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We consider laminar flow in channels constrained geometrically to remain between two parallel
planes; this geometry is typical of microchannels obtained with a single step by current
microfabrication techniques. For pressure-driven Stokes flow in this geometry and assuming that the
channel dimensions change slowly in the streamwise direction, we show that the velocity
component perpendicular to the constraint plane cannot be zero unless the channel has both constant
curvature and constant cross-sectional width. This result implies that it is, in principle, possible to
design ‘‘planar mixers,’’ i.e., passive mixers for channels that are constrained to lie in a flat layer
using only streamwise variations of their in-plane dimensions. Numerical results are presented for
the case of a channel with sinusoidally varying width. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1760105#

I. INTRODUCTION

The rapid development of microfluidic systems and their
applications in domains such as aeronautics, chemistry, ma-
terial synthesis, medical diagnostics and drug delivery has
recently motivated investigations of new research questions
in fluid dynamics at small scales.1–3 A particularly active
research area is the design of mixers for microdevices. This
task has proven itself to be a real engineering challenge due
to a variety of physical and practical constraints. Physically,
the typical cross-sectional dimensions of microchannels in
current microfluidic systems are on the order of 10–100
mm.2,4 On this scale, practical flows of common liquids (U
'0.1– 10 cm/s) have low Reynolds numbers,Re,10, and
turbulent mixing of the fluid does not generally occur. At the
same time, the Peclet number for mass transfer in these
flows, defined as the ratio of a typical diffusive time to a
typical advection time is high,Pe.100, and purely diffusive
mixing across the flow is slow. For applications that require
mixing, it is therefore necessary to design channels that will
lead to efficient convective mixing.

In a channel geometry, the strongest gradients of concen-
tration are typically oriented in a direction normal to the
principal axis of the channel, because the gradients exist be-
tween coflowing streams of distinct chemical makeup. An
effective mixing flow in a channel must therefore stir the
fluid over the cross section with transverse flows as the fluid
progresses downstream in the axial flow; such a flow must
possess three nonzero components. An effective stirring flow
rapidly folds the fluid into itself so as to decrease the dis-
tance that diffusion must act to homogenize concentrations.
The potential of a given channel flow to mix efficiently can
be judged by several characteristics:~1! The ratio of the
transverse to the axial velocities. If this ratio is too small,

then the axial length of channel required for mixing is likely
to be impractically long, regardless of the detailed character
of the flow. ~2! The distribution of transverse flows within
the cross section of the channel. If the flows are confined to
small areas within the cross section, then they will be inef-
fective at exchanging fluid between these areas and with ar-
eas in which no flow exists.~3! The evolution of the trans-
verse flows as a function of axial position along the channel.
An efficient mixer should produce Lagrangian chaos; in par-
ticular, no streamwise symmetries should be present.5 This
feature is achieved in a channel geometry when the position
and orientation of transverse flows vary axially such that all
fluid elements travelling in the channel experience an alter-
nating sequence of rotational and extensional flows.6

In designing a laminar mixer for microfluidic applica-
tions, it is also important to take into account the constraints
imposed by technology and conversation laws. Designs of
mixers should be scalable to smaller systems, resistant to
fouling by particulate matter, and efficient with respect to
power consumption. Moreover, the typical lithographic pro-
cesses currently used in microfabrication lead to planar ge-
ometries.

A variety of active7,8 and passive9–13 methods have re-
cently been proposed to generate stirring flows for mixing
purposes. All of the passive designs that have been demon-
strated to be effective rely however on multilayer or nonpla-
nar structures in order to generate three-dimensional flows. A
single lithographic step generates a single flat layer of struc-
ture with horizontal top and bottom walls and~relatively!
vertical side walls~see Fig. 1!.14 More complicated struc-
tures, e.g., a nonintersecting crossover between two chan-
nels, require multiple lithographic steps, with spatial align-
ment between each layer of structure. Each added layer of
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structure increases the difficulty of fabrication and compli-
cates scaling down to smaller devices.

Motivated by such practical considerations in this paper,
we will be interested in characterizing the potential for mix-
ing of the simplest planar geometrical configurations ob-
tained in a single fabrication step. Two such geometries are
illustrated in Fig. 1. Suppose we fabricate a channel con-
strained between two parallel planes of constant separation,
can such a configuration mix? In order to be able to give an
answer to this question that is robust to change in flow con-
ditions, we will assume zero Reynolds number flows in the
channel. This assumption also implies that our conclusions
will remain valid in smaller flow systems of the same design.

It is known that the steady-state velocity field in a
straight channel of constant rectangular cross section is
unidirectional15 and, therefore, cannot mix except by mo-
lecular diffusion; similarly, the velocity field in a curved
channel of constant cross section and constant curvature is
unidirectional.16,27 As a consequence, the simplest potential
design for asteady-statemixer for Stokes flow is that of a
channel with variations of shape, that include changes of
both curvature and cross-sectional dimensions in the stream-
wise direction.

In order for flow in such a channel to potentially mix by
advection in the three dimensions of the channel, the velocity
field needs three nonzero components. While it is clear that
these variations in shape will lead to nonzero in-plane com-
ponents of the velocity, as would also be the case in a truly
two-dimensional channel, it is not obvious that the~third!
out-of-plane component willalways be nonzero. We ask,
therefore, the following question:Under which circum-
stances is the out-of-plane component of the velocity field
always nonzero? And in this case, what is the expected mag-
nitude of the vertical flow?

