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Anisotropic viscous drag is usually believed to be a requirement for the low Reynolds number

locomotion of slender bodies such as flagella and cilia. Here, we show that locomotion under

isotropic drag is possible for extensible slender bodies. After general considerations, a two-ring

swimmer and a model dinoflagellate flagellum are studied analytically to illustrate how

extensibility can be exploited for self-propulsion without drag anisotropy. This new degree of

freedom could be useful for some complex swimmer geometries and locomotion in complex fluid

environments where drag anisotropy is weak or even absent. VC 2011 American Institute of Physics.

[doi:10.1063/1.3624790]

Due to the absence of inertial forces, low-Reynolds

number locomotion is subject to interesting mathematical

and physical constraints.1–3 In particular, locomotion by

time-reversible strokes is ruled out by Purcell’s scallop theo-

rem.4,5 To escape these constraints, microorganisms swim by

either propagating deformation waves along slender appen-

dages, termed flagella, or rotating them. Anisotropic viscous

drag is believed to be the fundamental property enabling

drag-based propulsion of slender filaments.3,6,7 It is a classi-

cal result that for a slender filament moving in an unbounded

Newtonian fluid, the Stokes drag is almost twice when

moving perpendicular than parallel to its axis.3,8 This drag

anisotropy allows propulsive forces to be created perpendic-

ularly to the deformation of the filament. Under isotropic

drag, it is generally accepted that locomotion of this kind

would be impossible.6,7,9–11

Unlike in Newtonian flows, drag laws in more complex

media, and their consequences on locomotion, remain

largely unexplored. Theoretical studies, via Brinkman mod-

els, suggest that porosity enhances drag anisotropy,12,13

explaining, e.g., the increase in propulsion speed of Caeno-
rhabditis elegans in a granular medium. Recent experiments

also measured and characterized granular drag in beds of

glass beads and granular media,14–17 which have been

applied to study locomotion in sand.18 Besides the fluid me-

dium, the geometry of a swimming body also plays a role in

the drag law. Some flagella, such as those of Ochromonas,

possess rigid projections termed mastigonemes, protruding

into the fluid.1 In these geometries, the viscous drag in the

longitudinal direction of the flagellum is increased, possibly

resulting in a more isotropic drag. In situations where drag

anisotropy is weak or even absent, what are the alternative

mechanisms, if any, offered by physics to achieve locomo-

tion? In this letter, we point out a new degree of freedom en-

abling inertialess swimming, namely extensibility. Using a

general derivation and two simple geometrical models, we

demonstrate that the periodic stretching and contraction of a

filament allow self-propulsion even under isotropic drag.

We start by considering the general calculation of

Becker et al.7 showing that drag anisotropy is required for

the propulsion of inextensible swimmers. Here, we revisit

their derivation by relaxing the inextensibility condition.

Consider a filamentous swimmer of total length L(t), and

denote by r(s, t), the instantaneous position of material

points along the filament, where s is the arclength. The time

rate of change of the average swimmer position, rðtÞ, is

given by
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where we have denoted _L � dL=dt. Under isotropic drag, we

have @r=@t¼u / f, where f is the local drag force per unit

length, and thus
Ð L

0
@r=@tds /

Ð L
0

fds ¼ 0 for force-free

swimming. We, therefore, find that the second term in

Eq. (2) disappears, and thus

dr

dt
¼

_L

L
rðL; tÞ � r½ �: (3)

For an inextensible swimmer, _LðtÞ ¼ 0, leading to

dr=dt ¼ 0: no net propulsion is possible under isotropic

drag.7 As a difference, for an extensible swimmer ( _L 6¼ 0) no

general conclusion can be drawn, suggesting the relaxation

of the drag anisotropy requirement when extensibility is per-

mitted. We demonstrate below how this additional degree of

freedom can be exploited for self-propulsion by considering

two simple examples.

As the first example, consider the motion of two extensi-

ble slender rings (red solid and blue dashed circles in Fig. 1)

connected by two rotating rigid rods (each of length 2r). As

a result of the rod rotation, each ring expands and contracts

periodically, tracing in time the surface of a torus of inner ra-

dius R and a circular cross-section of radius r (see Fig. 1(a)).

