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We consider laminar flow in channels constrained geometrically to remain between two parallel
planes; this geometry is typical of microchannels obtained with a single step by current
microfabrication techniques. For pressure-driven Stokes flow in this geometry and assuming that the
channel dimensions change slowly in the streamwise direction, we show that the velocity
component perpendicular to the constraint plane cannot be zero unless the channel has both constant
curvature and constant cross-sectional width. This result implies that it is, in principle, possible to
design “planar mixers,” i.e., passive mixers for channels that are constrained to lie in a flat layer
using only streamwise variations of their in-plane dimensions. Numerical results are presented for
the case of a channel with sinusoidally varying width.2004 American Institute of Physics.
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I. INTRODUCTION then the axial length of channel required for mixing is likely
to be impractically long, regardless of the detailed character

The rapid development of microfluidic systems and theirof the flow. (2) The distribution of transverse flows within
applications in domains such as aeronautics, chemistry, mahe cross section of the channel. If the flows are confined to
terial synthesis, medical diagnostics and drug delivery hagmall areas within the cross section, then they will be inef-
recently motivated investigations of new research questiongective at exchanging fluid between these areas and with ar-
in fluid dynamics at small scalés® A particularly active  eas in which no flow existg3) The evolution of the trans-
research area is the design of mixers for microdevices. Thigerse flows as a function of axial position along the channel.
task has proven itself to be a real engineering challenge dug, efficient mixer should produce Lagrangian chaos; in par-
to a variety of physical and practical constraints. PhySica"Yticular, no streamwise symmetries should be predtitis

the typical cross-sectional dimensions of microchannels gt re is achieved in a channel geometry when the position

current microfiuidic systems are on the order of 10-100,,4 grientation of transverse flows vary axially such that all
pum.=*0n this scale, practical flows of common liquidd (

fluid elements travelling in the channel experience an alter-
~0.1-10 cm/s) have low Reynolds numbeRe<10, and g P

turbulent mixing of the fluid d not aenerall ¢ At th nating sequence of rotational and extensional fldws.
urbuler g ot the fiuid does haot generatly occur. N In designing a laminar mixer for microfluidic applica-
same time, the Peclet number for mass transfer in thesg

flows, defined as the ratio of a typical diffusive time to aj[lOl'lS, it is also Important to take into account the constraints

typical advection time is higtR e>100, and purely diffusive mposed hby It(;acgmologly ;ndt convelrlsatlon tlaws. De§|§tjnst c;f
mixing across the flow is slow. For applications that requirem'xl_ers z ould el scalable 1o srga ;r Sys emf]’ resistant to
mixing, it is therefore necessary to design channels that wilfOu Ing by pa“'C!J ate matter, and e |g|ent ,W't respect to
lead to efficient convective mixing power consumption. Moreover, the typical lithographic pro-

In a channel geometry, the strongest gradients of concen‘?—esse? currently used in microfabrication lead to planar ge-
tration are typically oriented in a direction normal to the OMetries. . o 1s
principal axis of the channel, because the gradients exist be- A variety of activé® and passive ™ methods have re-
tween coflowing streams of distinct chemical makeup. Ancently been proposed to generate stirring flows for mixing
effective mixing flow in a channel must therefore stir the Purposes. All of the passive designs that have been demon-
fluid over the cross section with transverse flows as the fluigtrated to be effective rely however on multilayer or nonpla-
progresses downstream in the axial flow; such a flow mushar structures in order to generate three-dimensional flows. A
possess three nonzero components. An effective stirring flowingle lithographic step generates a single flat layer of struc-
rapidly folds the fluid into itself so as to decrease the disiure with horizontal top and bottom walls aricelatively)
tance that diffusion must act to homogenize concentrationszertical side walls(see Fig. 1** More complicated struc-
The potential of a given channel flow to mix efficiently can tures, e.g., a nonintersecting crossover between two chan-
be judged by several characteristi¢d) The ratio of the nels, require multiple lithographic steps, with spatial align-
transverse to the axial velocities. If this ratio is too small,ment between each layer of structure. Each added layer of
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FIG. 2. Straight channel of slowly varying cross section in yhdirection.

FIG. 1. Generic view of a microchannel constrained to remain between two
parallel planes. The design of the channel has two degrees of freétlbm: number unity based on the cylinder length, and showed the

The trajegtory of it.s centerline an@) the relative width of the channel presence of streamwise vorticity in a boundary |ayer on the
around this centerline. . .
cylinder surface; an earlier study by Thomp&biocused on
viscous features.