The flows in a circular pipe of varying cross-section17 or
varying small curvature18 have been studied and three-
dimensional flow is obtained at zero Reynolds number. How-
ever, because the equation for the shape of a circular pipe
couples the two directions that are perpendicular to its axis
of symmetry, these results cannot be applied to the flow in a
planar geometry and a separate analysis has to be carried out.
Recently, Balsa19 studied the secondary flow in a Hele-Shaw
cell in which a vertical cylinder is immersed, at Reynolds

number unity based on the cylinder length, and showed the
presence of streamwise vorticity in a boundary layer on the
cylinder surface; an earlier study by Thompson20 focused on
viscous features.

The geometry of a generic microchannel constrained be-
tween two parallel planes with fixed separation and with no
obstacles is illustrated in Fig. 1~top!. The shape of the chan-
nel can be entirely described by two degrees of freedom:~1!
The trajectory of its centerline plane and~2! the local sym-
metric width of the channel around this centerline. We will
consider in this paper the consequences of both and will treat
each of them separately for simplicity.

The paper is organized as follows. In Sec. II A we con-
sider the case of a straight channel with varying cross section
in the direction perpendicular to both the flow and the con-
straint plane and in Sec. II B we consider the case of a curved
channel of constant cross section but varying curvature. In
both cases, under the assumption of an arbitrary but slowly
varying cross section and curvature, respectively, we show
that the velocity component perpendicular to the constraint
plane cannot be zero unless cross section and curvature are
both constant, and therefore the flow is fully three-
dimensional in all other cases. We apply these results in Sec.
III where we calculate the leading-order velocity field in the
case of a straight channel of varying cross section and illus-
trate the flow patterns on a sinusoidally varying channel. We
conclude in Sec. IV with a discussion of both the practical
advantages and limitations that these results imply for mix-
ing design. Appendices A 1 and A 2 present proofs for some
of the results used in Secs. II A and II B, respectively.

II. THREE-DIMENSIONALITY OF THE FLOW

A. Straight microchannel of varying cross section

In this section we consider the case of a straight micro-
channel of varying cross section, as illustrated in Fig. 2. A
pressure-driven flow takes place in thex direction of a chan-
nel of constant height 2h in thez direction and varying width
2h f(x/l) in they direction, wherel is the axial length scale
on which such variations occur. The equations of motion and
mass conservation for an incompressible Stokes flow are
written

¹p5m¹2u, ¹.u50, ~1!

with the no-slip boundary conditionu(x,y56h f(x/l),z)
5u(x,y,z56h)50, on the four bounding surfaces. The
flow rateQ is set by upstream conditions and is constant

FIG. 1. Generic view of a microchannel constrained to remain between two
parallel planes. The design of the channel has two degrees of freedom:~1!
The trajectory of its centerline and~2! the relative width of the channel
around this centerline.

FIG. 2. Straight channel of slowly varying cross section in they direction.
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E
2h

h E
2h f(x/l)

1h f(x/l)

~u.ex!dydz5Q. ~2!

We now make the assumption that the width of the channel is
slowly varying. If we definee5h/l, this assumption is
equivalent to assuming thate!1. Using the notationsu
5(u,v,w) for the velocity field, we can now nondimension-
alize the previous set of equations~1! and ~2! by scaling
lengths, velocities, and pressure by

~x,y,z!5~l x̃,hỹ,hz̃!, ~u,v,w!5
Q

h2 ~ ũ,e ṽ,ew̃!,

~3!

p5
lmQ

h4 p̃.

Dropping the tildes in the dimensionless variables for conve-
nience, the dimensionless Stokes equation is

¹p5S e2
]2

]x2 1
]2

]y2 1
]2

]z2D @u,e2v,e2w#, ~4!

and the dimensionless continuity equation is

]u

]x
1

]v
]y

1
]w

]z
50. ~5!

We look for a regular perturbation expansion for both the
velocity and pressure fields under the form

~u,v,w,p!5~u0 ,v0 ,w0 ,p0!1e2~u2 ,v2 ,w2 ,p2!

1O~e4!, ~6!

which is usual in lubrication theory~see, e.g., Ref. 21!. The
leading-orderO(e0) term of Stokes equation~1! is given by

]p0

]x
5S ]2

]y2 1
]2

]z2Du0 ,
]p0

]y
5

]p0

]z
50, ~7!

subject to the no-slip boundary conditionu0(x,y
56 f (x),z)5u0(x,y,z561)50, and constant flow rate

4E
0

1E
0

f (x)

u0dydz51. ~8!

The axial velocityu0 is then easily calculated by separation
of variables15

u0~x,y,z!5
1

2

dp0

dx H ~z221!

1 (
n>0

4~21!n

kn
3 S coshkny

coshknf ~x! D cosknzJ ~9!

with kn5(n1 1
2)p. This solution is simply the axial

Poiseuille velocity in a straight channel of constant cross
section evaluated at each location along the channel. The
leading-order axial pressure gradient is then given by the
flow rate condition~8! which leads to

dp0

dx
5

3

4 f ~x! H 6

f ~x! (
n>0

tanh~knf ~x!!

kn
5 21J 21

. ~10!

Note that~4! and ~5! show that at next order ine2, the
leading-order out of plane velocity field (v0 ,w0) satisfies a

two-dimensional Stokes equation with an effective distribu-
tion of mass sources and sinks given by2]u0 /]x. Let us
now assume these sources and sinks lead to a planar velocity
field is planar in the sense that the component of the velocity
perpendicular to the constraint plane is zero,w050. In this
case, the continuity equation from~1! is written

]u0

]x
1

]v0

]y
50, ~11!

and allows us to solve explicitly for they-component of the
velocity v0 . Using the fact thatu0 satisfies the no-slip con-
dition on the walls of the channels, it is straightforward to
obtain thatv0 is given by

v0~x,y,z!5
]

]x E2 f (x)

y

u0~x,y8,z!dy8. ~12!

The solution~12! satisfies the no-slip conditions forv0 at z
561 andy52 f (x). If it also satisfies the remaining no-
slip condition at y5 f (x) then the leading-order solution
would be entirely characterized and the flow would be planar
at leading-order. The condition aty5 f (x) will however be
satisfied if and only if

]

]x E2 f (x)

f (x)

u0~x,y8,z!dy850, ~13!

for all values ofx andz in the channel. Using solution~9!,
Eq. ~13! can be integrated once to get

dp0

dx H (
n>0

~21!n

kn
4 ~ tanh~knf ~x!!2kn!cosknzJ 5F~z!.

~14!

In order for Eq.~14! to be satisfied for alluzu<1 andx>0, it
is then necessary that for alln>0

dp0

dx
~ tanh~knf ~x!!2kn!5dn , ~15!

where the$dn% are constants independent ofx. As is shown
in Appendix A 1, this can only be true iff (x) is constant, i.e.,
if the channel cross section is constant. As a consequence,
the vertical component of the velocity fieldw0 cannot be
zero unless the cross section of the channel is constant, in
which casev05w050. When this is not the case and the
cross section is changing along the channel, then the two-
dimensional solution~9!–~12! is inconsistent and the veloc-
ity field is fully three-dimensional at this order.

B. Channel of constant cross section with varying
curvature

We now proceed in the same manner as in Sec. II A for
the case of the channel of constant cross section but varying
curvature, as illustrated in Fig. 3. A pressure-driven flow
takes place in the axial direction, denoted ass, of a channel
of constant height 2h in the z direction and constant width
2d in the third direction, denoted asn for ‘‘normal.’’ The
centerline of the channel is not straight but curved with local
radius of curvatureR(s)5R0f (s/l) in the orthogonal
(en ,es ,ez) frame, wherel is the typical length scale along
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the channel on which this local curvature changes. In this
geometry, and using the notationsu5(u,v,w) for the veloc-
ity field, it is possible after some algebra to write the dimen-
sional Stokes equation~1! under the form

1

m

R~s!

R~s!1n

]p

]s
5

]2u

]z2 1S R~s!

R~s!1nD 2 ]2u

]s2

1
]

]n S 1

R~s!1n

]

]n
~R~s!1n!uD

1
2R~s!

~R~s!1n!2

]v
]s

1
R~s!

~R~s!1n!2

]v
]n

dR

ds
, ~16a!

1

m

]p

]n
5

]2v
]z2 1S R~s!

R~s!1nD 2 ]2v
]s2

1
]

]n S 1

R~s!1n

]

]n
~R~s!1n!v D

2
2R~s!

~R~s!1n!2

]u

]s
1

R~s!

~R~s!1n!3

3
dR

ds S n
]v
]s

2uD , ~16b!

1

m

]p

]z
5

]2w

]z2 1S R~s!

R~s!1nD 2 ]2w

]s2 1
1

R~s!1n

]

]n S ~R~s!

1n!
]w

]n D1
nR~s!

~R~s!1n!3

dR

ds

]w

]s
, ~16c!

and the continuity equation is written

S R~s!

R~s!1nD ]u

]s
1

1

R~s!1n

]

]n
~~R~s!1n!v !1

]w

]z
50.

~17!

The two sets of equations~16! and ~17! are associated with
the no-slip boundary condition on the walls of the channel
u(s,n56d,z)5u(s,n,z56h)50, as well as with the con-
dition of constant flow rate along the channel

E
2h

h E
2d

d

~u.es!dzdn5Q. ~18!

As in Sec. II A, we now assume a slowly varying curvature,
i.e., we assume that bothh/l!1 and d/l!1. Equations
~16!–~18! can be nondimensionalized by scaling lengths, ve-
locities and pressure by

~s,n,z!;~l s̃,dñ,hz̃!, ~u,v,w!5
Q

hd S ũ,
e

a
ṽ,ew̃D ,

~19!

p5
lmQ

h3d
p̃

where we denoted the aspect ratioa5h/d5O(1). Defining
b5d/R0 and e5h/l!1, and dropping the tildes in the di-
mensionless variables for convenience, the dimensionless
Stokes equation is

f ~s!

f ~s!1bn

]p

]s
5

]2u

]z2 1e2S f ~s!

f ~s!1bnD 2 ]2u

]s2

1
]

]n S a2

f ~s!1bn

]

]n
~ f ~s!1bn!uD

1
2e2b f ~s!

~ f ~s!1bn!2

]v
]s

1
e2f ~s! f 8~s!

~ f ~s!1bn!2

]v
]n

,

~20a!

]p

]n
5

e2

a2

]2v
]z2 1

e4

a2 S f ~s!

f ~s!1bnD 2 ]2v
]s2

1e2
]

]n S 1

f ~s!1bn

]

]n
~ f ~s!1bn!v D

2
2e2b f ~s!

~ f ~s!1bn!2

]u

]s
1

e3b f ~s! f 8~s!

a~ f ~s!1bn!3

3S n
e

a

]v
]s

2uD , ~20b!

]p

]z
5e2

]2w

]z2 1e4S f ~s!

f ~s!1bnD 2 ]2w

]s2

1
e2a2

f ~s!1bn

]

]n S ~ f ~s!1bn!
]w

]n D
1

ne4b f ~s! f 8~s!

