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Life around the scallop theorem
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Locomotion on small scales is dominated by the effects of viscous forces and, as a result, is subject to

strong physical and mathematical constraints. Following Purcell’s statement of the scallop theorem

which delimitates the types of swimmer designs which are not effective on small scales, we review the

different ways the constraints of the theorem can be escaped for locomotion purposes.
I. Introduction

Swimming cells, such as bacteria (prokaryotes) or spermatozoa

(eukaryotes), represent the prototypical example of active soft

matter. They are active as they transform chemical energy (ATP

for eukaryotes, ion flux for prokaryotes) into mechanical work1

and, as a result, are able to continuously change shape and

move in viscous environments.2 As mechanical entities, cells

belong to the world of soft matter, displaying complex rheo-

logical properties on a range of time and spatial scales and

responding to external forcing in a time-dependent and

nonlinear fashion.3

In their micron-size environment, the fluid forces acting on

swimming cells are dominated by the effect of viscous dissi-

pation.4,5 Seminal papers in the 1950s laid the ground work

for detailed investigations on the hydrodynamics of cell

locomotion,6–9 with the main goal of predicting cell kine-

matics, energetics, the interactions with their environment,

and the general importance of fluid forces in biological form

and function.10–15

In 1977, Purcell’s influential paper ‘‘Life at low Reynolds

number’’ put a somewhat different spin on a field which was

already mature.16 In it, Purcell brought to light the counter-

intuitive physical and mathematical constraints arising from

locomotion in an inertialess world. He demonstrated that for

organisms moving in very viscous fluids, there exists a class of

shape change that can never be used for locomotion, a result

beautifully summarized under the name ‘‘scallop theorem’’,

borrowing the name of such an organism—a hypothetical

microscopic scallop—which could not locomote in the absence of

inertia.

In this short review, we look back at the scallop theorem, and

pose the question: What are the basic ingredients necessary to

design swimmers able to move on small scales? What are the

different ways offered by physics to get around the constraints of

the theorem? After stating the various assumptions for the

theorem to be valid (xII), we show how non-reciprocal shape

changes (xIII), inertia (xIV), hydrodynamic interactions (xV),

and coupling with the physical environment (xVI) can all be

exploited to provide locomotion on small scales.
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II. The scallop theorem

The scallop theorem has a relatively simple statement.16 Consider

a body changing shape in a time-periodic fashion. In the absence

of inertia, the equations describing the motion of an incom-

pressible Newtonian fluid are Stokes equations, which are linear

and independent of time.4,5 In addition, in the absence of inertia,

the swimmer remains perpetually force- and torque-free.15 Pur-

cell’s scallop theorem can then be stated as follows. If the

sequence of shapes displayed by the swimmer is identical to the

sequence of shapes displayed when seen in reverse—so-called

reciprocal motion—then the average position of the body cannot

change over one period. Another manner to describe reciprocal

motion is stated in Purcell’s original paper as:

‘‘. I change my body into a certain shape and then I go back

to the original shape by going through the sequence in reverse.
So, if the animal tries to swim by a reciprocal motion, it can’t go

anywhere.’’

Time is not explicitly mentioned in the theorem and in fact,

because of the linearity and time-independence of the equations,

the rate at which the sequence of shapes is being displayed is

irrelevant.15 In Purcell’s own words,

‘‘Fast, or slow, it exactly retraces its trajectory, and it’s back

where it started.’’

Physically, the absence of time in the equations of motion

means there is no intrinsic time scale to the swimming problem,

which prevents distinguishing between forward and backward in

a reciprocal motion.

Purcell’s statements may appear simple, but are in fact far-

reaching. They form the basis of a purely geometrical approach

to cell locomotion17–20 and have sparked considerable attention

in the area of biolocomotion from the physics and soft matter

community—so much so that ‘‘Life at low Reynolds number’’ is

now the most cited paper in the field.

The name for the theorem originates from the simplest kind of

reciprocal swimmers, namely those deforming with a single

degree of freedom, such as the hinge of a hypothetical micron-

scale scallop. For any swimmer with a single geometrical degree

of freedom, say q(t), then by properties of Stokes equations,

its swimming speed, u, necessarily scales as u � _qF(q), which

is always an exact derivative, and thus averages in time to

zero hui ¼ 0. Swimmers with only one degree of freedom can thus

never swim on small scales.

