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a b s t r a c t

In G.I. Taylor’s historic paper on swimming microorganisms, a two-dimensional sheet was proposed as a
model for flagellated cells passing traveling waves as a means of locomotion. Using a perturbation series,
Taylor computed swimming speeds up to fourth order in amplitude. Here we systematize the expansion
so that it can be carried out formally to arbitrarily high order. The resultant series diverges for an order
one value of the wave amplitude, but may be transformed into a series withmuch improved convergence
properties and which yields results comparing favorably to those obtained numerically via a boundary
integral method for moderate and large values of the wave amplitudes.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

In his landmark 1977 paper, Purcell elucidated the unique chal-
lenges faced by microorganisms attempting to propel themselves
in an inertia-less world [1]. In the creeping flow limit, viscous
stresses dominate, and thus shape-changing motions which are
invariant under time reversal cannot produce any net locomotion—
the so-called scallop theorem. In order to circumvent this limita-
tion,manymicroorganisms are observed to passwaves along short
whip-like appendages known as flagella, usually transverse planar
waves for many flagellated eukaryotic cells, and helical waves for
prokaryotes [2–4].

In the first of a series of pioneering papers on the swimming
of microorganisms, Taylor investigated, back in 1951, such
motions by considering the self-propulsion of a two-dimensional
sheet which passes waves of transverse displacement [5]. By
stipulating that such waves have a small amplitude relative to
their wavelength, Taylor utilized a perturbation expansion to
compute the steady swimming speed of the sheet to fourth order
in amplitude. Drummond later extended Taylor’s calculation of
the swimming speed of an oscillating sheet to eighth order in
amplitude [6]. A concise presentation of the derivation can be
found in Steve Childress’ textbook [7].

Since then many more sophisticated theoretical and compu-
tational models have been proposed to study the locomotion of
microorganisms, which are well documented in several review ar-
ticles [2–4]. Nevertheless, the simplicity of the swimming sheet
still provides opportunity for insight and analysis into problems
such as swimming in viscoelastic fluids [8,9], the synchroniza-
tion of flagellated cells [10,11] or peristaltic pumping between
walls [12–15]. The swimming sheet has also been utilized to yield
theoretical insight into inertial swimming [7,16,17].
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In this paper, we show that through some mathematical
manipulation the perturbation expansion for an inextensible sheet
outlined by Taylor (Section 2) may be performed systematically
so that the result may be obtained to arbitrary order in
amplitude (Section 3). The resulting series obtained is found to be
divergent for order one wave amplitudes. Using boundary integral
computations as benchmark results (Section 4),we show, however,
that the series may be transformed to obtain an infinite radius
of convergence (Section 5), thus providing an analytical model
valid for arbitrarily large wave amplitude. The coefficients for both
the original and the transformed series are available online as
supplementary material.

2. Series solution for Taylor’s swimming sheet

2.1. Setup

We consider a two-dimensional sheet of amplitude b, which
passes waves of transverse displacement at speed c = ω/k, where
ω is the frequency and k is the wavenumber (see Fig. 1). The
material coordinates of such a sheet, denoted by s, are given by
ys = b sin(kx − ωt). (1)

We use the following dimensionless variables for length x∗
=

xk and time t∗ = tω (where *’s indicate dimensionless quantities).
The ratio of the amplitude of thewaves to theirwavelength is given
by ϵ = bk. For convenience, we use the wave variable z = x∗

− t∗
and therefore write
y∗

s = ϵ sin(z) = ϵf (z). (2)
The regime we consider here, that of microorganisms, is

the creeping flow limit governed by the Stokes equations for
incompressible Newtonian flows

∇ · u∗
= 0, (3)

∇p∗
= ∇

2u∗, (4)
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Fig. 1. Left: Graphical representation of the Taylor’s swimming sheet; c is thewave
speed and U is the swimming speed. Right: Example of wave amplitude studied in
this paper: ϵ = 0.1, 1, 7.

where the velocity field u∗
= {u, v}/c and pressure field p∗

=

p/µω. We now drop the *’s for convenience.
In two dimensions the continuity equation is automatically

satisfied by invoking the stream function ψ where

u = −
∂ψ

∂y
, v =

∂ψ

∂x
. (5)

The Stokes equations are then transformed into a biharmonic
equation in the stream function

∇
4ψ = 0. (6)

The components of velocity of a material point of the sheet are
denoted by u0 and v0. The conditions to be satisfied by the field ψ
at the surface y = ϵf (z) are hence

−
∂ψ

∂y


y=ϵf

= u0,
∂ψ

∂x


y=ϵf

= v0. (7)

In order to find an analytical solution we seek a regular pertur-
bation expansion in powers of ϵ,

ψ ∼

K−
k=1

ϵkψ (k), (8)

with

u0 ∼

K−
k=1

ϵku(k)0 , v0 ∼

K−
k=1

ϵkv
(k)
0 , (9)

where K is the order to which we wish to take our expansion.
We consider here only the upper half solution which, by

symmetry, is sufficient to yield the swimming velocity. The
solution to the biharmonic equation which yields bounded
velocities in the upper half plane, at O(ϵk), is given by

ψ (k)
= U (k)y +

∞−
j=1


(A(k)j + B(k)j y) sin(jz)

+ (C (k)j + D(k)j y) cos(jz)

e−jy. (10)

We look to solve this problem in a framemovingwith the sheet and
hence the terms U (k)y allows for the waving sheet to move relative
to the far field with a velocity equal to U ∼ −

∑K
k=0 ϵ

kU (k)ex.
In order to express the stream function on the boundary we

expand ψ in powers of ϵ about y = 0 using Taylor expansions,
and get

−
∂ψ

∂y


y=ϵf

= −

∞−
k=1

ϵk
k−1−
n=0

f n

n!
∂n+1ψ (k−n)

∂yn+1


y=0
, (11)

and

∂ψ

∂x


y=ϵf

=

∞−
k=1

ϵk
k−1−
n=0

f n

n!
∂n+1ψ (k−n)

∂x∂yn


y=0
. (12)
Substituting for ψ from Eq. (10) and equating with the bound-
ary conditions we find that for k ∈ [1, K ] we must have

u(k)0 = −U (k) −
k−1−
n=0

k−n−
j=1

(−j sin(z))n

n!

×

[
−jA(k−n)

j + (n + 1)B(k−n)
j


sin(jz)

+


−jC (k−n)

j + (n + 1)D(k−n)
j


cos(jz)

]
, (13)

and

v
(k)
0 =

k−1−
n=0

k−n−
j=1

(−j sin(z))n

n!

[
jA(k−n)

j − nB(k−n)
j


cos(jz)

+


−jC (k−n)

j + nD(k−n)
j


sin(jz)

]
. (14)

At order k, the unknowns, which are the kth coefficients A(k)j ,
B(k)j , C (k)j , D(k)j and swimming speed U (k), are in the n = 0 term
only. Factoring this off and rearranging we obtain

u(k)0 + G̃(k) = −U (k) +
k−

j=1


(jA(k)j − B(k)j ) sin(jz)

+ (jC (k)j − D(k)j ) cos(jz)

, (15)

and

v
(k)
0 − H̃(k) =

k−
j=1

[
jA(k)j cos(jz)− jC (k)j sin(jz)

]
(16)

with G̃(k) and H̃(k) given by

G̃(k) =

k−1−
n=1

k−n−
j=1

(−j sin(z))n

n!

[
(−jA(k−n)

j + (n + 1)B(k−n)
j ) sin(jz)

+ (−jC (k−n)
j + (n + 1)D(k−n)

j ) cos(jz)
]
, (17)

and

H̃(k) =

k−1−
n=1

k−n−
j=1

(−j sin(z))n

n!

[
(jA(k−n)

j − nB(k−n)
j ) cos(jz)

+ (−jC (k−n)
j + nD(k−n)

j ) sin(jz)
]
. (18)

Provided the solution for the flow field is known for all orders up
to k − 1, the left-hand side of Eqs. (15) and (16) is thus known,
and all the unknowns, determining the kth order terms, are on the
right-hand side.