The geometry of a generic microchannel constrained be-
structure increases the difficulty of fabrication and compli-tween two parallel planes with fixed separation and with no
cates scaling down to smaller devices. obstacles is illustrated in Fig. (top). The shape of the chan-

Motivated by such practical considerations in this papernel can be entirely described by two degrees of freeddm:
we will be interested in characterizing the potential for mix- The trajectory of its centerline plane af® the local sym-
ing of the simplest planar geometrical configurations ob-metric width of the channel around this centerline. We will
tained in a single fabrication step. Two such geometries argonsider in this paper the consequences of both and will treat
illustrated in Fig. 1. Suppose we fabricate a channel coneach of them separately for simplicity.
strained between two parallel planes of constant separation, The paper is organized as follows. In Sec. Il A we con-
can such a configuration mix? In order to be able to give aider the case of a straight channel with varying cross section
answer to this question that is robust to change in flow conin the direction perpendicular to both the flow and the con-
ditions, we will assume zero Reynolds number flows in thestraint plane and in Sec. Il B we consider the case of a curved
channel. This assumption also implies that our conclusionghannel of constant cross section but varying curvature. In
will remain valid in smaller flow systems of the same design.both cases, under the assumption of an arbitrary but slowly
It is known that the steady-state velocity field in avarying cross section and curvature, respectively, we show
straight channel of constant rectangular cross section ighat the velocity component perpendicular to the constraint
unidirectionat® and, therefore, cannot mix except by mo- plane cannot be zero unless cross section and curvature are
lecular diffusion; similarly, the velocity field in a curved both constant, and therefore the flow is fully three-
channel of constant cross section and constant curvature gimensional in all other cases. We apply these results in Sec.
unidirectional’®*’ As a consequence, the simplest potentiallll where we calculate the leading-order velocity field in the
design for asteady-statenixer for Stokes flow is that of a case of a straight channel of varying cross section and illus-
channel with variations of shape, that include changes ofrate the flow patterns on a sinusoidally varying channel. We
both curvature and cross-sectional dimensions in the streangonclude in Sec. IV with a discussion of both the practical
wise direction. advantages and limitations that these results imply for mix-
In order for flow in such a channel to potentially mix by ing design. Appendices A1 and A2 present proofs for some
advection in the three dimensions of the channel, the velocityf the results used in Secs. Il A and Il B, respectively.
field needs three nonzero components. While it is clear that
these variations in shape will lead to nonzero in-plane com-
ponents of the velocity, as would also be the case in a truly|, THREE-DIMENSIONALITY OF THE FLOW
two-dimensional channel, it is not obvious that tfikird) , , ) )
out-of-plane component wilklways be nonzero. We ask, A Straight microchannel of varying cross section
therefore, the following questionnder which circum- In this section we consider the case of a straight micro-
stances is the out-of-plane component of the velocity fieldhannel of varying cross section, as illustrated in Fig. 2. A
always nonzerd And in this case, what is the expected mag-pressure-driven flow takes place in thélirection of a chan-
nitude of the vertical flow? nel of constant heightt2in thez direction and varying width
The flows in a circular pipe of varying cross-secfibar ~ 2hf(x/\) in they direction, where\ is the axial length scale
varying small curvaturé have been studied and three- on which such variations occur. The equations of motion and
dimensional flow is obtained at zero Reynolds number. Howmass conservation for an incompressible Stokes flow are
ever, because the equation for the shape of a circular pipgritten
couples the two directions that are perpendicular to its axis
of symmetry, these results cannot be applied to the flow in a Vp=uV?u, V.u=0, @
planar geometry and a separate analysis has to be carried owith the no-slip boundary condition(x,y= *£hf(x/\),z)
Recently, Bals¥ studied the secondary flow in a Hele-Shaw =u(x,y,z=+h)=0, on the four bounding surfaces. The
cell in which a vertical cylinder is immersed, at Reynoldsflow rateQ is set by upstream conditions and is constant
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two-dimensional Stokes equation with an effective distribu-
tion of mass sources and sinks given byuy/dx. Let us

now assume these sources and sinks lead to a planar velocity
We now make the assumption that the width of the channel ifield is planar in the sense that the component of the velocity
slowly varying. If we definee=h/\, this assumption is perpendicular to the constraint plane is zesg=0. In this
equivalent to assuming that<1. Using the notationsi case, the continuity equation froft) is written

=(u,v,w) for the velocity field, we can now nondimension-

alize the previous set of equatioii$) and (2) by scaling
lengths, velocities, and pressure by

(X,y,2)=(A\X,hy,h2), (u,v,W)=%(TJ,eﬁ,e\7v),

"o €
P="h P

Dropping the tildes in the dimensionless variables for conve- ~ VoX%:¥:2)= 50 f_f(X)UO(X’y 2)ay’.

nience, the dimensionless Stokes equation is

#? P dP
Vp: 620_XZ+WZ+3_22 [U,GZU,GZW], (4)

and the dimensionless continuity equation is

Ju Jdv Iw

&4-@4'5:0. (5)

We look for a regular perturbation expansion for both the

velocity and pressure fields under the form
(U,0,W,p)=(Ug,00,Wo,Po) + €(Uz,v2,W,Py)
+0(eY), (6)

which is usual in lubrication theorgsee, e.g., Ref. 31The
leading-order®(€®) term of Stokes equatiofi) is given by

apy [ & dPo_ IPo
a—x—(wﬁa—zzuo' oy oz @

subject to the no-slip boundary conditiorug(x,y
==*+f(x),2)=up(X,y,z= *1)=0, and constant flow rate

1 (%)
4J J updydz=1. )
0JO

dug  dug _

x Ty O (11)

and allows us to solve explicitly for thg-component of the
velocity vy. Using the fact thati, satisfies the no-slip con-
dition on the walls of the channels, it is straightforward to
obtain thatv is given by

(12

The solution(12) satisfies the no-slip conditions fog at z
=+1 andy=—f(x). If it also satisfies the remaining no-
slip condition aty=f(x) then the leading-order solution
would be entirely characterized and the flow would be planar
at leading-order. The condition gt=f(x) will however be
satisfied if and only if

i Jf(x) ",z)dy’ =0 13
X (X)uo(x,y ,2)dy’ =0, (13

—f

for all values ofx andz in the channel. Using solutio®),
Eqg. (13) can be integrated once to get

d -1)"
Pols %(tanr(knf(x))—kn)cosknz =d(2).
dx n=0 kn
(14)

In order for Eq.(14) to be satisfied for allz|<1 andx=0, it
is then necessary that for ak=0

dpo _

5 (1Nt () = ko) =3y, (15
where the{ 6, } are constants independentxafAs is shown

in Appendix A 1, this can only be true ff(x) is constant, i.e.,
if the channel cross section is constant. As a consequence,

The axial velocityu, is then easily calculated by separation the vertical component of the velocity fielat, cannot be

of variableg®

1ldp
Uo(X,y,Z):Ed—XO{( 2-1)
4(—=1)"[ coshk,y
t2 K (coshknf(x) cosknz (9)

with k,=(n+3)w. This solution is simply the axial

Poiseuille velocity in a straight channel of constant cross

zero unless the cross section of the channel is constant, in
which casevy=wy=0. When this is not the case and the
cross section is changing along the channel, then the two-
dimensional solutior{9)—(12) is inconsistent and the veloc-
ity field is fully three-dimensional at this order.

B. Channel of constant cross section with varying
curvature

We now proceed in the same manner as in Sec. Il A for

section evaluated at each location along the channel. Thge case of the channel of constant cross section but varying
leading-order axial pressure gradient is then given by theyrature, as illustrated in Fig. 3. A pressure-driven flow

flow rate condition(8) which leads to

dpo 3 6 tanh(k,f(x)) -1
dx  4f(x) | F(x) &o kS “

Note that(4) and (5) show that at next order ig?, the
leading-order out of plane velocity field §,wg) satisfies a

(10

takes place in the axial direction, denotedsa®f a channel

of constant height R in the z direction and constant width
2d in the third direction, denoted as for “normal.” The
centerline of the channel is not straight but curved with local
radius of curvatureR(s)=Ryf(s/\) in the orthogonal
(e,,65,6,) frame, where is the typical length scale along
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As in Sec. Il A, we now assume a slowly varying curvature,
i.e., we assume that both/A<1 and d/A<1. Equations
(16)—(18) can be nondimensionalized by scaling lengths, ve-
locities and pressure by

~ €~ ~
u,—v,ew|,
a

(19

alo

(s,n,z)~(\8,dn,hz), (u,o,w)=

FIG. 3. Curved microchannel of constant cross section and slowly varying AuQ
planar curvature. Ly

P= 13 P
where we denoted the aspect ratie-h/d= O(1). Defining
the channel on which this local curvature changes. In thig#=d/Ry and e=h/A<1, and dropping the tildes in the di-
geometry, and using the notations (u,v,w) for the veloc- mensionless variables for convenience, the dimensionless
ity field, it is possible after some algebra to write the dimen-Stokes equation is

sional Stokes equatiofi) under the form 2 2

_f9 ap_du z(& ou
1 R(s) ap u | R(s) |2 f(s)+pnas 22 © |f(s)+Bn/ o5
wR(s)+n ds o022 (R(S)+n 952 P a2 9
T, il 7w 109 60
a_n(R(s)+n gn (RS MU . 2€2Bf(s) w ef(9)f'(s) v
2R(S) v (f(s)+Bn)% as ~ (f(s)+Bn)? on’
" R5)+n)? 75 (208
R(s) Jdv dR p e v € f(s) \%d%
" RS0 an ds’ (163 n 2L —f(s)+,8n) Fd
1op d% R(s) \%d% Zi(;i )
w2 o) = " g an S TAN
p 1 p B 2€Bf(s) &_u+ epf(s)f'(s)
+%(m%(R(S)+n)U (f(s)+Bn)2 ds  a(f(s)+Bn)°
__ R R % nfg_”_u)' (20b)
(R(s)+n)2 s ' (R(s)+n)? @ Js
dR[ v ap _ ,dwW 4( f(s) |\2aPw
x£<n£—u), (16b 7z €92 T \fsrpn) 92
1dp °w R(s) \%d*w 1 g +%%((f(s)+ﬁn)%)
;E=?+(—R(s>+n 92 T Rgtn an| (RS
p Rs) dRaw nepH(S)1(9) ow (200
w n — =
G e (169 (fo+p s
and the dimensionless continuity equation
and the continuity equation is written
1s) ﬁ—u+ ! i f(s)+B8n) +(9—W—0
R(s) | du 1 J aw f(s)+pBn ds f(s)+pBn ﬁn( ( pnjv gz
R(s)+n (9_5+R(s)+n %((R(s)+n)v)+5—0. (2D

17 Note that B8 is not necessary small in actual MEMS

) ) _ applications’? We then look for a regular perturbation ex-
The two sets of equationd6) and(17) are associated with angion for both the dimensionless velocity and pressure
the no-slip boundary condition on the walls of the c:hannelfields under the form

u(s,n==d,z)=u(s,n,z= =h)=0, as well as with the con-

dition of constant flow rate along the channel (u,v,W,p)=(Ug,vg,Wo,Po) + €2(Uy,U2,Wy,P5)
h (d +O(eh). (22)
J J (u.e5)dzdn=Q. (18) ) 0 ) )
—hJ-d The leading-orde®(e”) of the Stokes equatiofl6) is
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f(s) dpo Ug o?
f(s)+pn as 9z +an(f(s)+'3n o ((s)
+Bn)u0), (23@
ﬁpo_ﬁpo_
n gz (230

together with the no-slip boundary conditiong(s,n
==*17)=ug(s,n,z=£1)=0, and constant flow rate

1 1
f f ugdzdn=1.
-1J-1

(24

Using separation of variables, it is possible to solve for thefied,

axial velocity component in Eq$23) and (24), similarly to

Three-dimensional flows in planar geometries 3055

As in Sec. Il A, let us now make the assumption that the
flow is planar, i.e., that the leading-order vertical component
of the velocity field is zerowy= 0. In this case the continuity
equation(17) becomes

é’uo

(f(S)+Bn)vo 0, (32

f(s) an

which can be used to solved exactly foy

1) i{ fn uo(t,n’,z)dn’}. (33
-1

UO(S,H,Z)Z — m 7

The solution(33) satisfies the no-slip boundary condition at
z==*1 andn=—1; if the condition an=1 was also satis-
the leading-order velocity field would be two-
dimensional at leading-ordew,=0. The no-slip boundary

what was done by Rieger and $&!® for the case of a condition evaluated at=1 will, however, be satisfied if and
curved rectangular channel of constant curvature. We obtai@nly if

dpo[ Z°-1
Uo(5:1,2) = F(5) 22 {W
(s)+pBn
+2 U (%)

n=0

cosknz] , (25

where the set of functiond,, are defined by

Un(7)=En(s)K1(7) +Fn(s)11(7), (26)

with I, andK; as the order-one modified Bessel functions of

the first and second kind, respectively, and with

En(s)={(f(s)—PB)I1(k, (s))

—(f(s)+ B)l1(Ky (9)}Gy(S), (273
Fa(s)={(f(s)+B)Ky(ky (s))
—(f(s)= BIK1(Ky (5)}Gn(9), (27b)
where
n<s>—1(+)nz{l Ky (S)Ka(K; ()
k3(f(s)?—5?)
— 1k (8))K4(ky ()} 2 (28)
and
k§(s>=%}fﬁ). (29

Using the identitie& ;= — K3 andl ;= —1, and the flow rate
condition (24) we obtain the pressure gradient

dpo 1 )
E‘Zf(s)l 2, Ve
1 f(S)+B)
3B|n<f(S)—B ’ 39
with
Ha(S) = En(SH{Ko(ky (8))— Ko(ky ()}
FE 100 (9) ~o(ky (S} 31

%[ J_lluo(s,n’,z)dn’}=0, (34

for all values ofs and z. Using the solution for the axial
velocity (25), (34) can be integrated once to obtain

f( ) d nz cosk,z %nn(s)
,Bk?’ln(f(sHB . |
" f(s)-B

whereH,, is defined in(31). In order for(35) to be satisfied
for all |zZj<1 ands=0, it is necessary that all for ati=0

(Gofats) 21" )
&G Tk, o (f(s)+ﬂ) = n
Palnl te)—p

where the{y,} are constants independent®fAs is shown

in Appendix A 2,(36) can be satisfied if and only if(s) is
constant, i.e., if the curvature of the channel is constant, in
which casevy=wy=0. When this is not the case and the
curvature is changing along the channel, then the two-
dimensional solution$25)—(33) is inconsistent and the ve-
locity field is fully three-dimensional at this order.

(36)

lll. ILLUSTRATION OF THE THREE-DIMENSIONAL
FLOWS

We have demonstrated in the previous two sections that
flows in channels constrained to remain in a layer of constant
thickness are in general three-dimensional, i.e., they possess
a nonzero component of the velocity perpendicular to the
constraint plane. We illustrate these results in this section for
the case studied in Sec. Il A of a straight channel of varying
width. We calculate the three components of the leading-
order velocity field (y,v9,Wg) and illustrate the flow pat-
terns in a sinusoidally varying channel. The calculation for
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the general case of an asymmetric channel is more intricatend (383, along with the no-slip boundary conditions fog
and is available on the Electronic Physics Auxiliary Publica-andw, and with the axial velocity, given by(9). In order

tion Service(EPAPS.% to do so, we use the technique introduced more than a cen-
tury ago by Lamé& to solve planar elasticity problem where
A. Governing equations biharmonic equations arisesee also the general discussion

in Ref. 24. Here we effectively demonstrate that these ideas
also apply as well to slowly varying flows. Using the follow-
ing symmetries in the velocity field:

Because the velocity field ug,vg,wg) is three-
dimensional, the continuity equation () becomes

aUO (91)0 &WO

2424 "D, (B7)  vo(XY,—2)=vo(X,Y,2), vo(X,—Y,2)=—vo(X,Y,2),
ax dy oz (423
whereuy is still given by Eqg.(9). Under Stokes flow condi- _ _

tions, the pressure is harmon?p=0, and therefore, the Wo(X, —Y,2) =Wo(X,y.2), WO(X’y’_Z)__WO(X’y'Z)(’Aer)
velocity field always satisfies the biharmonic equatitu

=0. Consequently, within the lubrication approximatid8s  we look for a solution of(38a under the form of a double

and(6), they andz component of the dimensionless velocity Fourier series iry andz

field satisfy
2 52 vo(X,Y,2)= >, An(X,y)cosk,z
V40o=0, where V?= (W—I-F (389 n=0
€y
V4wo=0. (38b) + 2 Br(x,2)sin 755, (43)

Similarly, the vorticity is harmonicdV?w=0, so that under
the lubrication approximation, its leading-order axial compo-
nentwy=dwg/dy — dvy/dz satisfies

with € ,=m andk,= (n+ 3) 7. In order for(38a and(42a
to be satisfied, the functions, andB,, are given b¢®

V2 wy=0. (39) An(X,y) =an(X)Pr(X,y), Bm(X,Z)me(X)Qm(X.Zz44)
It is necessary to solve the set of equati¢®®—(39) along ith
with the no-slip boundary conditions in order to obtain the W't
final solution for ©o,Wo). Pa(x,y)=f(x)sinh(k,y)—y cosr(kny)tanr(knf(x))(, .

45
B. Subset of equations
o - €m {mz o tmZ

Let us now show that it is sufficient to solve E{87) Qu(x,z)=tan cos —zsinh —|,

and (383 to obtain(38h) and(39). Let us supposé37) and fx) 0 f(x) (45

(389 are satisfied. Evaluating the biharmoW@ of the con-
tinuity equation(37) leads to and where botha,(x)} and{b,(x)} are unknown functions
to be determined. With the axial soluti@®) written

J
Ev‘jw(,zoﬂvjwozr(x,y). (40)
o - CUg(XY,2)= X Un(x,y)cosknz,
Because of the symmetries in the configuration illustrated in n=0
Fig. 1, the solution of Stokes equation has to satisfy (46)
2(-1)"d coshk
Wo(X,Y, —2) = —Wg(X,Y,2) and also  vo(x,y,—2) Z/In(X,y)=(—3)E(M—1),
=vo(X,y,2). Consequenthiv 4w, is also odd with respect to kn  dx |coshik,f(x))

z and necessarily (x,y) =0, so that Eq(38b) is satisfied. In

the same fashion, it is straightforward frdi®7) to obtain and with (43), integration of the continuity equatio(87)

leads to the third component of the velocity field
8Vf [Os)

— =0—-V?we=A(X,y). (42)

1oy P,
wo(x,y,z)=—nz i ox +an(X) — 7y sink,z

Using the fact thatvy andv are, respectively, odd and even

with respect tag, it is clear thatw, is odd with respect ta _ €mbm(X) Tr(x,2) E(fmy) 47)
so thatA(x,y)=0. The result of Eq(39) is, therefore, re- Mm=0 f(x) f(x))’
covered. As a consequence, it is sufficient to solve E2j8.

and (389 to obtain the complete solution for the leading- with
order velocity field. x2) (f(x)t k( e +f(x)2) _ y-(fmz)
m(X,2)= >—|sinf| ——
C. Velocity field calculation b f(x) € f(x)
To obtain the leading-order solution for the three- _f(X)Z CmZ 49
dimensional velocity field in the channel, we solve E§5) € f(x))"
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The sets of unknown functions,(x)} and{b,,(x)} are fi-  dition (8) leads to a constant average axial velocity,
nally determined by enforcing the no-slip boundary condi-{ug)(x) = 1/4. Integration of(43) and (47) across the quad-
tion for the solution(47) at bothz=*+1 andy==*=1f(x). As  rant leads to
is usually the case for problems involving biharmonic equa-

n
tions (e.g., Ref. 24, the final result involves an infinite sys- (vo)(X)= — % f(X)Pn(x,y)dy
tem of linear algebraic equations given by =0 k nf(X)
— by f(X)(1+(—1)™1) r1
2,(0=a,00+ 3 Aur(X)by(x),  (n=0), Ly 2 | anxzaz
Mm=>0 m=0 €m 0
_ (52)
bm(X)=bu(X)+ 2 BmiX)an(x), (M>0), (49
n=0 and
with 2(=1)"* d[dpo
_ 1 (wo)(x)= 2, TR0 ax| o (anftkaf ()
an(X)= (X f(x)) —(X fo) (503
A 2(— 1)m+1e K, -1 —knf(x)) |- (53)
nm(X) - T
1 E. Case of a sinusoidally varying wall
X f . Tm(X,2)sinkyzdz, (50b) We chose to illustrate the flow patterns in the case where
the wall shape is described by the dimensionless function
— 2 (—1)n*t f(x)=1+0.7 sinx with a ratio of vertical to axial length
bm(x)= scale equal to=3m; recall that the actual dimensional wall
CnTm(XD) s kg

shape is described by ex) wheree=h/\. The infinite sys-

Uy, oy tem of linear equation&t9) was solved numerically by trun-
XJ IX I X y)cos( f(x) dy, (500 cating it at finite values oh and m. The integrals in(50)
only involve linear and trigonometric functions and are
B (x)= 2(—-1)" (P, ( o os{ y)d evaluated exactly. Note that apart from the systé@), sum-
mn Knf mTm(X,1) 24 f(x) Y- mations are also involved in Eq6L0) for the pressure gra-
(50d)  dient and(500 for b,,(x), and they also require numerical

truncations.

For each case, numerical results were obtained, the trun-
cation was refined and the results were found to converge
quickly to a final solution. The truncations at=50 in Egs.

(10) and (500 were found to be suitable to obtain the final
solution. Further, a truncation at=m= 20 in the infinite set

of linear equation$49) was also found to be appropriate to
resolve the flow fields, with results essentially unchanged for

Note that, at a given positiox, both the{a,(x)} and
{bn(x)} are entirely determined by the instantaneous values
of f(x) and f'(x); each subsequent order in the long-
wavelength expansiof6) will bring an additional depen-
dence on a higher derivative &{x).

D. Further calculations

1. Axial vorticity higher truncation numbers.

Given the sets ofa,(x)} and{by(x)}, we can evaluate Such techniques allow us to obtain everywhere in space
the axial component of the vorticitywy=dwy/dy the three leading-order velocity components and, therefore,
— dvoldz: with a simple time advancement scheme, to follow the mo-

118U 2p tion of indiv?dual fluid elements and obtai_n streamli_nes.
wo(X,y,2)=— 2 k_(ﬁ_n+an(x)_2£ _ The main re;ults of our flow c_alculatlons are displayed
n=0 Kn \ dXdy ady in Figs. 4—6. Figure 4 presents in-plane velocity plots at
three locations along the channel direction, as well as
—K2a,(X)Pn(X,y) | sink,z (519 isovalue maps at these locations for both in-plane velocity
componentsi,,wWg) and for the axial component of the vor-
2 (X)Tr(X,2) ticity (wo).?° Figure 5 displays the flow streamlines along
+> (m—zm— the expansion part of the channelf@<x<5/2). Finally,
m=>0 f(x) Fig. 6 displays the maximum cross-sectional as well as av-
Pl Iy erage value of the Fhree compo_nentso,@o,wo) of the
—bp(x) W) i (f(_x)> (51b  leading-order dimensionless velocity as a function of the lo-

cation along the channel centerline.

N The numerical results confirm that the flow at leading

2. Quadrant-averaged velocities order is fully three-dimensional. The plots in Fig. 4 allow us
The quadrant-averaged velocities can also be evaluateth visualize the regions of high and low velocity and vortic-

for example in the quadrany0,2>0). The flow rate con- ity and the streamlines in Fig. 5 show the fluid elements are
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FIG. 4. lllustration of the leading-order three-dimensional flow in the straight planar channel of varying dimensionless cross section fgijen lby
+0.7 sinx. Top: Axial view of the channel. Bottom: Plots of the leading-order dimensionless cross-sectional velocity field)(and axial vorticityw, at
three locations along the channek5.25, 6.15, and 7.08g): in-plane velocity plotgthe velocities are normalized by their maximum in-plane vatu@s:
isovalues of the/-component, of the velocity, from Eq(43); (c): isovalues of the-component of the velocityv,, from Eq.(47); (d): isovalues of the
x-component of the vorticityng, from Eqg.(51).

indeed vertically displaced as they are advected along theaum width (x=37/2) and the point of maximum widthx(
channel. Note that the similar plots for the contracting part of=5%/2). In contrast tw, the distribution of vertical veloc-
the channel were not included here as they can be deducéty w, is modified appreciably: It changes from a monotonic
from those in Figs. 4 and 5 by symmetry of Stokes’s equavariation across the channgeft picture in Fig. 4c)] to a
tion. variation with local minimum—maximum in the middle of
We also note in Fig. 4 that the qualitative picture for thethe channel and global maximum—minimum near the chan-
isovalues ofyy do not vary much between the point of mini- nel walls[middle and right picture in Fig.(4)]. Moreover, as
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FIG. 5. Three-dimensional leading-
order streamlines in the planar channel
of varying dimensionless cross section
given by f(x)=1+0.7sinx. The
channel is the same as the one illus-
trated in Fig. 4 and only the stream-
lines in the quadranty(>0,2>0) are
reported; those in the other quadrants
can be found using the flow symme-
tries (42). The dimensionless time step
used for computation is 0.025 and 35
initially evenly spaced streamlines are
considered. Top: three-dimensional
view of the streamlines between the
location of minimum widthx=3/2
(squares, filled and the location of
maximum widthx=57/2 (diamond$;
the channel boundary and centerplane
are also displayed. Bottont@) Projec-
tion of the streamlines onto the/ (2)
plane;(b) projection of the streamlines
onto the &,z) plane.