Strictly speaking, the scallop theorem is valid only with the

following assumptions: a single swimmer displaying reciprocal
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motion in an infinite quiescent Newtonian fluid and in the

absence of inertia and external body forces.† Examining each of

these assumptions in detail suggests a way around the theorem

and a design for a swimmer, which we now review. As in Purcell’s

original paper, we will focus only on swimming by shape change

or motion and we will thus not consider chemical swimmers21–24

or solid bodies powered by external fields.25
III. Non-reciprocal kinematics

A. Biological swimmers: waves

The main message of Purcell’s paper is that swimmers should

change their shapes in a non-reciprocal fashion. The manner in

which motion occurs should thus indicate a clear direction of

time, which leads naturally to the occurrence of waves. Indeed,

most swimmings cells locomote by using traveling wave-like

deformation of their bodies or appendages.10–15 Swimming

bacteria rotate one or more helical flagella using rotary motors

embedded in the cell walls38–40 leading to flagella kinematics akin

to that of traveling helical waves, and thus propulsion41–43

(Fig. 1a). Other types of bacteria swim using whole-body wave

deformation propelled by flagella beneath the cell’s outer

membrane44 or wave-like propagation of kinks in their shapes in

the absence of flagella.45 Spermatozoa and other singly flagel-

lated eukaryotes swim using traveling waves12 induced by

molecular motors-driven internal sliding of polymeric filaments

inside the flagellum46–48 (Fig. 1b). The flagella kinematics can be

planar,49 helical,43 or even doubly helical.50 The many cilia

covering some eukaryotes51 also deform as so-called metachronal

waves52–54 (Fig. 1c).
B. Synthetic swimmers

Beyond the swimming methods displayed by biological swim-

mers, some simpler modes of non-reciprocal motion can be

devised theoretically and in the lab.

1. Imposing non-reciprocal kinematics. As shown by Purcell,

swimmers with a single degree of freedom cannot move. One

needs therefore at least two degrees of freedom and their

prescribed variation in time should sweep a finite area in

parameter space. In his original paper, Purcell proposed such

a swimmer,16 namely an elongated body with two rotational

hinges55–57 (Fig. 1d). Subsequently, non-reciprocal swimmers of

very simple shapes have been devised theoretically, including

ones composed of three spheres30,58–61 (Fig. 1e), two volume-

changing spheres,62 and two-orientation changing spheres63 or

ellipsoids.64 Beyond geometry, the two degrees of freedom could

also be physical parameters, for example the volume and spon-

taneous curvature of a lipid vesicle31 (Fig. 1f). Alternatively, the

swimmer’s shape and deformation change could be topologically

equivalent to the inside-out rotation of a torus65,66 or tank-

treading67 for which periodicity is achieved by a continuous series

of displacements tangent to the swimmer shape. Continuous

normal flows in the form of fluid jets can also be used.68
† The theorem is also valid in a confinement environment as long as the
boundaries display no motion.
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2. Flexible swimmers: non-reciprocal kinematics from recip-

rocal forcing. A second class of simple swimmers can be designed

for which a reciprocal actuation combined with flexibility or

elasticity can lead to kinematics of shape change which are non-

reciprocal, and thus to locomotion.

The prototypical example of this class of swimmers is a flexible

filament actuated periodically up and down at one end where it is

clamped, and free on the other.69 If the filament is rigid, its

motion is reciprocal and cannot be used for propulsion. In

contrast, if the filament is flexible and is actuated near the typical

frequency at which viscous drag and elastic forces balance, its

shape as it is actuated up (respectively down) is concave

(respectively convex), leading to non-reciprocal kinematics and

propagation of an elasto-hydrodynamic wave. Mathematically,

the scallop theorem breaks down because time enters the

problem through the viscous drag term in the equation for the

filament shape (via a partial time-derivative), and thus a relevant

time scale can be defined.

The generation of propulsive force and locomotion using

flexibility filaments has been the center of many theoretical and

computational investigations.69–72 A macro-scale experiment

confirmed the physical picture outlined above.73 Related

phenomena include elastic buckling instabilities74–76 and shape

transitions77–79 for rotated elastic filaments. At the micro-scale,

an experimental realization of a flexible swimmer was achieved

using elastic superparamagnetic filaments80 actuated by external

magnetic fields and attached to a red blood cell (Fig. 1g),32

prompting subsequent modeling efforts.81–84 A similar imple-

mentation was achieved using a nanometric silver filament

attached to an externally-driven ferromagnetic nickel head

(Fig. 1h).33 In all these cases however, it is the presence of

external torques (via external magnetic fields) that allows loco-

motion, and thus they do not represent true self-propelled

motion.
IV. Inertia

For the scallop theorem to be valid, all inertial terms in the

equation of motion of the swimmer should be set to zero.

Naturally, they cannot exactly disappear unless no motion

occurs, and thus a fundamental question arises, namely how

much inertia is needed to escape the constraints of the theorem?

Is the scallop theorem valid only asymptotically, or does it stand

as long as inertia is below a certain limit? These questions were

first posed by Dudley and Childress85 who studied the behavior

of a mollusk able to use both reciprocal and non-reciprocal

modes of locomotion, and who postulated that a finite amount of

inertia was necessary for locomotion to be able to occur.

Mathematically, three qualitatively different Reynolds

numbers can be defined. Consider a swimmer of typical size L

and density rs undergoing reciprocal motion of amplitude A and

frequency u in a Newtonian fluid of density r and shear viscosity

m. Using a typical velocity scale U � Au, the natural Reynolds

number for the reciprocal motion is given by Re ¼ rLAu/m, and

is the one corresponding to the nonlinear advection term in the

Navier Stokes equations (for example, in water, Re z 10�4 for E.

coli while Re z 10�2 for human spermatozoa). The oscillatory

Reynolds number, corresponding to the linear unsteady Stokes

term, is given by Reu ¼ rL2u/m. Finally, the Reynolds number
Soft Matter, 2011, 7, 3060–3065 | 3061



Fig. 1 Illustration of experimental and computational escapes from the scallop theorem. (a) E. coli bacterium with four helical flagella;26 (b) super-

imposed pictures of a swimming spermatozoon of Ciona intestinalis;27 (c) Paramecium cell covered with short cilia;28 (d) macro-scale experimental

realization of Purcell’s three link swimmer;29 (e) micro-scale experimental realization of three-sphere swimmer using optical tweezers;30 (f) computations

showing the locomotion of shape-changing vesicles;31 (g) microscopic realization of flexible swimming using elastic superparamagnetic filaments driven

by an external magnetic field (the two images show the filament deforming at different times);32 (h) locomotion of flexible Au/Ag/Ni nanowires swimmers

driven by an external magnetic field;33 (i) experimental demonstration that a symmetric flapping wing can undergo unidirectional locomotion if the

Reynolds number is above a critical value;34 (j) computations showing that a flexible, flapping wing with asymmetric actuation undergoes locomotion at

all finite Reynolds number;35 (k) experimental measurement of the net flow and vorticity induced by a reciprocal flapper beneath a free surface;36 (l)

computations for the net flow and vorticity induced by a small-amplitude reciprocal flapper in a polymeric fluid.37 All images reproduced with

permission; (a) from Turner, Ryu, and Berg, J. Bacteriol., 2000, 182, 2793, copyright 2000 American Society for Microbiology; (b) from C. J. Brokaw, J.

Exp. Biol., 1965, 43, 155, copyright 1965 The Company of Biologists; (c) copyright CNRS Phototh�eque/Anne Aubusson-Fleury; (e) from Leoni et al.,

Soft Matter, 2009, 5, 472, copyright 2009 Royal Society of Chemistry; (f) from Evans, Spagnolie, and Lauga, Soft Matter, 2010, 6, 1737, copyright 2010

Royal Society of Chemistry; (g) from Dreyfus et al. Nature, 2005, 437, 862, copyright 2005 Nature Publishing Group; (h) from Gao et al., J. Am. Chem.

Soc., 2010, 132, 14403, copyright 2010 American Chemical Society; (i) from Vandenberghe, Childress, and Zhang, Phys. Fluids, 2006, 18, 014102,

copyright 2010 American Institute of Physics; (j) from Spagnolie et al., Phys. Fluids, 2010, 22, 041903, copyright 2010 American Institute of Physics; (k)

from Trouilloud et al., Phys. Rev. Lett., 2008, 101, 048102, copyright 2008 American Physical Society; (l) from Pak, Normand, and Lauga, Phys. Rev. E,

2010, 81, 036312, copyright 2010 American Physical Society.
based on the body inertia is Res ¼ rsL
2u/m, sometimes called

a Stokes number, which quantifies the typical ratio between the

rate of change of the swimmer momentum and the magnitude of

the viscous forces in the fluid.

For small amount of inertia, the breakdown of the scallop

theorem occurs either continuously or discontinuously with these

Reynolds numbers depending on the geometrical symmetries in

the reciprocal actuation. In the case of symmetric shapes—

typically simple flappers—experiments and modeling demon-

strated that a finite, order one, amount of inertia is necessary,

indicating a discontinuous transition through an inertial hydro-

dynamic instability34,85–89 (Fig. 1i). As a difference, in the case of

asymmetric shapes or actuation, the transition is continuous,

with locomotion occurring either as some power of Re90 or both

Re and Reu (with Re/Reu constant)35,91 (Fig. 1j). Interestingly,

for asymmetric shapes, a continuous transition with swimmer
3062 | Soft Matter, 2011, 7, 3060–3065
inertia was obtained in the absence of fluid inertia (Re ¼ Reu ¼
0), with locomotion occurring as powers of Res.