The terms G̃(k) and H̃(k) may conveniently be rearranged into a
Fourier series of order k as

G̃(k) =

k−
j=0

K̃ (k)j cos(jz)+

k−
j=1

S̃(k)j sin(jz), (19)

H̃(k) =

k−
j=0

T̃ (k)j cos(jz)+

k−
j=1

R̃(k)j sin(jz). (20)

A simple expression of the Fourier coefficients is not easily
obtained; however, they are easily (numerically) computed.



M. Sauzade et al. / Physica D 240 (2011) 1567–1573 1569
Finally, as we show below, the kth term of the components of
velocity at the boundary can be written as a Fourier cosine series
of order k

u(k)0 =

k−
j=0

α
(k)
j cos(jz), (21)

and

v
(k)
0 =

k−
j=0

β
(k)
j cos(jz). (22)

We can hence write, for all k, the system to solve

jA(k)j − B(k)j = S̃(k)j , (23)

jC (k)j − D(k)j = α
(k)
j + K̃ (k)j , (24)

jC (k)j = R̃(k)j , (25)

jA(k)j = β
(k)
j − T̃ (k)j , (26)

for j ∈ [1, k], or more compactly

JjA
(k)
j = b̃(k)j . (27)

The determinant of the coefficient matrix det(Jj) = j2 and hence
invertible ∀j ≠ 0. The solutions for each j are decoupled, and thus
for each k we invert a 4k block diagonal matrix.

Note that for the mean j = 0 terms we obtain

U (k) = −α
(k)
0 − K̃ (k)0 , (28)

0 = β
(k)
0 − T̃ (k)0 . (29)

We thus see that the swimming speed at O(ϵk) depends only on
the mean at that order. We also find that since there is no far-field
vertical velocity we require β(k)0 = T̃ (k)0 , which are both known, in
order to avoid an ill-posed problem. This means that since we do
not allow a mean vertical flow in the solution of the stream func-
tion (which gives T̃ (k)0 = 0) then the vertical boundary conditions
must have zero mean, β(k)0 = 0.

Now we can solve for the swimming speed up to O(ϵk) by
solving the above system all k orders sequentially, provided we
have the Fourier coefficients for the boundary conditions up to
O(ϵk).

2.2. Boundary conditions

Following Taylor [5], we wish the material of the sheet to be
inextensible. In a framemoving at the wave speed the shape of the
sheet is at rest [5,7], therefore in a framemovingwith the sheet the
boundary conditions are

u0 = −Q cos θ + 1, (30)
v0 = −Q sin θ, (31)

where tan θ = y′
s and Q is the material velocity in the moving

frame is given by

Q =
1
2π

∫ 2π

0


1 + ϵ2 cos2(z)dz. (32)

Expanding in powers of ϵ and integrating we obtain

Q =

∞−
n=0

(−1)n+1

(2n − 1)24n


2n
n

2

ϵ2n,

=

∞−
n=0

qnϵ2n. (33)
Similarly we expand cos θ in powers of ϵ to give

cos θ =

∞−
n=0

ϵ2n(−1)n
1
24n


2n
n



×


−


2n
n


+ 2

n−
r=0


2n

n − r


cos(2rz)



=

∞−
n=0

ϵ2n
n−

r=0

tnr cos(2rz). (34)

Letting k = 2n and considering only even values we obtain

u0 = 1 −

∞−
k=0

ϵk
k/2−
r=0

cos(2rz)
k/2−
p=r

tpr q k
2 −p

= −

∞−
k=2

ϵk
k/2−
r=0

cos(2rz)
k/2−
p=r

tpr q k
2 −p. (35)

Now letting j = 2r we find for even j and even k ≥ 2

u(k)0 =

k−
j=0

α
(k)
j cos(jz), (36)

where we have defined

α
(k)
j = −

k/2−
p=j/2

tpj
2
q k

2 −p, (37)

while u(k)0 = 0 for odd k and α(k)j = 0 for odd j.
We then know that

v0 = −y′

s(z)Q cos θ, (38)

and hence we find for odd j and odd k ≥ 3

v
(k)
j =

k−
j=1

β
(k)
j cos(jz), (39)