~ f ~s!1bn!3

]w

]s
, ~20c!

and the dimensionless continuity equation

f ~s!

f ~s!1bn

]u

]s
1

1

f ~s!1bn

]

]n
~ f ~s!1bn!v1

]w

]z
50.

~21!

Note that b is not necessary small in actual MEMS
applications.22 We then look for a regular perturbation ex-
pansion for both the dimensionless velocity and pressure
fields under the form

~u,v,w,p!5~u0 ,v0 ,w0 ,p0!1e2~u2 ,v2 ,w2 ,p2!

1O~e4!. ~22!

The leading-orderO(e0) of the Stokes equation~16! is

FIG. 3. Curved microchannel of constant cross section and slowly varying
planar curvature.
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f ~s!

f ~s!1bn

]p0

]s
5

]2u0

]z2 1
]

]n S a2

f ~s!1bn

]

]n
~ f ~s!

1bn!u0D , ~23a!

]p0

]n
5

]p0

]z
50, ~23b!

together with the no-slip boundary conditionu0(s,n
561,z)5u0(s,n,z561)50, and constant flow rate

E
21

1 E
21

1

u0dzdn51. ~24!

Using separation of variables, it is possible to solve for the
axial velocity component in Eqs.~23! and ~24!, similarly to
what was done by Rieger and Se˘sták16 for the case of a
curved rectangular channel of constant curvature. We obtain

u0~s,n,z!5 f ~s!
dp0

ds H z221

2~ f ~s!1bn!

1 (
n>0

UnS kn~ f ~s!1bn!

ab D cosknzJ , ~25!

where the set of functionsUn are defined by

Un~h!5En~s!K1~h!1Fn~s!I 1~h!, ~26!

with I 1 andK1 as the order-one modified Bessel functions of
the first and second kind, respectively, and with

En~s!5$~ f ~s!2b!I 1~kn
2~s!!

2~ f ~s!1b!I 1~kn
1~s!!%Gn~s!, ~27a!

Fn~s!5$~ f ~s!1b!K1~kn
1~s!!

2~ f ~s!2b!K1~kn
2~s!!%Gn~s!, ~27b!

where

Gn~s!5
2~21!n

kn
3~ f ~s!22b2!

$I 1~kn
2~s!!K1~kn

1~s!!

2I 1~kn
1~s!!K1~kn

2~s!!%21 ~28!

and

kn
6~s!5

kn~ f ~s!6b!

ab
. ~29!

Using the identitiesK0852K1 andI 0852I 1 and the flow rate
condition ~24! we obtain the pressure gradient

dp0

ds
5

1

2 f ~s! H a (
n>0

~21!n
Hn~s!

kn
2

2
1

3b
lnS f ~s!1b

f ~s!2b D J 21

, ~30!

with

Hn~s!5En~s!$K0~kn
2~s!!2K0~kn

1~s!!%

1Fn$I 0~kn
1~s!!2I 0~kn

2~s!!%. ~31!

As in Sec. II A, let us now make the assumption that the
flow is planar, i.e., that the leading-order vertical component
of the velocity field is zero,w050. In this case the continuity
equation~17! becomes

]u0

]s
1

1

f ~s!

]

]n
~ f ~s!1bn!v050, ~32!

which can be used to solved exactly forv0

v0~s,n,z!52
f ~s!

f ~s!1bn

]

]s H E
21

n

u0~ t,n8,z!dn8J . ~33!

The solution~33! satisfies the no-slip boundary condition at
z561 andn521; if the condition atn51 was also satis-
fied, the leading-order velocity field would be two-
dimensional at leading-order,w050. The no-slip boundary
condition evaluated atn51 will, however, be satisfied if and
only if

]

]s H E
21

1

u0~s,n8,z!dn8J 50, ~34!

for all values ofs and z. Using the solution for the axial
velocity ~25!, ~34! can be integrated once to obtain

f ~s!
dp0

ds H (
n>0

cosknzS aHn~s!

kn

2
2~21!n

bkn
3 lnS f ~s!1b

f ~s!2b D D J 5C~z!, ~35!

whereHn is defined in~31!. In order for~35! to be satisfied
for all uzu<1 ands>0, it is necessary that all for alln>0

f ~s!
dp0

ds H aHn~s!

kn
2

2~21!n

bkn
3 lnS f ~s!1b

f ~s!2b D J 5gn ~36!

where the$gn% are constants independent ofs. As is shown
in Appendix A 2,~36! can be satisfied if and only iff (s) is
constant, i.e., if the curvature of the channel is constant, in
which casev05w050. When this is not the case and the
curvature is changing along the channel, then the two-
dimensional solutions~25!–~33! is inconsistent and the ve-
locity field is fully three-dimensional at this order.

III. ILLUSTRATION OF THE THREE-DIMENSIONAL
FLOWS

We have demonstrated in the previous two sections that
flows in channels constrained to remain in a layer of constant
thickness are in general three-dimensional, i.e., they possess
a nonzero component of the velocity perpendicular to the
constraint plane. We illustrate these results in this section for
the case studied in Sec. II A of a straight channel of varying
width. We calculate the three components of the leading-
order velocity field (u0 ,v0 ,w0) and illustrate the flow pat-
terns in a sinusoidally varying channel. The calculation for
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the general case of an asymmetric channel is more intricate
and is available on the Electronic Physics Auxiliary Publica-
tion Service~EPAPS!.30

A. Governing equations

Because the velocity field (u0 ,v0 ,w0) is three-
dimensional, the continuity equation in~1! becomes

]u0

]x
1

]v0

]y
1

]w0

]z
50, ~37!

whereu0 is still given by Eq.~9!. Under Stokes flow condi-
tions, the pressure is harmonic¹2p50, and therefore, the
velocity field always satisfies the biharmonic equation¹4u
50. Consequently, within the lubrication approximations~3!
and~6!, they andz component of the dimensionless velocity
field satisfy

¹'
4 v050, where ¹'

2 [S ]2

]y2 1
]2

]z2D , ~38a!