In Cartesian coordinates, the motion of each ring r(t)¼ [x(t),
y(t), z(t)] can be described as
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xðtÞ ¼ Rþ r 1� cosðxtþ /0Þ½ �f g cos h; (4)

yðtÞ ¼ Rþ r 1� cosðxtþ /0Þ½ �f g sin h; (5)

zðtÞ ¼ r sinðxtþ /0Þ; (6)

where, h 2 0; 2p½ �, x¼ 2p=T is the angular frequency, T is

the period of the motion, and /0 is the phase of the motion.

We non-dimensionalize lengths by the inner radius of the

torus R, time by 1=x, and the dimensionless deformation ki-

nematics of the two rings, er1;2ð~tÞ ¼ ½~x1;2ð~tÞ; ~y1;2ð~tÞ; ~z1;2ð~tÞ�,
are given by

~x1;2ð~tÞ ¼ 1þ ~r 1� cosð~tþ /1;2Þ
� �� �

cos h; (7)

~y1;2ðtÞ ¼ 1þ ~r 1� cosð~tþ /1;2Þ
� �� �

sin h; (8)

~z1;2ð~tÞ ¼ ~r sinð~tþ /1;2Þ; (9)

where we assign /1¼ 0 (red solid ring) and /2 =p (blue

dashed ring). All tilde variables in this letter are

dimensionless.

We illustrate the cyclic deformation of this swimmer over

one period in Fig. 1(b). Hydrodynamically, material is being

created=destroyed when a ring extends=contracts, introducing

an additional mechanism for varying the hydrodynamic drag.

The non-zero translational velocity expected to arise is a

direct result of the imbalance of vertical viscous force due to

the difference in the total arc-length of the two rings. Since

the vertical motion and variation of the circumference of the

two rings are out-of-phase, the vertical velocity of the ring

with a larger circumference always points in the same direc-

tion (in the case considered here, in the negative z direction).

Therefore, we expect a net unidirectional vertical force, and

hence swimming, in this direction. Note that when the two

rings have, instantaneously, exactly the same diameters (at
~t ¼ ð2nþ 1Þp=2, where n¼ 0, 1, 2, …; see the upper right

and lower left panels in Fig. 1(b)), the viscous forces acting

on the rings balance, and no swimming is produced. Note also

that if there was only one ring, say er1, the vertical motion of

the ring, would be exactly canceled by translational swimming

velocity at the same speed, resulting in no apparent motion.

Quantitatively, we apply a general local drag theory to

this two-ring swimmer. We neglect the hydrodynamic impact

of the rods connecting the rings. The local viscous force den-

sity acting on the filament is then given by f ¼ � nktt
�

þn? 1� ttð Þ� � u, where t is the local tangent vector and u is

the local velocity of the filament. The drag coefficients njj and

n? characterize the motion of a slender rod parallel and per-

pendicular to its axis, respectively. Their specific values

depend on the geometry of the rod and properties of the fluid

medium. For a slightly distorted slender filament in an

unbounded Newtonian fluid, Gray and Hancock6,9 derived

explicit analytical expressions for the drag coefficients, which

were later improved by Lighthill.19 For more complex envi-

ronments, these drag laws remain mostly unknown. Under iso-

tropic drag, we have n? ¼ nk.
20,23 Here, we keep their values

general in the calculations and show that the final swimming

speed of the two-ring swimmer is independent of these coeffi-

cients. The swimmer hence works equally well under any

local drag law, including isotropic drag.

The local velocity along a ring, u¼ @r=@tþUþX� r,

is composed of two parts: the prescribed deformation veloc-

ity, @r=@t, and the unknown swimming velocities UþX� r

to be determined. At low Reynolds numbers, the total force

and total torque on a swimmer have to vanish. Hence, we

have
P2

i¼1

Ð LiðtÞ
0

f idsi ¼
P2

i¼1

Ð LiðtÞ
0

sidsi ¼ 0, where s¼ r� f

is the local viscous torque density, leading to six equations

to determine the unknown swimming kinematics (U, X). By

symmetry, we have X¼ 0, and Uz is the only non-zero trans-

lational velocity component. After some algebra, we obtain

the dimensionless swimming velocity

~Uz ¼
~r2

1þ ~r

� 	
cos2~t: (10)

We display the variation of the swimming velocity as a func-

tion of time for different values of ~r in Fig. 2. We obtain uni-

directional swimming ( ~Uz � 0) at a time-averaged speed

independent of the value of the drag coefficients,

h ~Uzi ¼ ~r2=2ð1þ ~rÞ: this extensible two-ring swimmer can

therefore self-propel under isotropic drag.

This idea can be extended to more complicated geome-

tries consisting of a curved structure built upon another

curved structure, for instance, toroidal helices (a helix built

upon a circle) and superhelices (a helix built upon another

helix). A toroidal helix has been studied as an idealized geo-

metrical model for dinoflagellates.24,25 A dinoflagellate can

FIG. 1. (Color online) (a) Notation for

the extensible two-ring swimmer. (b)

Schematic illustration of its cyclic defor-

mation over one period, T (see text for

details).
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be propelled by propagating a toroidal helical wave, where

the kinematics of such a wave implicitly assumes extensibil-

ity due to the intrinsic length differences in the geometry.

Consider a toroidal helical wave with amplitude r, wave-

number k¼ 2p=k, and angular frequency x, propagating

along a circle of radius R (see Fig. 3 inset). When lengths are

non-dimensionlized by 1=k and times by 1=x, the dimen-

sionless kinematics eR ¼ ½~x0; ~y0; ~z0� can be expressed as

~x0ð~s0;~tÞ ¼ ~R cosð~s0= ~RÞ þ ~r cosð~s0 � ~tÞ cosð~s0= ~RÞ; (11)

~y0ð~s0;~tÞ ¼ ~R sinð~s0= ~RÞ þ ~r cosð~s0 � ~tÞ sinð~s0= ~RÞ; (12)

~z0ð~s0;~tÞ ¼ 6~r sinð~s0 � ~tÞ; (13)

where ~s0 2 ½0; 2p ~R� parametrizes the toroidal helix, and

where all tilde parameters are dimensionless. Note that the

dimensionless radius ~R takes only integer values for a closed

toroidal helix. The 6 sign represents different chirality of the

helix. We apply the same local drag model as above. In order

to make analytical progress, we consider the small-amplitude

limit ~r � 1 and perform asymptotic expansions in powers of

~r. Swimming occurs at Oð~r2Þ and takes the dimensionless

form

eU ¼ 0; 0;6
~r2

2 ~R

� �
; eX ¼ 0; 0;

1� n?=nk
~R

~r2

� �
: (14)

While the rotational velocity eX vanishes under isotropic drag

n?=nk ¼ 1

 �

, the translational velocity eU along the torus axis

is independent of the drag coefficients. This is due to the

intrinsic difference in length (and hence drag) embedded in

the curved geometry of toroidal helices. The toroidal helix has

shorter lengths on the sides closer to the center of the circle,

creating an overall imbalance of hydrodynamic drag. It is

interesting to compare two physical limits, namely when there

is no drag anisotropy n? ¼ nk

 �

and when there is maximum

drag anisotropy for an asymptotically slender filament in a

Newtonian flow n? ¼ 2nk

 �

. Using these values in the gen-

eral local drag theory, we find that the axial propulsion veloc-

ity in these two limits is indistinguishable for small ~r (Fig. 3),

as predicted by the asymptotic analysis. As ~r increases, the

drag anisotropy increasingly enhances propulsion (up to

	30% when ~r ¼ 5) but extensibility alone, under isotropic

drag, still enables swimming with significant magnitudes. A

similar example that could exploit extensibility to produce

swimming under isotropic drag is superhelical waves, which

serve as a geometrical model for insect spermatozoa.26

In conclusion, in this letter, we have revisited the

requirement of drag anisotropy to achieve self-propulsion at

zero Reynolds number. We demonstrated explicitly, via two

simple swimmers, that extensibility provides a mechanism

for swimming under isotropic drag, which might be relevant

for some complex swimmer geometries and motion in po-

rous or other complex media where drag anisotropy is weak

or absent. As a practical side-note, the two-ring swimmer

described above could be actuated experimentally by exter-

nal rotating magnetic fields if ferromagnetic materials, such

as metal nanowires,27,28 were used for the phantom rods.
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