β
(k)
1 = α

(k−1)
0 +

1
2
α
(k−1)
2 , (40)

β
(k)
j =

α
(k−1)
j−1 + α

(k−1)
j+1

2
, 3 ≤ j ≤ k − 2, (41)

β
(k)
k =

1
2
α
(k−1)
k−1 , (42)

and for k = 1β(1)1 = −1. In contrast, v(k)0 = 0 for even k and
α
(k)
j = 0 for even j. We see that the vertical component of the

boundary velocity has nomean component at any order in ϵwhich,
as we saw in the previous section, is required given the form of the
solution. With these coefficients we can now solve a linear system
at each order to obtain U (k) to arbitrary order.

In practice the number of terms obtainable will be limited by
numerical technique. To obtain the first one thousand terms of the
series used in the analysis in the following sections, the system
of equations was solved using the C programming language with
GNUMP, the GNUmultiple precision arithmetic library [18], using
300 digits of accuracy.

3. Analysis and improvement of the perturbation series

In the previous sections we presented methodology to obtain
the solution to the swimming speedU in the form of a perturbation
series

U(ϵ) ∼

K−
k=1

U (k)ϵk. (43)
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a b

Fig. 2. Coefficients of the series for the swimming speed, Eq. (43). (a) the first 100
terms of the series U (k); (b) ln

U (k) for k = 1–1000 for nonzero values of U (k) .

It remains of course to be seen whether the series will converge to
U for arbitrary ϵ. We analyze here the convergence properties of
the series, and methods to improve upon that convergence.

In Fig. 2 we plot the coefficients of the series U (k) against k. On
Fig. 2a are plotted the first 100 terms, and on Fig. 2b the logarithm
of the absolute value of the nonzero terms up to k = 1000. We see
that the coefficients have an exponentially increasing amplitude
while alternating in sign, U (k) > 0 for k = 4n − 2 and U (k) < 0
for k = 4n where n ∈ N. We also note that due to the ϵ → −ϵ
symmetry of the geometry in the problem, all odd powers in the
series are zero. It is therefore useful to recast the series as follows

U =

K−
k=1

U (k)ϵk =

K/2−
k=1

U (2k)ϵ2k = δ

K/2−1−
k=0

ckδk, (44)

where ck = U (2k+2) and δ = ϵ2. The coefficients ck for k = 0–499
have been reproduced in the online supplementary material of the
manuscript.

The sign of ck alternates in a regular manner which indicates
that the nearest singularity lies on the negative real axis and since
only positive values of δ have any meaning, there is no physical
significance to the singularity; it does of course govern the radius
of convergence of the series [19].

3.1. Series convergence

The radius of convergence, δ0, of the power series

f (δ) ∼

−
k

ckδk, (45)

may be simply found by using the ratio test

δ0 = lim
k→∞

ck−1

ck
. (46)

In order to find this value we must extrapolate due to the finite
number of terms. In order to aid this processDomband Sykes noted
it is helpful to plot ck/ck−1 against 1/k [20]. The reason is that if the
singular function f , has a dominant factor

(δ0 − δ)γ for γ ≠ 0, 1, 2, . . . , (47)

(δ0 − δ)γ ln(δ0 − δ) for γ = 0, 1, 2, . . . , (48)

then the coefficients behave like

ck
ck−1

∼
1
δ0


1 −

1 + γ

k


, (49)

for large k [19,21]. The result in Eq. (49) indicates that the intercept
1/k = 0 in a Domb–Sykes plot gives the reciprocal of the radius of
Fig. 3. Domb–Sykes plot of the coefficients ck , from the series in Eq. (44), shows
convergence to 1/δ0 ≈ −1.093.

a b

Fig. 4. Coefficients of the new series for the swimming speed using the Euler
transformation, Eq. (51). (a) Coefficients dk of the new series; (b) Domb–Sykes plot
of the coefficients shows a convergence to one.

convergence while the slope approaching the intercept gives γ . In
Fig. 3 we show the Domb–Sykes plot of the series ck. The plot indi-
cates that the nearest singularity is at δ0 ≈ −0.914912217581184,
and that γ = −1 corresponding to a first order pole.