¹'
4 w050. ~38b!

Similarly, the vorticity is harmonic¹2v50, so that under
the lubrication approximation, its leading-order axial compo-
nentv05]w0 /]y 2 ]v0 /]z satisfies

¹'
2 v050. ~39!

It is necessary to solve the set of equations~37!–~39! along
with the no-slip boundary conditions in order to obtain the
final solution for (v0 ,w0).

B. Subset of equations

Let us now show that it is sufficient to solve Eqs.~37!
and ~38a! to obtain~38b! and ~39!. Let us suppose~37! and
~38a! are satisfied. Evaluating the biharmonic¹'

2 of the con-
tinuity equation~37! leads to

]

]z
¹'

4 w050→¹'
4 w05G~x,y!. ~40!

Because of the symmetries in the configuration illustrated in
Fig. 1, the solution of Stokes equation has to satisfy
w0(x,y,2z)52w0(x,y,z) and also v0(x,y,2z)
5v0(x,y,z). Consequently¹'

4 w0 is also odd with respect to
z and necessarilyG(x,y)50, so that Eq.~38b! is satisfied. In
the same fashion, it is straightforward from~37! to obtain

]¹'
2 v0

]z
50→¹'

2 v05L~x,y!. ~41!

Using the fact thatw0 andv0 are, respectively, odd and even
with respect toz, it is clear thatv0 is odd with respect toz
so thatL(x,y)50. The result of Eq.~39! is, therefore, re-
covered. As a consequence, it is sufficient to solve Eqs.~37!
and ~38a! to obtain the complete solution for the leading-
order velocity field.

C. Velocity field calculation

To obtain the leading-order solution for the three-
dimensional velocity field in the channel, we solve Eqs.~37!

and~38a!, along with the no-slip boundary conditions forv0

andw0 and with the axial velocityu0 given by~9!. In order
to do so, we use the technique introduced more than a cen-
tury ago by Lame´23 to solve planar elasticity problem where
biharmonic equations arise~see also the general discussion
in Ref. 24!. Here we effectively demonstrate that these ideas
also apply as well to slowly varying flows. Using the follow-
ing symmetries in the velocity field:

v0~x,y,2z!5v0~x,y,z!, v0~x,2y,z!52v0~x,y,z!,
~42a!

w0~x,2y,z!5w0~x,y,z!, w0~x,y,2z!52w0~x,y,z!,
~42b!

we look for a solution of~38a! under the form of a double
Fourier series iny andz

v0~x,y,z!5 (
n>0

An~x,y!cosknz

1 (
m.0

Bm~x,z!sinS ,my

f ~x! D , ~43!

with ,m5mp andkn5(n1 1
2)p. In order for~38a! and~42a!

to be satisfied, the functionsAn andBm are given by28

An~x,y!5an~x!Pn~x,y!, Bm~x,z!5bm~x!Qm~x,z!
~44!

with

Pn~x,y!5 f ~x!sinh~kny!2y cosh~kny!tanh~knf ~x!!,
~45a!

Qm~x,z!5tanhS ,m

f ~x! D coshS ,mz

f ~x! D2z sinhS ,mz

f ~x! D ,

~45b!

and where both$an(x)% and$bm(x)% are unknown functions
to be determined. With the axial solution~9! written

u0~x,y,z!5 (
n>0

Un~x,y!cosknz,

~46!

Un~x,y!5
2~21!n

kn
3

dp0

dx S cosh~kny!

cosh~knf ~x!!
21D ,

and with ~43!, integration of the continuity equation~37!
leads to the third component of the velocity field

w0~x,y,z!52 (
n>0

1

kn
S ]Un

]x
1an~x!

]Pn

]y D sinknz

2 (
m.0

,mbm~x!Tm~x,z!

f ~x!
cosS ,my

f ~x! D , ~47!

with

Tm~x,z!5S f ~x!

,m
tanhS ,m

f ~x! D1
f ~x!2

,m
2 D sinhS ,mz

f ~x! D
2

f ~x!

,m
z coshS ,mz

f ~x! D . ~48!
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The sets of unknown functions$an(x)% and $bm(x)% are fi-
nally determined by enforcing the no-slip boundary condi-
tion for the solution~47! at bothz561 andy56 f (x). As
is usually the case for problems involving biharmonic equa-
tions ~e.g., Ref. 24!, the final result involves an infinite sys-
tem of linear algebraic equations given by

an~x!5an~x!1 (
m.0

Anm~x!bm~x!, ~n>0!,

bm~x!5bm~x!1 (
n>0

Bmn~x!an~x!, ~m.0!, ~49!

with

an~x!52
]Un

]x
~x, f ~x!!H ]Pn

]y
~x, f ~x!!J 21

, ~50a!

Anm~x!5
2~21!m11,mkn

f ~x! H ]Pn

]y
~x, f ~x!!J 21

3E
0

1

Tm~x,z!sinknzdz, ~50b!

bm~x!5
2

,mTm~x,1! (
n>0

~21!n11

kn

3E
0

f ]Un

]x
~x,y!cosS ,my

f ~x! Ddy, ~50c!

