��,
and gradient of the square of the norm of the
force, ���, for various values of �Sp,kL�. The
corresponding shapes are displayed at their rep-
resentative values on the curves. �a� � �blue, top�,
�� �red, middle�, and ��� �bottom, black� as
functions of kL for Sp=5 �solid� and 9 �dashed�;
kL runs from 0.1 to 8	. �b� All three again as
functions of Sp for kL=3	 �solid� and kL=8	
�dashed�; Sp varies from 3 to 10. The axis limits
were chosen to cover a wide range of biologically
relevant filaments and viscosity solutions, keep-
ing in mind that for small Sp the rigid rod limit
renders the model inaccurate and is irrelevant for
biological locomotion.

Hinged(a) (b)

Υ

Υ′

ΥΥ′

Υ

Υ′

ΥΥ′

kL = 3π

kL = 8π

kL

Sp = 5

Sp = 9

Sp

FIG. 5. �Color online� Active filament with
prescribed activity and hinged boundary condi-
tions: dimensionless force �, force gradient ��,
and gradient of the norm squared of the force,
���, for various values of �Sp,kL�. The corre-
sponding shapes are displayed at their represen-
tative values on the curves. �a� � �blue, top�, ��
�red, middle�, and ��� �bottom, black� as func-
tions of kL for Sp=5 �solid� and 9 �dashed�; kL
varies from 0.1 to 8	. �b� All three again as func-
tions of Sp for kL=3	 �solid� and kL=8	
�dashed�; here, Sp runs from 3 to 10.
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about 10%. The active length scale kL is more difficult to
estimate, because the prescribed activity is not immediately
obvious through direct observation of the flagellar beat, but
reasonable estimates give kL between 3	 and 5	 �31,40�. In
the context of the prescribed activity model studied here, kL
is assumed to not change with distance from the wall.

We show in Fig. 6 contour plots of the gradient of the
norm of the propulsive force, ���, as a function of both Sp
and kL �left: clamped conditions; right: hinged conditions�.
The force gradient is positive in the filled contour regions;
contour lines are 5�10−3 in dimensionless units of force
square per unit length. Any given point in the �Sp,kL� plane
gives a particular value of the dimensionless force gradient.
By bringing the beating flagella closer to the wall, the sperm
number is progressively increased, and the value of the new
force gradient is found by gradually moving along horizontal
lines in Fig. 6 �which are lines of constant kL�. We show in
Fig. 6 arrows corresponding to this gradual increase starting
at Sp=7 and for kL=3	, 5	, and 7	.

First we observe, again, that the nature of the boundary
condition strongly affects the sign of the force gradient, and
experiments performed using optical trapping should give
different results from experiments employing micropipettes.
Second, we see that three distinct cases are possible depend-
ing on the domain crossed by one of the arrows in Fig. 6. In
the first case, the cell away from the wall is in a region where
��� is negative �white domains in Fig. 6� and remains in it
during the increase in Sp; in that case, a measurement would
lead to a monotonic increase in the propulsive force as the
flagellum comes closer to the boundary. A second case is the
one for which ��� is always positive �for example, the
middle arrow in the left figure, which remains located inside
the positive contour plots�, in which case the force would be
measured to be monotonically decreased by the presence of
boundaries. Finally, a third situation can arise where the ar-
row crosses the boundary between a region of positive �re-
spectively, negative� gradient and a region of negative �re-
spectively, positive� gradient, leading to a surprising

nonmonotonic variation of the propulsive force with the
flagellum-wall distance.

B. Self-organized axonemal beating

The prescribed activity model studied in the previous sec-
tion assumes that the internal activity of the flagellum is not
modified by the change in the fluid friction near a wall. In a
more physically realistic model, the oscillations of the flagel-
lum would arise from a self-organized motion of the molecu-
lar motors, and thus the internal force generation would in
turn be a function of the force distribution on the filament
�both bending and fluid drag�.