3.2. Euler transformation

One approach to improve convergence of the series is to factor
out the first order pole discussed above, and characterize the
singularities of the new series. However we find that series is no
more tractable due to the presence of an apparent branch cut in
the complex plane close to δ = −1.

Alternatively, the original non-physical singularity δ0 may be
mapped to infinity using a Euler transformation and introducing a
new small variable

δ̃ =
δ

δ − δ0
. (50)

The power series for f is then recast as

f ∼

−
k

ckδk ∼

−
k

dkδ̃k. (51)

The coefficients dk for k = 0–499 have been reproduced in the
online supplementary material of the manuscript. Their values for
k > 50 are shown in Fig. 4a and we can see that they decay in
magnitude for large k.

In order to find the radius of convergence of the new series, dk,
we again turn to the Domb–Sykes plot, which is show in Fig. 4b.
We see that it appears dk/dk−1 → 1 as k−1

→ 0 and since
δ/(δ − δ0) → 1 when δ → ∞, we have now have an infinite
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Fig. 5. Zeros in the complex plane of the denominators of various Padé
approximants forM = N = 10, 50, 100, 200 and 249.

radius of convergence in the original variable δ. Note that the vastly
improved convergence does not necessarily mean the series will
provide a good approximation beyond δ0 [21]; however we will
see in the results section that it actually provides an excellent fit to
the numerical results.

3.3. Padé approximants

A popular scheme to improve the convergence properties of
series is to recast the series as a rational polynomial

f (δ) ∼

M+N−
k=0

ckδk ∼

M∑
0
akδk

N∑
0
bkδk

= PM
N , (52)

where M + N ≤ K/2 − 1. If we multiply both sides by the
denominator

∑
bkδk for the terms of order δk where k = M +

1:M + N we obtain a square matrix to invert for b1, . . . , bN and
one takes b0 = 1with no loss of generality [22]. One can then solve
for ak.

We apply this method to our swimming sheet, and plot the
zeros of different Padé denominators with M = N in Fig. 5. It is
evident that the pole we identified earlier at δ0 is well reproduced
here. The interesting feature beyond this is the fact that the
remaining zeros do not exhibit any consistency, which indicates
a branch cut in the complex plane.

3.4. Shanks transformation

A scheme to improve the rate of convergence of a sequence of
partial sums

Sn =

n−
k=0

ckδk, (53)

for n = 0 to N ≤ K/2 − 1, is to assume they are in a geometric
progression

Sn = A + BCn. (54)
Solving for A by nonlinear extrapolation of three sums yields

An = Sn −
(Sn+1 − Sn) (Sn − Sn−1)

(Sn+1 − Sn)− (Sn − Sn−1)
. (55)

The An’s for n = 1 to N − 1, can then be considered a series
of partial sums and the Shanks transformation may be thereby
repeated (N − 1)/2 times [21].
4. Boundary integral formulation

In order to provide benchmark results for the analysis of the
perturbation series and its various transformations, we use the
boundary integral method to obtain what we will consider to be
an exact solution of the swimming speed for waves of arbitrarily
large amplitude.

We briefly summarize the principle of the method here. The
Lorentz reciprocal theorem states that two solutions to the Stokes
equations, (u, σ) and


ũ, σ̃


are related by∫

S
(u · σ̃) · n dS =

∫
S


ũ · σ


· n dS, (56)

within a volumeV bounded by the surface Swhose unit normaln is
takenpointing into the fluid. The velocity and stress fields, ũ(x) and
σ̃(x), are taken to be fundamental solutions for two-dimensional
Stokes flow due to a point force at x0,

ũ(x) =
1
4π

G(x̂) · f̃(x0), (57)

σ̃(x) =
1
4π

T(x̂) · f̃(x0), (58)

where x̂ = x − x0 and the two-dimensional Stokeslet G, and
stresslet T are given by

G = −I ln
x̂ +

x̂x̂x̂2 , (59)

T = −4
x̂x̂x̂x̂4 . (60)

Taking the singular point x0 to be on the boundary S one obtains
from Eq. (56) a boundary integral solution to two-dimensional
Stokes equations for the velocity

u(x0) =
1
2π

∫
S


u(x) · T(x̂) · n(x)− f(x) · G(x̂)


dS(x), (61)

where f = σ · n.
We wish to capture the swimming speed of an infinite sheet

therefore the domain of integration is an entire half plane of fluid
bounded by the sheet. In order to avoid performing an integration
over the entire bound it is convenient to use an array of periodically
placed Stokeslets and stresslets, given by

Gp
=

∞−
n=−∞

−I ln
x̂n +

x̂nx̂nx̂n2 , (62)

Tp
=

∞−
n=−∞

−4
x̂nx̂nx̂nx̂n4 , (63)

where x̂n = {x̂0 + 2πn, ŷ0}, so that we may then instead integrate
Gp and Tp over a single period [23]. The periodic Stokeslet and
stresslet may be conveniently expressed in closed form [23,24],
through the use of the following summation formula

A =

∞−
n=−∞

ln
x̂n =

1
2
ln


2 cosh(ŷ0)− 2 cos(x̂0)


, (64)

and its derivatives, as follows

Gp
xx = −A − ∂yA + 1, (65)

Gp
xy = y∂xA, (66)

Gp
yy = −A + y∂yA, (67)
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and
T p
xxx = −2∂x(2A + y∂yA), (68)

T p
xxy = −2∂y(y∂yA), (69)

T p
xyy = 2y∂xyA, (70)

T p
yyy = −2(∂yA − y∂yyA). (71)

The remaining elements follow from a permutation of the indices
of the Stokeslet and stresslet which leaves the right-hand side
unchanged [24].

The flow is quiescent at infinity and periodic on 2π and
therefore the domain of integration S reduces to the surface of
the sheet over one period. To facilitate integration the continuous
boundary is discretized into N straight line elements Sn and we
assume that f is a linear function over each particular interval,
f → fn (see Ref. [25]). We decompose the boundary velocity into
surface deformations and rigid body motion u → un + U, where
un is a linear function over each interval and U ≡ −Uex. Then x0 is
taken at the center of each of the N segments Sn,where the velocity
is known, x0 → xm. The Gp and Tp are regularized by subtracting
off the Stokeslet and stresslet from their periodic counterparts.
The two-dimensional Stokeslet and stresslet are then integrated
analytically and added back.

We thereby obtain from Eq. (61) a linear system for fn and U ,
given by

u(xm)+ U =
1
2π

N−
n=1


−

∫
Sn

fn ·

Gp

− G

dSn −

∫
Sn

fn · GdSn

+

∫
Sn
(un + U) ·


Tp

− T

· nndSn

+

∫
Sn
(un + U) · T · nndSn


. (72)

We then obtain U by specifying that the sheet is force free
N−

n=1

[
ex ·

∫
Sn

fndSn
]

= 0. (73)

The numerical procedure was validated by reproducing
Pozrikidis’ results for shear flow over sinusoidal surface [23].

5. Comparison between series solution and computations

5.1. Series solution

We first show the convergence of the unaltered series
expansion, Eq. (43), in Fig. 6 where we display the swimming
speed of the sheet, U , as a function of its amplitude, ϵ. The red
squares indicate numerical points computed with the boundary
integral method. We plot the results for Taylor’s original fourth
order expansion (dashed-dot line) which is reasonably accurate up
to ϵ ≈ 0.4. The series with K = 20 is shown in dashed line. As we
add terms, we get that the series with K = 1000 (solid line) fails
to converge beyond the singularity at ϵ =

√
−δ0 ≈ 0.95651, as

expected from the analysis in Section 3.