92
V. Hydrodynamic interactions

The inertialess scallop envisioned by Purcell as the prototypical

non-swimmer is isolated in the fluid. It turns out however that

hydrodynamic interactions with other such non-swimmers, or

more generally flexible entities, can be exploited to swim. Phys-

ically, as cells or other synthetic swimming devices do work on

the surrounding fluid, they act as hydrodynamic disturbances on

the otherwise-quiescent environment, thereby setting up flow

fields which are in general dipolar.15 In biology these flow fields

have important consequence on the generation of collective

modes of locomotion93–97 and rheology at the whole-population

level.98,99
This journal is ª The Royal Society of Chemistry 2011



Although a body undergoing reciprocal motion cannot swim,

two bodies undergoing reciprocal motion with nontrivial phase

differences are able to take advantage of the unsteady hydro-

dynamic flows they create to undergo nonzero collective and

relative dynamics; there is thus no many-scallop theorem.100,101

As each reciprocal swimmer behaves in general as an unsteady

dipole, the collective effect arises from the time-rectification of

such unsteadiness, and thus decays generically as 1/d3, where d is

the typical swimmer-swimmer distance (or even faster if addi-

tional geometrical symmetries are present100,102). Naturally, two

reciprocal non-swimmers taken as a whole are not unlike a single

non-reciprocal swimmer, although the qualitative details of their

locomotion do differ.100

Experimentally, this effect was demonstrated for hydrody-

namic interactions between a rigid flapper, beating in a reciprocal

fashion, and a flexible boundary (free surface). The rectification

of the reciprocal flow by the free surface motion leads to flow and

forces scaling quadratically with the applied flapping frequency,

and the creation of a reciprocal pump36 (Fig. 1k). The experi-

mental application of these ideas to a collection of free-swim-

ming bodies remains however to be confirmed. To generate

reciprocal motion with nontrivial phase-differences, one possi-

bility would be to use elastic field-responsive particles under

a uniform AC forcing; particles with different relaxation times

would respond to fields with different phases, and thus would be

able to move collectively.100 In the case of purely identical non-

swimmers, two of them cannot swim, but three or more are able

to move.102 In that case, the phase differences in body kinematics

are induced by hydrodynamic flows, leading to a slow 1/d7

effect.102
VI. Physical environment

In the scallop theorem, the assumption that locomotion takes

place in a Newtonian environment is crucial, as it allows the

inertialess equations of fluid motion to be linear and independent

of time. A change of the mechanical and rheological properties of

the fluid would however naturally lead to a different type of

conclusion. Complex fluids are abundant in biology, and cell

locomotion often takes place in strongly elastic polymeric

fluids,103–105 which has been the focus of much recent work.106–111

As the fluid becomes non-Newtonian, three different physical

effects can potentially be exploited to generate small-scale loco-

motion.112,113 First, complex fluids possess in general rheological

properties which are rate dependent. In particular, viscosities

often display shear-thinning behavior, meaning they decrease

with shear rates. In this type of fluid, and in contrast with the

Newtonian case, the rate at which the reciprocal sequence of

shapes is being displayed would matter, a result which could be

used to design a reciprocal swimmer. This was recently demon-

strated theoretically for bodies swimming using a reciprocal

helical actuation at different rates in model polymeric fluids.109

The second physical effect to be exploited is that of normal

stress differences, which arise from the stretching by the flow of

the microstructure suspended in the complex fluids. Normal

stress differences scale quadratically with the applied shear112 and

remain thus identical under a reversal a time, allowing pro-

pulsion. Locomotion using normal stress differences was

demonstrated theoretically for a three-dimensional body
This journal is ª The Royal Society of Chemistry 2011
undergoing small-amplitude reciprocal motion at constant

rate.110 The generation of forces and flow by reciprocal flapping

was also reported37,114 (Fig. 1l).

The last physical effect to be exploited is that of stress relax-

ation. Even for small-amplitude motion and linearized dynamics,

the simplest evolution equation for the stress in a polymeric fluid

contains a memory term in the form of a partial time derivative

times a relaxation time. Whether, even in the linear regime, stress

relaxation can be taken advantage of for locomotion purposes is

an intriguing, but yet unexplored, possibility.

VII. Conclusion

In this short review, we have used Purcell’s scallop theorem as

a framework to lay out the basic physical principles behind the

design of small-scale swimming devices. We have shown how

non-reciprocal kinematics, inertia, hydrodynamic interactions,

and the nature of surrounding environment can all be physically

exploited to achieve small-scale propulsion. With advances in

micro- and nano-fabrication, the discussion on the theorem can

now move from that akin to a mathematical exercise to a true

engineering challenge.

As briefly mentioned in ref. 13, there exists at least another

class of body motion which always leads to zero locomotion in

a Newtonian fluid, namely those for which the time-reversal of

the motion is identical to its mirror-image (for example, the

motion of a rod sweeping the envelope of a cone). The formal

derivation of the complete class of non-swimming body kine-

matics would provide a new thrust in small-scale locomotion

research by allowing novel opportunities to get around these

mathematical constraints.
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