Bmn~x!5
2~21!n11

kn,mTm~x,1!
E

0

f ]Pn

]y
~x,y!cosS ,my

f ~x! Ddy.

~50d!

Note that, at a given positionx, both the $an(x)% and
$bn(x)% are entirely determined by the instantaneous values
of f (x) and f 8(x); each subsequent order in the long-
wavelength expansion~6! will bring an additional depen-
dence on a higher derivative off (x).

D. Further calculations

1. Axial vorticity

Given the sets of$an(x)% and$bm(x)%, we can evaluate
the axial component of the vorticityv05]w0 /]y
2 ]v0 /]z:

v0~x,y,z!52 (
n>0

1

kn
S ]2Un

]x]y
1an~x!

]2Pn

]y2

2kn
2an~x!Pn~x,y! D sinknz ~51a!

1 (
m.0

S ,m
2 bm~x!Tm~x,z!

f ~x!2

2bm~x!
]Qm

]z D sinS ,my

f ~x! D . ~51b!

2. Quadrant-averaged velocities

The quadrant-averaged velocities can also be evaluated,
for example in the quadrant (y.0,z.0). The flow rate con-

dition ~8! leads to a constant average axial velocity,
^u0&(x)51/4. Integration of~43! and ~47! across the quad-
rant leads to

^v0&~x!5 (
n>0

~21!nan

knf ~x!
E

0

f (x)

Pn~x,y!dy

1 (
m.0

bmf ~x!~11~21!m11!

,m
E

0

1

Qm~x,z!dz

~52!

and

^w0&~x!5 (
n>0

2~21!n11

kn
6f ~x!

d

dx Fdp0

dx
~ tanh~knf ~x!!

2knf ~x!!G . ~53!

E. Case of a sinusoidally varying wall

We chose to illustrate the flow patterns in the case where
the wall shape is described by the dimensionless function
f (x)5110.7 sinx with a ratio of vertical to axial length
scale equal to.1

2p; recall that the actual dimensional wall
shape is described byf (ex) wheree5h/l. The infinite sys-
tem of linear equations~49! was solved numerically by trun-
cating it at finite values ofn and m. The integrals in~50!
only involve linear and trigonometric functions and are
evaluated exactly. Note that apart from the system~49!, sum-
mations are also involved in Eqs.~10! for the pressure gra-
dient and~50c! for bm(x), and they also require numerical
truncations.

For each case, numerical results were obtained, the trun-
cation was refined and the results were found to converge
quickly to a final solution. The truncations atn550 in Eqs.
~10! and ~50c! were found to be suitable to obtain the final
solution. Further, a truncation atn5m520 in the infinite set
of linear equations~49! was also found to be appropriate to
resolve the flow fields, with results essentially unchanged for
higher truncation numbers.

Such techniques allow us to obtain everywhere in space
the three leading-order velocity components and, therefore,
with a simple time advancement scheme, to follow the mo-
tion of individual fluid elements and obtain streamlines.

The main results of our flow calculations are displayed
in Figs. 4–6. Figure 4 presents in-plane velocity plots at
three locations along the channel direction, as well as
isovalue maps at these locations for both in-plane velocity
components (v0 ,w0) and for the axial component of the vor-
ticity (v0).29 Figure 5 displays the flow streamlines along
the expansion part of the channel (3p/2,x,5p/2). Finally,
Fig. 6 displays the maximum cross-sectional as well as av-
erage value of the three components (u0 ,v0 ,w0) of the
leading-order dimensionless velocity as a function of the lo-
cation along the channel centerline.

The numerical results confirm that the flow at leading
order is fully three-dimensional. The plots in Fig. 4 allow us
to visualize the regions of high and low velocity and vortic-
ity and the streamlines in Fig. 5 show the fluid elements are
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indeed vertically displaced as they are advected along the
channel. Note that the similar plots for the contracting part of
the channel were not included here as they can be deduced
from those in Figs. 4 and 5 by symmetry of Stokes’s equa-
tion.

We also note in Fig. 4 that the qualitative picture for the
isovalues ofv0 do not vary much between the point of mini-

mum width (x53p/2) and the point of maximum width (x
55p/2). In contrast tov0 , the distribution of vertical veloc-
ity w0 is modified appreciably: It changes from a monotonic
variation across the channel@left picture in Fig. 4~c!# to a
variation with local minimum–maximum in the middle of
the channel and global maximum–minimum near the chan-
nel walls@middle and right picture in Fig. 4~c!#. Moreover, as

FIG. 4. Illustration of the leading-order three-dimensional flow in the straight planar channel of varying dimensionless cross section given byf (x)51
10.7 sinx. Top: Axial view of the channel. Bottom: Plots of the leading-order dimensionless cross-sectional velocity field (v0 ,w0) and axial vorticityv0 at
three locations along the channel:x55.25, 6.15, and 7.05;~a!: in-plane velocity plots~the velocities are normalized by their maximum in-plane values!; ~b!:
isovalues of they-componentv0 of the velocity, from Eq.~43!; ~c!: isovalues of thez-component of the velocityw0 , from Eq. ~47!; ~d!: isovalues of the
x-component of the vorticityv0 , from Eq. ~51!.
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can be seen in Fig. 4~d!, the axial vorticity is maximum at
the top and bottom walls and decays towards the middle of
the channel (z50); the contracting part is, therefore, the
position along the channel where the strongest stirring of
material surfaces would occur.

Further, the results of Fig. 6 show that under the lubri-
cation approximation, the magnitude of the vertical flow
componentw0 decreases monotonically during an expansion
(3p/2,x,5p/2); by symmetry of Stokes’s equation,w0

increases in a similar fashion during a contraction of the
channel (p/2,x,3p/2).

We see also that for the particular case considered here,
and within the lubrication approximation, the leading-order
y-component of the velocityv0 is always about one order of
magnitude smaller that the axial componentu0 and that the
vertical componentw0 is about one order of magnitude
smaller thanv0 ; back to the dimensional variables, these
statements becomev'eu/10 andw'eu/100.

Finally, the integrated effect of the vertical flow along
the channel length is illustrated in Fig. 5 by the vertical de-
flection of streamlines. The deflection is larger far from the
horizontal centerplane@see Fig. 5~b!# and far from the verti-
cal centerplane@see Fig. 5~a!#. Over the channel half period,
a fluid element on the upper right streamline in Fig. 5~a!
experiences a vertical displacement of about 10% of the
channel half-height.

IV. CONCLUSION

We have shown in this paper that the only planar channel
shapes for which the velocity field is two-dimensional under
Stokes flow conditions have both constant curvature and
constant cross section~in which case the flow field is in fact
unidirectional!. In all other cases for the variation of the
cross section and curvature, the velocity is fully three-
dimensional at zero Reynolds number and could in principle
be used to mix species in simple microdevices that can be
manufactured with one step of microfabrication.

A qualitative summary for the occurrence of the third
component of the flow can be given using the two-
dimensionality condition, i.e., Eq.~13! or ~34!. The velocity
field remains two-dimensional in the channel if the two-
dimensional flow rateQ(z)5*udy is constant along the
channel for eachz. When this is not the case andQ(z) is
streamwise-dependent, a vertical velocity component is in-
duced by mass conservation. What our study shows is that,
under the lubrication approximation, the only channel geom-
etries for whichQ(z) is constant are those which have both
constant width and constant curvature. Note that alterna-
tively, the presence of obstacles such as cylinders in an oth-
erwise straight channel would provide similar geometric fea-
tures necessary for the occurrence of a three-dimensional
flow.20

As the general form of the continuity equation shows,

FIG. 5. Three-dimensional leading-
order streamlines in the planar channel
of varying dimensionless cross section
given by f (x)5110.7 sinx. The
channel is the same as the one illus-
trated in Fig. 4 and only the stream-
lines in the quadrant (y.0,z.0) are
reported; those in the other quadrants
can be found using the flow symme-
tries ~42!. The dimensionless time step
used for computation is 0.025 and 35
initially evenly spaced streamlines are
considered. Top: three-dimensional
view of the streamlines between the
location of minimum widthx53p/2
~squares, filled! and the location of
maximum widthx55p/2 ~diamonds!;
the channel boundary and centerplane
are also displayed. Bottom:~a! Projec-
tion of the streamlines onto the (y,z)
plane;~b! projection of the streamlines
onto the (x,z) plane.
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the magnitude of the ratio of the out-of-plane velocity com-
ponentw to the axial componentu scales as the ratio of the
cross-sectional length scaleh to the length scalel over
which the variations of the channel geometry occur

w

u
'

h

l
5e. ~54!

The numerical results presented in Sec. III E for a sinusoidal
change in cross section show that the prefactors for this scal-
ing is about 0.01 for the ratio of theleading-ordervelocity
fields w0 to u0 and indicate poor mixing. For the caseh
'l, we could expect, however, all orders in the perturbation
expansion to contribute in a nontrivial way, and we expect,
therefore, that with this simple design a vertical flow of
strength comparable to the axial flow could exist; if that is
not the case and the prefactors for the full calculation are not
of order one, the channel will likely present poor mixing
characteristics. Note that as the Reynolds number in micro-
mixers is not exactly zero but can be as high as 100, we also
expect in this case the occurrence of nontrivial Dean flow-
like contributions to the vertical flow.

We propose to design ‘‘planar mixers’’ by a succession
of n mixing cells of lengthl along a single channel. In each
cell, we expect the integrated displacementsdy and dz of
fluid elements in the cross section, advected by the flow at
velocity Uaxial, to be given by

dy'dz't'U' , ~55!

where t' is the residence time for the flow in the cellt'
'l/Uaxial andU' is the magnitude of the transverse flow, at
most U''hUaxial/l so that dy'dz'h. Since the total
length of the mixer isnl and the displacementsdy anddz
are independent of the cell length, small cellsl'h should be
chosen. The challenge in the mixing design would then con-
cern ~1! the design of each cell, i.e., the variations of its
radius of curvature and its cross section, in order to obtain
the maximum cross-sectional displacement and~2! the setup
of the cell succession in a way that mixing adds up instead of
canceling out; for example the channel studied in Sec. III E
would obviously make very poor mixing cells because by
symmetry of Stokes flow and with molecular diffusion ne-
glected, every fluid stirring taking place in one part of the
channel would be unstirred in the other part of the channel
located immediately downstream. In general, good perfor-
mance may be achieved by avoiding any geometrical sym-
metry along the streamwise direction.