5.2. Euler transformation

The presence of the singularity on the negative real axis for
the series ck led naturally to an Euler transformation to map the
singularity to infinity which, as detailed in Section 3.2, yields a
series with an infinite radius of convergence in δ, and thus in ϵ. In
Fig. 7 we plot the results of the Euler-transformed series, Eq. (51),
for the swimming speed, U , against the wave amplitude, ϵ. The
results are markedly improved over the original unaltered series.
With K = 4we obtain results which are accurate for up to ϵ ≈ 1.3,
already higher than for Taylor’s fourth order formula.With K = 20
Fig. 6. Swimming speed, U , against wave amplitude, ϵ, for the unaltered series,
Eq. (43), with K = 4 (dashed-dot), K = 20 (dashed), K = 1000 (solid). The
series diverges for ϵ ≈ 0.9565. Red squares indicate data points from the boundary
integral method.

Fig. 7. Swimming speed,U , against wave amplitude, ϵ, for the Euler series, Eq. (51),
with K = 4 (dashed-dot), K = 20 (dashed), K = 100 (solid). Red squares indicate
data points from the boundary integral method.

terms, U(ϵ) is found to be accurate up to ϵ ≈ 2, and when using
K = 100 terms we obtain results which are accurate for ϵ > 7.
With all K = 500 terms the series is accurate up to ϵ ≈ 15 with a
relative error of 1% (the series is however convergent for all values
of ϵ).

5.3. Padé approximants and Shanks transformation

Padé approximants provide a convenient (yet brute-force) way
to drastically improve the performance of the series without
the need to investigate the analytic structure of the underlying
function. We find that using only a few terms provides very good
results, as we show in Fig. 8. For K = 4 we obtain P2

2 (dashed)
which is accurate past the singularity, while for K = 22 we obtain
P10
10 (solid) which is accurate up to ϵ ≈ 4, and shows an error

which is reasonably small for larger amplitudes. Unfortunately
the coefficient matrix which must be inverted to obtain the bk
coefficients of the Padé approximants becomes increasingly ill-
conditioned as more terms of the series are added and we see
diminishing returns from the Padé approximants of higher order
expansions; for example, P150

150 is only accurate up to ϵ ≈ 5.
Similarly, repeated Shanks transformations of the first few

partial sums results in a marked improvement of the convergence
of the series. We see in Fig. 8 that the (repeated) Shanks
transformation of partial sums up to S2 (dotted line) yields results
nearly identical to the P2

2 approximant, while for terms up to S6
(dashed-dot)we see reasonable accuracy up to ϵ ≈ 2 in agreement
with the results from Ref. [6]. We find however that the addition of
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Fig. 8. Swimming speed, U , against amplitude, ϵ, for (repeated) Shanks
transformations of partial sums up to S2 (dotted) and S6 (dashed-dot) and for the
Padé approximants P2

2 (dashed), P10
10 (solid). Red squares indicate data points from

the boundary integral method.

any further terms in the sequence leads to a pronounced decrease
in the convergence properties of the sum.

6. Concluding remarks

Despite its simplicity, Taylor’s swimming sheet model is still
used to provide physical insight into many interesting natural
phenomena. In this paper, we demonstrated that by systematiz-
ing the perturbation expansion outlined by Taylor in the wave
amplitude, ϵ, the solution for the swimming speed can be obtained
in a straightforward fashion to arbitrarily high order. The series
unfortunately diverges for ϵ ≈ 0.9565 due to a non-physical first
order pole located in the negative real axis. In order to increase
the convergence of the series, the singularity can be mapped to
infinity via an Euler transformation. The recast series then has an
infinite radius of convergence and produces spectacularly accurate
results for very large amplitudes (albeit requiring a good number
of terms). An alternative is to reformulate the series using Padé
approximants or repeated Shanks transformations, which give
reasonable accuracy for moderate amplitudes with fewer terms,
but can become problematic for very large amplitudes.

Acknowledgments

This paper is dedicated to Steve Childress, whose textbook on
swimming and flying remains an inspiration. We thank Glenn
Ierley for useful discussions and advice. Funding by the NSF (CBET-
0746285) andNSERC (PGSD3-374202) is gratefully acknowledged.

Appendix. Supplementary data

Supplementary material related to this article can be found
online at doi:10.1016/j.physd.2011.06.023.

References

[1] E. Purcell, Life at low Reynolds number, Am. J. Phys. 45 (1977) 11.
[2] J. Lighthill, Flagellar hydrodynamics: the John von Neumann lecture, 1975,

SIAM Rev. 18 (1976) 161–230.
[3] C. Brennen, H.Winet, Fluidmechanics of propulsion by cilia and flagella, Annu.

Rev. Fluid Mech. 9 (1977) 339–398.
[4] E. Lauga, T.R. Powers, The hydrodynamics of swimming microorganisms, Rep.

Progr. Phys. 72 (2009) 096601.
[5] G. Taylor, Analysis of the swimming of microscopic organisms, Proc. R. Soc.

Lond. A 209 (1951) 447–461.
[6] J.E. Drummond, Propulsion by oscillating sheets and tubes in a viscous fluid,

J. Fluid Mech. 25 (1966) 787–793.
[7] S. Childress, Mechanics of Swimming and Flying, Cambridge University Press,

1981.
[8] E. Lauga, Propulsion in a viscoelastic fluid, Phys. Fluids 19 (2007) 083104.
[9] J. Teran, L. Fauci, M. Shelley, Viscoelastic fluid response can increase the speed

and efficiency of a free swimmer, Phys. Rev. Lett. 104 (2010) 038101.
[10] G.J. Elfring, E. Lauga, Hydrodynamic phase locking of swimming microorgan-

isms, Phys. Rev. Lett. 103 (2009) 088101.
[11] G.J. Elfring, O. Pak, E. Lauga, Two-dimensional flagellar synchronization in

viscoelastic fluids, J. Fluid Mech. 646 (2010) 505–515.
[12] M.Y. Jaffrin, A.H. Shapiro, Peristaltic pumping, Annu. Rev. Fluid Mech. 3 (1971)

13–37.
[13] C. Pozrikidis, A study of peristaltic flow, J. Fluid Mech. 180 (1987) 515–527.
[14] J. Teran, L. Fauci, M. Shelley, Peristaltic pumping and irreversibility of a

stokesian viscoelastic fluid, Phys. Fluids 20 (2008) 073101.
[15] B.U. Felderhof, Swimming and peristaltic pumping between two plane parallel

walls, J. Phys.: Condens. Matter 21 (2009) 204106.
[16] A. Reynolds, Swimming of minute organisms, J. Fluid. Mech. 23 (1965)

241–260.
[17] E. Tuck, A note on a swimming problem, J. Fluid. Mech. 31 (1968) 305–308.
[18] GNU multiple precision arithmetic library. URL http://gmplib.org/.
[19] M. Van Dyke, Analysis and improvement of perturbation series, Q. J. Mech.

Appl. Math 27 (1974) 423–450.
[20] C. Domb, M.F. Sykes, On the susceptibility of a ferromagnetic above the curie

point, Proc. R. Soc. Lond. A 240 (1221) (1957) 214–228.
[21] E.J. Hinch, Perturbation Methods, Cambridge University Press, 1991.
[22] C. Bender, S. Orszag, Advanced Mathematical Methods for Scientists and

Engineers, McGraw-Hill, 1978.
[23] C. Pozrikidis, Creeping flow in two-dimensional channels, J. Fluid Mech. 180

(1987) 495–514.
[24] C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized

Viscous Flow, Cambridge University Press, 1992.
[25] J.J.L. Higdon, Stokes flow in arbitrary two-dimensional domains: shear flow

over ridges and cavities, J. Fluid Mech. 159 (1985) 195–226.

http://dx.doi.org/doi:10.1016/j.physd.2011.06.023
http://gmplib.org/

	Taylor's swimming sheet: Analysis and improvement of the perturbation series
	Introduction
	Series solution for Taylor's swimming sheet
	Setup
	Boundary conditions

	Analysis and improvement of the perturbation series
	Series convergence
	Euler transformation
	Padé approximants
	Shanks transformation

	Boundary integral formulation
	Comparison between series solution and computations
	Series solution
	Euler transformation
	Padé approximants and Shanks transformation

	Concluding remarks
	Acknowledgments
	Supplementary data
	References