We consider in this section such a model as first intro-
duced by Camalet and Jülicher �32�. In this framework, the
active force is described by a linear response to the filament
sliding, f =��. Spontaneous oscillations of flagellum then
arise as a self-organized phenomenon for specific values �ei-
genvalues� of the response function �. If we use Eq. �35�
with the linear-response relationship f =���a��y /�x, then
we obtain the following dimensionless eigenvalue equation
for the filament amplitude:

ỹ� − �̄ỹ� + i Sp4 ỹ = 0, �60�

where �̄=aL2� /A.
The amplitude can be solved as ỹ=�i=1

4 Aie
qis, where qi’s

are the four solutions to the characteristic equation corre-
sponding to the characteristic modes of Eq. �60�. For a given
value of Sp, we note that there is an infinite number of dis-
crete eigenvalues �n; as in previous work, we will consider
only the eigenvalue with lowest norm as they correspond to
the lowest degree of motor activity. Nontrivial solutions to
Eq. �60� exist only for certain critical pairs of parameters
�Spc ,�c�, set by the boundary conditions �32,37�

�
i=1

4

MijAj = 0, �61�

where the matrix M is defined by the boundary conditions
�clamped or hinged, same as in the previous section�. Since
the solution ỹ is an eigenfunction for a linear equation, it is
known only up to a multiplicative constant, and the absolute
magnitude for the oscillations can therefore not be obtained.
Away from a wall, it has been shown theoretically and ex-
perimentally that the beating amplitude depends only weakly
on nonlinear corrections �36,37�, so we will proceed by writ-
ing the �arbitrary� amplitude of the filament oscillations as
y0, which we assume to be the magnitude of the first com-
ponent of the eigenvector �i.e., A1=y0� and is assumed to
remain constant.

The propulsive force acting from the flagellum on the
fluid in this case is given by

�F� = 1
4���y0

2��Sp� , �62�

where

��Sp� = Im��
0

1 �ỹ�
� ỹ

�x
dx�	 , �63�

and which can be written more explicitly as

kL

Clamped Hinged

ΥΥ ΥΥ

Sp Sp

FIG. 6. �Color online� Contour plots for the dimensionless pro-
pulsive thrust gradient ��� as a function of Sp and kL. Left:
clamped boundary conditions �micropipette�; right: hinged condi-
tions �optical trap�. The force gradient is positive in the filled con-
tour regions; contour lines are 5�10−3 in dimensionless units of
force square per unit length. The arrows indicate the increase in the
value of Sp taking place as a beating cell is gradually approached to
a solid boundary, starting at Sp=7 and for kL=3	, 5	, and 7	.
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��Sp� = Im��
0

1

�
i=1

4

Ai
�eqi

�x�
j=1

4

Ajqje
qjxdx	 . �64�

In Eq. �64�, Ai’s and qi’s are all implicit functions of the
response �, which is in turn a function of Sp. These functions
are all known, albeit verbose, and thus allow us to explicitly
write the force in terms of Sp.

Near a wall, the fluid friction modifies the fluid resistance
coefficient ��, but the bending modulus A remains constant.
In order to elucidate the variation of the propulsive force
with a change in flagellum-wall distance, we thus need to
know how both the beat frequency � and the response func-
tion � vary. Without further biological information about the
behavior of molecular motors under changing load, we now
have to make modeling assumptions.

The functional dependence of the response function � on
the oscillation frequency and other materiel parameters is, in
general, unknown. In order to satisfactorily solve Eq. �60�
we need to find the complex eigenvalues that allow for non-
trivial solutions of the equation to exist. To fully model the
active system, the filament response function should be de-
rived from a model for the molecular motors, and without
such an explicit model, � could very generally be a function
of Sp, ATP production and concentration �i.e., activity level�,
load distribution, structural inhomogeneities, and any other
parameter�s� that govern activity in the axoneme. The most
general solution would thus require a detailed model of the
molecular motors �see, e.g., �32,36,37��.

Since our primary focus in this paper is to explore the
hydrodynamic consequences of activity, boundaries, and
elasticity, we will make below several modeling assumptions
in order to examine extreme cases, by essentially specifying
the functional dependence of �. In general both the fre-
quency � and the response function � will vary, but we are
going to assume here that one of them remains essentially
constant as the wall-flagellum distance is varied. We thus
assume that one parameter shows a strong variation with h,
whereas the other depends only weakly on h.

In the first case, the linear-response function remains
constant, such that the only way for the eigensolution to
Eq. �60� to have nontrivial values requires the oscillation
frequency � to change in such a manner that Sp remains
constant. Given the definition, this means that one would
observe experimentally a frequency change given by
��h� /��h=��=���h=�� /���h�, but no waveform variation.
In that case, the only change in the propulsive force
�Eq. �62�� would arise from the variation of �� with h, and
therefore one would experimentally measure an increase in
the magnitude of the force near boundaries.

