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Fluid transport by active elastic membranes
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A flexible membrane deforming its shape in time can self-propel in a viscous fluid. Alternatively, if the
membrane is anchored, its deformation will lead to fluid transport. Past work in this area focused on situations
where the deformation kinematics of the membrane were prescribed. Here we consider models where the
deformation of the membrane is not prescribed, but instead the membrane is internally forced. Both the time-
varying membrane shape and the resulting fluid motion result then from a balance between prescribed internal
active stresses, internal passive resistance, and external viscous stresses. We introduce two specific models
for such active internal forcing: one where a distribution of active bending moments is prescribed, and one
where active inclusions exert normal stresses on the membrane by pumping fluid through it. In each case, we
asymptotically calculate the membrane shape and the fluid transport velocities for small forcing amplitudes, and
recover our results using scaling analysis.
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I. INTRODUCTION

From living fluids of swimming microorganisms to soft
membranes actively deformed by molecular machines, active
materials are ubiquitous in the microscopic world and pose
vexing challenges to biologists and physicists alike [1]. Rather
than external constraints, many of the global properties of
active soft matter are determined by a dynamic balance of
internal stresses. In the example of a cellular membrane, in ad-
dition to mechanical feedback with the environment, a cell also
makes use of internal nonequilibrium constituents to produce
dynamic shape changes, guiding important mechanisms for
survival such as motility, morphology, and reproduction [2–5].
Morphology’s role in ultimately determining the functionality
of a cell has long generated interested in the scientific
community, as the geometry of a cell impacts the proteins
embedded in its surface [6], and the shape fluctuations
of an active membrane yield insight about the activity
within [7–10].

In recent decades cell locomotion has occupied a great
deal of attention [11–14]. One of the possible justifications
for this interest stems from the fact that self-propelled
organisms represent one of the ways in which soft active
transport is accessible to our intuition. In all of these cases,
and in many others, shape matters. The deformation of a
biological membrane, and the rate at which it occurs, inevitably
determines the effect that the internal stress state has on the
world around it: Internal activity competes with dissipative
forces arising from viscous fluids, frictional substrates, or other
external forces and—in addition to the particular constitutive
relationship ruling the behavior of the membrane itself—the
final result is the shape of the body.

Focusing on cellular motility, and swimming in particular,
the only external stress is that exerted by the viscous fluid on
the deforming surface. Provided that the deformation of the
membrane is not time reversible, the work performed by the
body against the fluid generates a macroscopic velocity [11].
Dual to this problem is fluid pumping, wherein an actively
deforming tethered membrane transports fluid, rather than

propelling itself through the bulk. This aspect of fluid transport
is the focus of the current paper.

To understand the origin of fluid transport by a beating
membrane, one only needs to know the deformation of
the surface and the fluid properties; this is, in fact, how
previous work on the subject has been developed, either to
model actual organisms or to provide concepts for locomotion
that do not occur in nature [12,15–18]. If the kinematics
of a membrane deformation are prescribed, the transport
characteristics require thus only solving the fluid mechanics
problem [15].

A more physically relevant model would start from knowl-
edge of the internal forcing, and then both the deformation and
the transport would be solved for at the same time. Recently
there have been attempts to prescribe not merely the kinematics
but instead the internal dynamics of a deforming body as
model for the physics of axonemal beating in eukaryotic
cells [19,20]. The physical problem becomes then: Given an
internal state, and a dynamic evolution equation, what are
the macroscopic results? Past work has focused on active
filaments, and our present study extends thus this dynamical
analysis to membranes.

In this manuscript we present a model for the internal
force generation in an active membrane. Introducing two
models for internal actuation, and taking advantage of the
asymptotic limit of small forcing, we analytically derive the
membrane deformation from its linear response, and then use
the deformation to deduce the (quadratic) fluid transport. Our
results are recovered by scaling arguments, which allow us
to intuitively quantify how the three-way balance between
internal forcing, passive (elastic) constitutive modeling, and
external viscous forcing impacts fluid transport.

II. TRANSPORT BY GENERAL DEFORMATION
OF A SHEET

A. Setup

For the microscopic regimes that we are interested in
the fluid flow is well modeled by the incompressible Stokes
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equations, ∇ · σ = 0, ∇ · u = 0, where u is the fluid velocity,
and σ is the fluid stress tensor. For this work we consider
only Newtonian fluids, such that the first condition becomes
∇p = μ∇2u, where p is the pressure and μ is the shear
viscosity. We consider an infinite, two-dimensional sheet
that passes a traveling wave of arbitrary shape h over its
surface (see Fig. 1 for notation), in the absence of thermal
fluctuations. If there is no variation in the y direction then the
fluid is two-dimensional and a stream function ψ such that
u = ψzx̂ − ψxẑ can be defined.

For an arbitrarily shaped traveling wave form h(kx − ωt),
we apply a no-slip boundary condition to the sheet to get

ux = ∂ψ

∂z

∣∣∣∣
S

= 0, (1a)

uz = −∂ψ

∂x

∣∣∣∣
S

= −∂h

∂t
, (1b)

where (...)|S indicates that the quantity in parentheses must
be evaluated across the sheet (designated by the manifold S).
This is precisely what leads to geometric nonlinearities and
precludes a full analytical solution to the present problem.

B. Fluid pumping

We expand the wave form as h = εh(1) + ε2h(2) + · · ·
where ε is a small parameter denoting the magnitude of the
wave amplitude. The stream function ψ and pumping velocity
U are expanded similarly.

To leading order, we write h(1) = Re{∑∞
n=1 bne

in(kx−ωt)}
and, following Childress [21], solve for the stream function to
obtain

ψ (1) = Re

{∑
n

ω

k
bn(1 + nkz)e−nkzein(kx−ωt)

}
, (2)

where it is implicitly assumed that all sums range from n = 1
to n = ∞.

At this order there can thus be no flow far from the sheet:
The h → −h symmetry demands that any expansion of the
velocity U be symmetric in powers of h.

2π/k

x̂

ŷ
ẑ

c =
ω

k
h

FIG. 1. (Color online) Generalized Taylor swimming sheet pass-
ing a traveling wave in the positive x direction with constant wave
speed c = ω/k. The wavelength is 2π/k and the height of the
membrane denoted h(kx − ωt). In the reference frame of the sheet,
the material points undergo transverse displacements, while at infinity
a uniform pumping flow U develops.

At second order, then, we find that

ψ (2)
z (x,0) = −ψ (1)

zz (x,0)Re

{∑
n

inkbne
in(kx−ωt)

}
. (3)

Since the sheet is periodic, averaging this quantity over one
period in space yields the flow at infinity, or the macroscopic
fluid transport velocity, and we obtain

U (2) = 1

2

∑
n

ωk|nbn|2. (4)

Importantly, we see that the knowledge of only the first-order
height coefficients bn leads to the determination of the fluid
transport properties at second order.

C. Stress

In the following section we will invoke local force balance
at leading order to determine the membrane shape and thus
we need to know the distribution of stress from the fluid. The
pressure at first order is given by

p(1) = −2μωRe

{∑
n

inkbne
−nkzein(kx−ωt)

}
, (5)

while the components of the fluid stress are

σ (1)
zz = −p(1) + 2μ

∂2ψ (1)

∂x∂z
, (6a)

σ (1)
xz = 2μ

(
∂2ψ (1)

∂x2
− ∂2ψ (1)

∂z2

)
. (6b)

III. ACTIVE MEMBRANE MECHANICS

We now proceed to derive the dispersion relations for
two models of active elastic sheets that will provide a
quantitative bridge between the microscopic formulation and
the macroscopic flow.

In general the internal forces (i.e., the forces not originating
with the viscous fluid) will consist of a passive elastic response
and an active component. The general enthalpy functional that
describes the internal energetic state of the membrane is given
by [22]

G =
∫

κ

2
(C − C0)2dS +

∫
γ dS + Gact. (7)

Here κ is the bending rigidity of the membrane, C is the
mean curvature, C0 is the so-called spontaneous curvature
of the membrane, γ is the surface tension, and Gact is
the active contribution to the enthalpy, whose form depends
on the particular model of activity, and which we give two
examples for below.

Real biological membranes are complex, containing pro-
teins embedded in the surface, several layers of chemical
activity, or possibly even an elaborate scaffolding of inter-
linked polymer networks (relevant, e.g., to the cytoskeleton
in eukaryotic cells). For simplicity, we ignore these effects,
as well as possible viscous dynamics inside the membranes,
and focus on bending energetics [23,24]. In addition, although
spontaneous curvature can lead to interesting morphological
consequences in cells and vesicles [25,26], we work with
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C0 = 0 and only consider local curvature changes from in-
clusions in the membrane. The form of the active contribution
to the enthalpy, Gact, depends on the particular method of
internal forcing [27]. Below we consider two models, focusing
on internal bending moments and normal forcing to the
membrane, respectively.

A. Active bending stresses

1. Setup

In this first model, we assume that there is a distribution
of forces acting entirely within the surface of the membrane.
These forces then generate a moment distribution that depends
on the thickness of the membrane itself. We then define an
internal, prescribed two-dimensional moment per length (units
of force) f (x,t) (see Fig. 2). Balancing this activity with
internal passive response and viscous fluid forces yields the
instantaneous equations of mechanical equilibrium

κ∇2C + n̂ · σ · n̂|S = ∇2f (normal), (8a)

τ + t̂ · σ · n̂|S = 0 (tangential), (8b)

where τ = γ + κC2 is the physical tension in the membrane,
and t̂ and n̂ are vector tangent and normal to the membrane,
respectively. This equation is correct for any arbitrary distri-
bution of forces, or any shape of the membrane, as long as
∇ is taken to be the covariant gradient. For long-wavelength
membrane deformation, however, we already solved the fluid
mechanics that results in fluid transport. In this case the
membrane shape can be parameterized by a height field h(x,t)
and the curvature C ≈ ∇2h. To lowest order in the expansion
of the height, the equations for the pointwise force balance
across the membrane then become

2κ
∂4h(1)

∂x4
− ∂2f

∂x2
= −p(1) − 2μ

(
∂2ψ (1)

∂z∂x

)
S

, (9a)

τ (1) = μ

[
∂2ψ (1)

∂z2
− ∂2ψ (1)

∂x2

]
S

. (9b)

Using the expression for the first-order stream function
from the previous section, we find that to first order the tension
τ (1) = 0: To lowest order in the deformation of the membrane,
only normal effects are important [24].

2. Scalings

Using scaling arguments we derive in this section the
expected scaling of the pumping velocity by the active
membrane. In the context of the classical Taylor swimming
sheet, the pumping velocity is expected to scale as U ∼ c(bk)2,
where c = ω/k is the wave speed.

f(x, t)

FIG. 2. Active membrane where active two-dimensional mo-
ments are prescribed with density f (x,t). Normal deformations arise
over regions with a gradient in the active stress.

Two physical regimes need to be considered, those of
“stiff” and “floppy” membranes. In the stiff regime, viscous
forces are negligible compared to bending resistance, and thus
the dynamic balance is between elastic and active stresses.
The elastic stress in a membrane with rigidity κ , typical
height deformation beff , and deformations occurring at typical
wave numbers k scales like κbeffk

4, while the active stress is
on the order of f0k

2. This yields a value for the effective height
of the membrane as beff ∼ f0/κk2. We then expect pumping
in the stiff regime, Us , to occur at speed Us ∼ c(beffk)2 ∼
ωf 2

0 /κ2k3.
In contrast, in the floppy limit the bending resistance is

negligible and the dynamic balance is between viscous stresses
and internal activity. The typical shear stress on the sheet scales
as μcbeffk

2. Force balance leads thus to the scaling f0k
2 ∼

μcbeffk
2, and the deformation is given by beff ∼ f0/μc. Fluid

pumping in the floppy limit, Uf , is thus predicted to happen
with speed Uf ∼ c(beffk)2 ∼ f 2

0 k3/μ2ω. Interestingly, in the
floppy limit, the dependence of the pumping speed on both
the sheet frequency and wave number is opposite to that in the
stiff limit.

To characterize the floppy-to-stiff transition, we introduce
the dimensionless group a = 1/k� where � = (κ/μω)1/3 is the
elasto-viscous penetration length that determines how strongly
the membrane shape is effected by the bending resistance
versus the viscous forces (similar to the so-called “sperm
number” used to model viscous locomotion of flagellated
organisms [20,28]). When a � 1 the membrane is stiff and
hence it is energetically prohibitive to introduce an excitation
of linear dimension the order of 1/k, so the viscous forces do
not modify the shape of the membrane and the wave form is
a result of the balance between activity and rigidity alone. In
contrast, when a � 1, the membrane is floppy, and the fluid
forces dynamically balance the internal forces to determine the
shape. Using the two scalings derived above in the stiff and
floppy regime, we note that Uf /Us ∼ κ2k6/μ2ω2 = (k�)6 =
1/a6.

3. Asymptotics

Expanding the distributed moment in powers of the small
parameter, namely f = εf (1) + ε2f (2) + · · · , and furthermore
expanding in the same basis as the height field such that
f (1) = f0Re{∑ fne

in(kx−ωt)}, we utilize the results for the
pressure and stream function from the previous section to find
the linear response for the height field as a function of the
internal tangential stress

bn = f0

2κk2[n3 + i2a3]
fn. (10)

Using the result Eq. (10), we are then able to derive the
pumping flow, Eq. (4), as a function of the activity, elasticity,
and viscosity, and we obtain

U (2) = 1

2

∑
n

ωk|nbn|2 = 1

8

ωf 2
0

κ2k3

∑
n

n2|fn|2
n6 + 4a6

· (11)

In the stiff limit, a � 1, the asymptotic results in Eq. (11)
recover the scaling derived in Sec. III A 2. For the floppy limit,
a � 1, the series in Eq. (11) is only asymptotically convergent,
but for a finite sum the scaling in Sec. III A 2 also holds.
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B. