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Purcell’s scallop theorem states that swimmers deforming their shapes in a time-reversible manner

(‘‘reciprocal’’ motion) cannot swim. Using numerical simulations and theoretical calculations we show

here that, in a fluctuating environment, reciprocal swimmers undergo, on time scales larger than that of

their rotational diffusion, diffusive dynamics with enhanced diffusivities, possibly by orders of magnitude,

above normal translational diffusion. Reciprocal actuation does therefore lead to a significant advantage

over nonmotile behavior for small organisms such as marine bacteria.
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In addition to its importance in our macroscopic world,
fluid mechanics plays a crucial role in many cellular pro-
cesses. One example is the hydrodynamics of motile cells
such as bacteria, spermatozoa, algae, and half of the micro-
organisms on Earth [1,2]. Most of them exploit the bending
or rotation of a few flagella (short whiplike organelles,
length scale from a few to tens of microns) to create fluid-
based locomotion [3]. In contrast, ciliated microorganisms
swim by using the coordinated beating of many short
flagella termed cilia distributed along their surface [3].

Two physical ideas govern the fluid mechanics of cell
locomotion on small scales. The first one is the exploitation
by cells of anisotropic drag-based thrust to generate instan-
taneous propulsive forces [2]. The second one is the re-
quirement to distribute this local propulsion along the
surfaces of organisms in a manner that does not average
to zero over one period of cellular actuation [4]. Indeed, on
very small scales, the inertialess equations governing the
surrounding fluid are linear and independent of time
(Stokes equation), and thus any actuation on the fluid
remaining identical under a reversal of time (so-called
reciprocal actuation) cannot generate any net motion.
This is known as Purcell’s scallop theorem [4,5].

To overcome the constraints of the scallop theorem,
microorgansims swim using wavelike deformations of
their appendages or bodies, be it prokaryotes, eukaryotes
with small numbers of flagella, or ciliates [1,2]. For defor-
mation of synthetic swimmers, at least 2 degrees of free-
dom of shape change are required [4–8], or further physical
effects need to be exploited, for example, those leading to
nonlocality (hydrodynamic interactions [9]), relaxation
(actuation of flexible filaments [10]), or nonlinearity (in
particular, non-Newtonian stresses [11]).

In contrast to large organisms able to sustain directional
swimming for long periods of times, small bacteria quickly
lose their orientation due to rotational Brownian motion. If
a is the typical hydrodynamic size of an organism in a fluid
of viscosity � and temperature T, this thermal orientation
loss occurs on a typical time scale �� �a3=kBT, of about

1 s for a 1 �m bacterium in water, and tens of seconds for
E. coli. On time scales t � �, the coupling between loco-
motion at a typical speed U and orientation loss [12,13]
leads to diffusive behavior for the cells with an effective
diffusivity D�U2�, usually much larger than that due to
normal Brownian motion. For example, dead E. coli bac-
teria have diffusivities of � 0:1 �m2=s while those of
swimming cells are at least 3 orders of magnitude larger
[13]. This transition from directional motion to diffusive
dynamics was further addressed in recent work [14].
For small organisms significantly affected by Brownian

diffusivity, we thus have the following intriguing observa-
tion. The scallop theorem dictates how cells should deform
in order to undergo nonzero time-average displacements,
but at long times, cells always diffuse, and thus always
display zero time-average displacement. Would it then be
possible that similar enhanced diffusive motion could be
obtained within the constraints of the theorem?
In this Letter we consider swimmers undergoing recip-

rocal actuation in a fluctuating environment. Although the
scallop theorem prevents swimming on average, we show
that, on time scales larger than that of rotational diffusion,
these reciprocal nonswimmers undergo diffusive motion
with enhanced diffusivities, possibly by orders of magni-
tude, above their normal Brownian diffusion. This result is
demonstrated computationally using Brownian dynamics
simulations, and analytically using exact calculations for
the long-time effective diffusivity of reciprocal unidirec-
tional swimmers. The different regimes obtained are also
captured by physical scalings. These new results demon-
strate thus that reciprocal actuation, useless at zero tem-
perature, does in fact lead to a significant advantage over
nonmotile behavior for small organisms such as marine
bacteria. There is thus no rms scallop theorem.
For a first illustration of our results, we use numerical

computations. We performed Brownian dynamics simula-
tions [15] of a spherical swimmer (radius a ¼ 1 �m), in
water at T ¼ 300 K and during a time interval of 100 s,
with results shown in Fig. 1. The instantaneous velocity, U,
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and rotation rate, �, of the sphere satisfy the dynamics:
RFU � ðU� UswimÞ ¼ FB, RL� �� ¼ LB, where Uswim is
the swimming speed,RFU ¼ 6��a1 andRL� ¼ 8��a31
are the viscous resistances in translation and orientation
(1 is the identity tensor), and FB and LB are, respectively,
zero-mean Brownian forces and torques, with correlations
governed by the fluctuation-dissipation theorem, i.e.,
hFBðtÞFBðt0ÞTi ¼ 2kBTRFU�ðt� t0Þ and hLBðtÞLBðt0ÞTi ¼
2kBTRL��ðt� t0Þ.

Simulations were performed for three different swim-
ming behaviors; in each case five realizations are super-
imposed in Fig. 1. In Fig. 1(a), the spheres do not swim
(Uswim ¼ 0) and thus undergo pure Brownian motion. In
Fig. 1(b), the spheres swim steadily at speed Uswim ¼ Ue
where e is a unit vector fixed to the swimmers, and
U ¼ 5 �m=s. With these parameters, the time scale for
thermal orientation loss is on the order of � � 3 s; we are
thus in the regime where t � �, and the steady swimmers
show diffusive behavior with a diffusion constant signifi-
cantly larger than the Brownian one from Fig. 1(a).

Our new result is illustrated in Fig. 1(c), where we show
the dynamics of swimmers undergoing reciprocal motion
with velocity Uswim ¼ UðtÞe and UðtÞ ¼ �U cos!t with
�U ¼ 5 �m=s and ! ¼ 2DR where DR is the rotational
diffusivity of the swimmer (! ¼ ��1 ¼ 0:33 rad=s).
Although the swimmers display no net motion even at
short times (by construction the swimming speed averages
to zero over one period of actuation), it is apparent from the
numerical results that they diffuse much faster than pure
Brownian motion [Fig. 1(a)].

How can we physically account for the increase in
swimmer diffusion? The simplest approach involves recall-
ing the dynamics of three-dimensional (3D) random walks
[16,17]. If a particle at position x undergoes a 3D random
walk where steps of size ‘ are followed along a random
direction during time intervals �t, the particle shows no
average motion, hxi ¼ 0, but undergoes rms spread as
hx2i � N‘2. Since time increases as t� N�t, we get

diffusive motion with hx2i �Dt with the diffusion con-
stant, D, scaling as D� ‘2=�t. In the previously-
understood case of steady swimming at speed U, the step
size is the swimming speed times the time step, ‘ ¼ U�t,
and the relevant time step for change of direction is
the time scale over which the swimming direction is
lost, i.e., �t ¼ �, leading to the well-known scaling
D�U2� [12].
Reciprocal nonswimmers subject to Brownian noise also

behave as 3D random walkers, and to estimate their effec-
tive diffusivity, we have to consider the appearance of a
new time scale, namely, the period !�1 of reciprocal
actuation over which the reversal of swimming direction
occurs. We denote by �U the amplitude of the swimming
velocity. If the period of actuation is much larger than the
loss-of-orientation scale, i.e., !�1 � �, then the step size
is expected to be limited by the orientation loss and scales
as ‘� �U�, leading to diffusive motion with an expected
scaling D� �U2�. In this low-frequency limit, the effective
diffusion should thus show the same scaling as the one for
steady swimmers with the velocity amplitude replacing the
steady swimming speed. In contrast, in the limit where
the time for reorientation is long compared to the period of
actuation, !�1 � �, then the size of the 3D random walk
step should be limited by the swimming amplitude,
‘� �U=!, while the relevant time scale for change of
orientation remains �, leading to an expected high-
frequency scaling for the diffusivity as D� �U2=!2�.
We now proceed to calculate exactly the effective diffu-

sion constant for reciprocal nonswimmers in a noisy envi-
ronment. We consider instantaneous unidirectional motion
with speed UðtÞ along a direction quantified by a unit
vector eðtÞ attached to the swimming frame—this direction
is allowed to change due to rotational diffusion. As the
swimmer is subject to noise, its position, denoted xðtÞ,
follows, in the absence of inertia, the dynamics

_xðtÞ ¼ UðtÞeðtÞ þ �ðtÞ; (1)

FIG. 1 (color online). Brownian dynamics simulation of a spherical swimmer (radius a ¼ 1 �m), in water at T ¼ 300 K during a
time interval of 100 s (5 realizations are superimposed). (a) No swimming, (b) steady swimming at speed U ¼ 5 �m=s, (c) reciprocal
swimming at speed �U cos!t with �U ¼ 5 �m=s and ! ¼ 2DR (DR is the rotational diffusivity of the swimmer, ! ¼ 0:33 rad=s). Case
(a) is pure Brownian motion while both (b) and (c) show enhanced diffusivities.
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where the zero-mean noise term � has a magnitude set
by the fluctuation-dissipation theorem h�ðtÞ � �ðt0Þi ¼
6DkBT�ðt� t0Þ. Here DkBT is the Brownian diffusivity of

the nonswimming particle (DkBT ¼ kBT=6��a for a

sphere of radius a). In the absence of swimming
(U ¼ 0), the swimmer displays purely Brownian motion
and hx � xi � 6DkBTt in the limit t ! 1. When U � 0, the

swimmer position, Eq. (1), can be integrated in time to give

x ðtÞ ¼
Z t

0
Uðt0Þeðt0Þdt0 þ

Z t

0
�ðt0Þdt0: (2)

The swimming direction, e, varies in time according to 3D
rotational diffusion [17]. We thus expect no mean di-
rection, hei ¼ 0, and an exponential loss of swimming
direction over time as quantified by the correlation

heðt1 þ t2Þ � eðt1Þi ¼ e�t2=�; (3)

where ��1 ¼ 2DR and DR is the rotational diffusion coef-
ficient for the swimmer (DR ¼ kBT=8��a

3 for a sphere).
From Eq. (1) we thus first get that hxi ¼ 0 and as expected,
in the long-time limit, there is no net swimming.

To quantify the effective diffusivity, we need to compute
the mean square displacements. As t ! 1, we expect
hx � xi � 6Dt in 3D, and the effective diffusion constant,
D, can thus be inferred from the limit

D ¼ 1

3
lim
t!1hx � _xi: (4)

Given the integration for x, Eq. (2), we can compute

ðx � _xÞðtÞ ¼ UðtÞ
�Z t

0
½Uðt0ÞeðtÞ � eðt0Þ þ eðtÞ � �ðt0Þ�dt0

�

þ
Z t

0
Uðt0Þ�ðtÞ � eðt0Þdt0 þ

Z t

0
�ðtÞ � �ðt0Þdt0:

(5)

Since for any times t1 and t2 we have no correlation heðt1Þ �
�ðt2Þi ¼ 0, we obtain

hxðtÞ � _xðtÞi ¼ UðtÞ
Z t

0
Uðt0ÞheðtÞ � eðt0Þidt0 þ 3DkBT; (6)

which, using Eq. (3), and recalling Eq. (4), leads to

D ¼ DkBT þ 1

3

�
lim
t!1

Z t

0
UðtÞUðt0Þe�ðt�t0Þ=�dt0

�
: (7)

The effective swimmer diffusivity, Eq. (7), is thus given by
the swimming velocity correlation function modulated by
an exponential loss [for periodic swimming, Eq. (7) should
be understood as mean value over a period] [18].

With our exact calculation, we can now compute the
effective diffusivity for some simple cases. For steady
swimming UðtÞ ¼ U, Eq. (7) leads to

D ¼ DkBT þ 1

3
U2�; (8)

which is the classical result [12,13]. In the case of har-

monic reciprocal swimming, UðtÞ ¼ �U cos!t, we get

D ¼ DkBT þ
1

6

�U2�

1þ!2�2
� (9)

More generally, for periodic swimming of the form U ¼
U0<fPn�0an expðin!tÞg, where a0 is real, we obtain

D ¼ DkBT þU2
0�

3

�
a20 þ

1

2

X
n�1

janj2
1þ ðn�!Þ2

�
; (10)

which displays both scalings for !� � 1 and !� � 1
discussed above. We also get from Eq. (10) that we always
have D>DkBT . For example, for a periodic square

swimming with UðtÞ ¼ � �U during t 2 ð��=!; 0Þ and
then instantaneous reversal UðtÞ ¼ þ �U for t 2
ð0; �=!Þ, we have U0 ¼ �U, a2p ¼ 0, and a2pþ1 ¼
�4i=�ð2pþ 1Þ, leading to D ¼ DkBT þ �U2�½1�
2�! tanhð�=2�!Þ=��=3.
In Fig. 2 we show a comparison between simulations

and theory. We plot the mean square displacement of 500
realizations of the swimmers with the same three cases as
in Fig. 1 over 200 s. For these three cases (no swimming,
steady swimming, and reciprocal swimming), we also plot
as straight lines the theoretical prediction [where D is
given, respectively, by DkBT , Eqs. (8) and (9)]. We obtain

excellent quantitative agreement, confirming the validity of
our theoretical approach.

FIG. 2 (color online). Comparison between simulations and
theory for a spherical swimmer. Symbols: Brownian dynamics
simulations for the same three cases as in Fig. 1 (averages of 500
realizations over 200 s). Top to bottom: steady, reciprocal, and
no swimming. Theoretical predictions shown as straight lines.
Top (green dash-dotted line): prediction for effective diffusion
for steady swimming, Eq. (8). Middle (black dashed line):
prediction for diffusion by reciprocal swimming, Eq. (9).
Bottom (red solid line): Brownian motion.
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Biologically, our results are relevant to the dynamics of
marine bacteria. Nonmarine bacteria such as E. coli swim
in ‘‘run-and-tumble,’’ with straight swimming paths fol-
lowed by random reorientation events [19]. In contrast,
marine bacteria display ‘‘run-and-reverse’’ (or ‘‘back-
and-forth’’) locomotion where high speed swimming along
straight paths is followed by almost complete reversal of
their swimming direction [20,21]. With no bias in the
characteristics of the paths, this is the example of a bio-
logical reciprocal swimmer.

To estimate the order of magnitude of our result, let us
consider an elongated bacterium characterized by two
length scales, b and a � b. Scaling-wise, we haveDkBT �
kBT=�a logða=bÞ, DR � kBT=�a

3 logða=bÞ, and thus the
reorientation time scales as �� a2=DkBT . The maximum

enhanced diffusivity occurs at low frequencies,!� & 1. In
that case, the increase in cell diffusivity above Brownian
motion is given by D=DkBT � �U2�=DkBT � Pe2, where the

Peclet number is Pe ¼ a �U=DkBT . For blunt swimmers

where a � b, the log terms in the diffusion constants
disappear, but the final scaling is unchanged. For Peclet
of order 1 or above, the diffusivities are thus expected to be
dominated by all swimming-induced terms, including
the reciprocal ones. For a 10 �m bacterium in water at
room temperature, this corresponds to a critical amplitude
of reciprocal swimming of �U � 10 nm=s, less than 0.1%
of the steady swimming speed of most marine bacteria
[21]. For example, the micron-size marine bacterium
Shewanella putrefaciens (CN32) has an average swimming
speed of 100 �m=s and run duration of about 1 s [20],
leading to an expected reciprocal diffusivity of 10 �m2=s,
over 2 orders of magnitude above its Brownian diffusivity.

Many marine bacteria are found in high-Reynolds num-
ber turbulent environments [22]. Our framework remains
valid provided T is interpreted as an effective temperature,
with an equation equivalent to Eq. (3) capturing the rota-
tional dynamics of bacteria in turbulent flows. Our results
could thus be used to describe the diffusion of marine
bacteria in intermittent or turbulent flows. Our work could
also be adapted to describe biased effective diffusion and
chemotaxis in the presence of external fields, for example,
if the reciprocal swimming amplitude, or its frequency,
were to be coupled to an external chemical concentration.
More generally, any noisy process leading to an exponen-
tial loss of cell orientation will lead to a similar enhanced
diffusion for reciprocal actuation, for example, cell-cell
collisions at high density [23].

In summary, we have shown in this Letter that reciprocal
swimmers, previously believed to display a useless form of
locomotion, undergo in fact enhanced diffusion, possibly
by orders of magnitude, over inert bodies of the same size.
Purcell’s scallop theorem, valid in the absence of noise, can
therefore not be extended in a fluctuating environment,
and reciprocal (or unsteady) actuation can lead to signifi-
cant advantages over nonmotile behavior for small
organisms.
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