The calculations presented in this paper assumed slowly
varying cross-sectional and curvature change along the chan-
nel, e!1. As was shown by Lucas25 for two-dimensional
channels of varying shape, the regular perturbation expan-
sions ~6! or ~22! are expected to have order one or larger
radius of convergence ine; as a consequence, the conclu-

FIG. 6. Illustration of the leading-order three-dimensional flow strength in the planar channel of varying dimensionless cross sectionf (x)5110.7 sinx. The
channel is the same as the one illustrated in Fig. 4 and only the velocities in the quadrant (y.0,z.0) are considered.~a! and~b!: Maximum cross-sectional
values of the three components of the leading-order dimensionless velocity along the channelu0 ~circles!, v0 ~squares, filled!, andw0 ~diamonds!; ~a!: regular
scale,~b!: semilog scale; note that whenv0 and w0 were found to be zero, which happens at each location along the channel wheref 8(x)50 under the
lubrication approximation, they were replaced by 1025 for the semilog figures.~c! and~d!: Same as in~a! and~b! for the quadrant-averaged velocities^u0&,
^v0& and ^w0&; ~c!: regular scale,~d!: semilog scale.
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sions reached using the leading-order velocity fields are valid
for the entire velocity field whene is O~1!, and presumably
higher even though our results cannot be applied directly.
With current microfabrication techniques, the minimum in-
plane dimension ('l) that can be generated is typically
greater than the minimum out-of-plane dimension ('h). As
a consequence, the cross-sectional dimensions of microchan-
nels tend to satisfy the criterion,e,1, and the results ob-
tained in this paper are expected to apply for all such cases.

The limitation of the passive mixing strategy proposed
here lies in the top–bottom symmetry for the velocity field,
(u,v,w)(x,y,2z)5(u,v,2w)(x,y,z), due to the symme-
tries of the Stokes equations. Mixing can, therefore, not be
achieved between the fluids located in thez.0 and z,0
planes and consequently, the streams of solutions that are to
be mixed must be introduced at the inlet of the channel with
alignment in the vertical direction. The case of a straight
channel of varying section studied in Sec. II A also possess a
right–left symmetry, (u,v,w)(x,2y,z)5(u,2v,w)
3(x,y,z), ~see Fig. 4! and, therefore, cannot mix species
fluids located in they.0 andy,0 planes. The configuration
studied in Sec. II B does not possess such a symmetry and
should be used to transport fluid between then.0 and n
,0 planes, similarly to what was achieved in Stroocket al.13

To this effect, we have included the calculation for the
leading-order lubrication velocity field in the case of a chan-
nel of arbitrary shape on the Electronic Physics Auxiliary
Publication Service~EPAPS!.30

A fully numerical approach to the problem~using, e.g., a
boundary element method or a commercial code! would al-
low a detailed study of the proposed mixing design, its opti-
mization, and dispersion characteristics.
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APPENDIX A: PROOFS

1. Proof of result „15… for straight channels

We show in this section that the only set of width func-
tions f (x) that satisfy~15! are the constant functions. Let us
assume that~15! is satisfied for a functionf (x). We first
rewrite Eq.~10! for the pressure gradient under the form

6
dp0

dx (
n>0

tanh~knf ~x!!

kn
5 2 f ~x!

dp0

dx
5

3

4
. ~A1!

We then rewrite the condition~15! for two-dimensionality of
the flow as

dp0

dx
tanh~knf ~x!!5dn1kn

dp0

dx
. ~A2!

Substituting the expression obtained in~A2! into ~A1! leads
to a closed form solution for the axial pressure gradient

dp0

dx
5

D1

D22 f ~x!
, D15

3

4
26(

n>0

dn

kn
5 , D256(

n>0

1

kn
4 .

~A3!

As a conclusion, the functional form~A3! obtained for the
pressure gradient is not consistent with that given by the
assumption of the two-dimensionality of the flow~15!

dp0

dx
5

dn

tanh~knf ~x!!2kn
, ~A4!

unless the functionf (x) is constant.

2. Proof of result „36… for curved channels

We show in this section that the only set of curvature
functionsf (s) that satisfy~36! are the constant functions. Let
us assume that~36! is satisfied for a functionf (s). We first
rewrite Eq.~30! for the pressure gradient under the form

2 f ~s!
dp0

ds (
n>0

~21!n
aHn~s!

kn
2

2
2 f ~s!

3b

dp0

ds
lnS f ~s!1b

f ~s!2b D51. ~A5!

We then rewrite the condition~36! for two-dimensionality of
the flow as

f ~s!
dp0

ds

aHn~s!

kn
5

2~21!n

bkn
3 lnS f ~s!1b

f ~s!2b D f ~s!
dp0

ds
1gn .

~A6!

Substituting~A6! into ~A5! leads to a closed-form solution
for the streamwise pressure gradient

f ~s!
dp0

ds
5

D3 lnS f ~s!1b

f ~s!2b D
ln2S f ~s!1b

f ~s!2b D2D4

,

~A7!

D353bH (
n>0

~21!ngn

kn
2

1

2J , D456(
n>0

1

kn
4 .

Further, it is possible to use the asymptotic behaviors near
x;` of Bessel functions ~see, e.g., Ref. 26! I p(x)
;ex/A2px, Kq(x);pe2x/A2x to obtain the asymptotic be-
haviors ofEn(s), Fn(s), Gn(s) asn→1`, from Eqs.~27a!,
~27b!, and~28!, respectively. It is then straightfoward to ob-
tain the asymptotic behavior ofHn

Hn~s!;
4~21!nf ~s!

kn
3~ f ~s!22b2!

. ~A8!

This behavior and the condition of two-dimensionality~36!
allows to obtain an alternate functional behavior for the
streamwise pressure gradient

f ~s!
dp0

ds
;D5 lnS f ~s!1b

f ~s!2b D , D55
bkn

3~21!n11gn

2
.

~A9!
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As a conclusion, the two functional forms obtained assuming
two-dimensionality of the flow~A7! and ~A9! are not con-
sistent with each other unless the functionf (s) is a constant.
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