0 0.5 1 15 3.5 é 5:5 6 65 7 75 8

can be seen in Fig.(d), the axial vorticity is maximum at V. CONCLUSION
the top and bottom walls and decays towards the middle of
the channel £=0); the contracting part is, therefore, the
position along the channel where the strongest stirring o
material surfaces would occur.

We have shown in this paper that the only planar channel
hapes for which the velocity field is two-dimensional under
tokes flow conditions have both constant curvature and

) _constant cross sectidin which case the flow field is in fact
Further, the results of Fig. 6 show that under the lubri- \idirectiona). In all other cases for the variation of the

cation approximation, the magnitude of the vertical flow orqss section and curvature, the velocity is fully three-
componeni, decreases monotonically during an expansionyimensional at zero Reynolds number and could in principle
(3m/2<x<5m/2); by symmetry of Stokes's equatiomy  phe ysed to mix species in simple microdevices that can be
increases in a similar fashion during a contraction of theynanufactured with one step of microfabrication.
channel (r/2<x<37/2). A qualitative summary for the occurrence of the third
We see also that for the particular case considered her%omponent of the flow can be given using the two-
and within the lubrication approximation, the leading-ordergimensionality condition, i.e., Eq13) or (34). The velocity
y-component of the velocity, is always about one order of field remains two-dimensional in the channel if the two-
magnitude smaller that the axial componeptand that the  dimensional flow rateQ(z)=fudy is constant along the
vertical componentw, is about one order of magnitude channel for eactz. When this is not the case ar@(z) is
smaller thanvy; back to the dimensional variables, thesestreamwise-dependent, a vertical velocity component is in-
statements become~ eu/10 andw~ eu/100. duced by mass conservation. What our study shows is that,
Finally, the integrated effect of the vertical flow along under the lubrication approximation, the only channel geom-
the channel length is illustrated in Fig. 5 by the vertical de-etries for whichQ(z) is constant are those which have both
flection of streamlines. The deflection is larger far from theconstant width and constant curvature. Note that alterna-
horizontal centerplansee Fig. 8)] and far from the verti- tively, the presence of obstacles such as cylinders in an oth-
cal centerplangsee Fig. §a)]. Over the channel half period, erwise straight channel would provide similar geometric fea-
a fluid element on the upper right streamline in Figa)5 tures necessary for the occurrence of a three-dimensional
experiences a vertical displacement of about 10% of thélow.?°
channel half-height. As the general form of the continuity equation shows,
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FIG. 6. lllustration of the leading-order three-dimensional flow strength in the planar channel of varying dimensionless crosg sgetion0.7 sinx. The
channel is the same as the one illustrated in Fig. 4 and only the velocities in the quadr@®0) are considereda) and(b): Maximum cross-sectional
values of the three components of the leading-order dimensionless velocity along the echajeireles, v, (squares, fille andw, (diamond$; (a): regular
scale,(b): semilog scale; note that when, andw, were found to be zero, which happens at each location along the channel ftfrere 0 under the
lubrication approximation, they were replaced by 1@or the semilog figures(c) and(d): Same as irfa) and(b) for the quadrant-averaged velocitiasy),
(vo) and({wp); (c): regular scale(d): semilog scale.

the magnitude of the ratio of the out-of-plane velocity com- Sy~ dz~t, U, , (55)
ponentw to the axial componeni scales as the ratio of the
cross-sectional length scafe to the length scale\ over  wheret, is the residence time for the flow in the cell

which the variations of the channel geometry occur ~\/U 4y andU, is the magnitude of the transverse flow, at
w h most U, ~hUga/N so that sy~ dz~h. Since the total
TR (59 length of the mixer i\ and the displacemeni$y and 6z

are independent of the cell length, small calish should be
The numerical results presented in Sec. Il E for a sinusoidathosen. The challenge in the mixing design would then con-
change in cross section show that the prefactors for this scatern (1) the design of each cell, i.e., the variations of its
ing is about 0.01 for the ratio of theading-ordervelocity  radius of curvature and its cross section, in order to obtain
fields wy to ug and indicate poor mixing. For the cage the maximum cross-sectional displacement é&)dhe setup
~\, we could expect, however, all orders in the perturbatiorof the cell succession in a way that mixing adds up instead of
expansion to contribute in a nontrivial way, and we expectcanceling out; for example the channel studied in Sec. IIIE
therefore, that with this simple design a vertical flow of would obviously make very poor mixing cells because by
strength comparable to the axial flow could exist; if that issymmetry of Stokes flow and with molecular diffusion ne-
not the case and the prefactors for the full calculation are naglected, every fluid stirring taking place in one part of the
of order one, the channel will likely present poor mixing channel would be unstirred in the other part of the channel
characteristics. Note that as the Reynolds number in micrdocated immediately downstream. In general, good perfor-
mixers is not exactly zero but can be as high as 100, we alsmance may be achieved by avoiding any geometrical sym-
expect in this case the occurrence of nontrivial Dean flow-metry along the streamwise direction.
like contributions to the vertical flow. The calculations presented in this paper assumed slowly
We propose to design “planar mixers” by a successionvarying cross-sectional and curvature change along the chan-
of n mixing cells of length\ along a single channel. In each nel, e<1. As was shown by Luca3 for two-dimensional
cell, we expect the integrated displacemeéfiygsand 6z of  channels of varying shape, the regular perturbation expan-
fluid elements in the cross section, advected by the flow asions (6) or (22) are expected to have order one or larger
velocity U 4., t0 be given by radius of convergence ig; as a consequence, the conclu-
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sions reached using the leading-order velocity fields are valid  dp, A 3 8n 1
for the entire velocity field wher is O(1), and presumably x A, f(x)’ A1=Z —6;0 P A= 6;0 @
higher even though our results cannot be applied directly. 2 o - (A%)

With current microfabrication techniques, the minimum in-
plane dimension £\) that can be generated is typically As a conclusion, the functional forfA3) obtained for the
greater than the minimum out-of-plane dimensienh). As  pressure gradient is not consistent with that given by the
a consequence, the cross-sectional dimensions of microchagassumption of the two-dimensionality of the flads)
nels tend to satisfy the criterior<<1, and the results ob-
tained in this ted to apply for all such dpo _ On
paper are expected to apply for all suchcases. °__ ™"

The limitation of the passive mixing strategy proposed X tanf(kyf(x))—ky’
here lies in the top—bottom symmetry for the velocity field
(u,v,wW)(X,y,—2)=(U,v,—W)(X,y,z), due to the symme-
tries_ of the Stokes equatiqns. Mixing can, therefore, not b& p,oof of result (36) for curved channels
achieved between the fluids located in the0 andz<<0
planes and consequently, the streams of solutions that are to We show in this section that the only set of curvature
be mixed must be introduced at the inlet of the channel witfunctionsf(s) that satisfy(36) are the constant functions. Let
alignment in the vertical direction. The case of a straightus assume th&B6) is satisfied for a functiori(s). We first
channel of varying section studied in Sec. Il A also possess EWrite Eq.(30) for the pressure gradient under the form
right—left symmetry, U,0,W)(X,—y,2)=(u,—v,w) dpo aH (s)
><(_x,y,z), (se_e Fig. 4 and, therefore, cannot mix species 2f(S)E2 (_1)n_kz_
fluids located in theg>0 andy <0 planes. The configuration n=0 n
studied in Sec. IIB does not possess such a symmetry and 21(s) dp, (f(s)+B
should be used to transport fluid between tie0 andn - —1In
<0 planes, similarly to what was achieved in Stroetlal 3 ds \f(s)=8
To this effect, we have included the calculation for thewe then rewrite the conditio(86) for two-dimensionality of
leading-order lubrication velocity field in the case of a chan-the flow as
nel of arbitrary shape on the Electronic Physics Auxiliary

(A4)

'unless the functiori(x) is constant.

=1. (A5)

Publication ServicéEPAPS.>° f dpo aHn(s) _  2(-1)" f dpo n

A fully numerical approach to the problefasing, e.g., a (s) ds  k, 3, [f(8)+B (s) ds = T
boundary element method or a commercial godeuld al- n n( f(s)— B
low a detailed study of the proposed mixing design, its opti- (AB)

mization, and dispersion characteristics. o ) )
Substituting(A6) into (A5) leads to a closed-form solution

for the streamwise pressure gradient

f(s)+
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APPENDIX A: PROOFS

Further, it is possible to use the asymptotic behaviors near
1. Proof of result (15) for straight channels b ymp

x~x of Bessel functions(see, e.g., Ref. 261,(x)

We show in this section that the only set of width func- ~€*/y2mx, K4(x)~ me~*/1/2x to obtain the asymptotic be-
tions f(x) that satisfy(15) are the constant functions. Let us haviors ofE,(s), F,(s), G,(s) asn— +«, from Eqs.(273),
assume thatlb) is satisfied for a functiorf(x). We first  (27b), and(28), respectively. It is then straightfoward to ob-
rewrite Eq.(10) for the pressure gradient under the form  tain the asymptotic behavior ¢f,

dpo v tanftkaf(x)) dpo 3 4(—1)"(s)
| - RN o)

xS K x4 (A8)
We then rewrite the conditiof15) for two-dimensionality of  This pehavior and the condition of two-dimensionali86)

the flow as allows to obtain an alternate functional behavior for the
dpo dpo streamwise pressure gradient
Wtanr(knf(x)):é‘nwL kna. (A2) . .
“$g@~Al%ﬂ$+ﬂ Bk,
Substituting the expression obtained(A&R) into (A1) leads ds ST f(s)—B)" 5 2 :
to a closed form solution for the axial pressure gradient (A9)
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