The second, more complex, case is one in which the fre-
quency of oscillation of the filament would remain fixed.
Although there is no experimental evidence that demon-
strates that � does remain constant as the distance between
the cell and the boundary is changing, it is a reasonable
assumption to make in the absence of this information. This
assumption, however, puts a stringent constraint on the re-
sponse function �; in order to provide nontrivial solutions to
Eq. �60� the response function must be only a function of Sp

in such a fashion as to match the eigenvalues exactly. In this
case, varying the distance between the flagellum and the
wall, h, modifies the value of Sp. As a result of changes in
Sp, both the response function � and the eigenfunction will
be continuously modified, which will produce a nontrivial
variation in the propulsive force. As in the previous section,
we will write the force gradient formally as

d

dh
�F� =

1

4
�y0

2�d��

dh
���. �65�

For this scenario, we plot in Fig. 7 the dimensionless propul-
sive force ��� and force gradient ���� for the clamped and
hinged boundary conditions, respectively, as well as several
exemplary beat patterns. With this modeling approach, we
see that � is always positive. Using the notation of Fig. 1,
the flagellum is therefore always pushing the fluid along the
x direction and is thus expected to swim in the −x direction.
Furthermore, we obtain that the sign of the force gradient
depends on the nature of the boundary conditions. In the
clamped case, we get that �� is always negative, and there-
fore the presence of boundaries systematically increases the
propulsive force. In contrast, in the hinged case, the function
�� is seen to be negative for Sp below 7, and positive oth-
erwise. In that case, and similarly to what was reported ex-
perimentally using optical trapping in Ref. �24�, the measure-
ments would show a decrease in the propulsive force near
boundaries.

V. DISCUSSION

Biological cells do not swim in a vacuum; the environ-
ment itself is what makes swimming possible, and thus we
must consider characteristics of the surroundings that may
modify motility behavior. Since flagellated organisms gener-
ate propulsion by actuating an elastic filament to do work
against their viscous environment, the specific response of
that environment can be crucial to understanding the overall
locomotion characteristics. The particular environmental ef-
fect that we have studied in this paper is the modification of
fluid drag by the presence of a no-slip boundary, and the
balance between the deformable waveform of the flagellum
and the viscous fluid forces that generate propulsive thrust.

For driven filaments, we have shown that fluid drag plays
a dual role: not only does it change the propulsion generated
by a given filament waveform, but it also affects the wave-
form itself expressed by the beating filaments. For passively
actuated filaments, the resulting wall effect is a systematic
increase in the propulsive force that the beating filament im-
parts on the surrounding fluid in the case of displacement-
driven actuation, while a decrease is obtained in the case of
force-driven actuation. In contrast, for active filaments as
models for eukaryotic flagella, the modification to the pro-
pulsive force depends sensitively on a combination of the
flagellar material properties, the boundary condition applied
to the flagellum, and the manner in which the molecular
motors organize to cause oscillation; different values of pa-
rameters can increase, decrease, or even display nonmono-
tonic influence on the cellular propulsive force.
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Using simple scaling arguments, let us finally estimate the
expected size of the propulsive force change induced by a
wall on active flagella. Let us compare the order of magni-
tude for the force far away from the boundary to the average
change in force between near and far field. Far from the wall
the propulsive force scales as F���y0

2������. Since our
calculation for the force change due to a wall focuses on the
near field, we can estimate the average change in force as
�F�LdF /dh as L, the cell length, gives approximately the
spatial range over which the near field matches the far field.
Using the estimate dF /dh�−�y0

2�d�� /dh���, we therefore
get

�F

F�

� −
L�d��/dh���

������
· �66�

According to Eq. �9�, we have d�� /dh�−��
2 /h�; hence, the

scaling becomes

�F

F�

�
L��

2

h������
���

�
� · �67�

Since we know that ������� / ln�2L /a� and
���� / ln�2h /a�, we get the final scaling relationship

�F

F�

�
ln�2L/a�

�ln�2h/a��2���

�
�L

h
· �68�

From the results obtained above, we observe that
�� /�� �1. For human spermatozoa, the parameters are
L�40 �m and a�0.20 �m. In the experiment of Ref. �24�
the near-field measurements get as close as h=5 �m, which
leads to �F /F�� �1. This simple order-of-magnitude cal-
culation shows that the force could be expected to be
changed by order one by the introduction of a boundary. In
the experiment conducted in Ref. �24� the force was mea-
sured to be reduced by a factor of 3, which is consistent with
this simple estimate.
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beat patterns are also shown at several values of
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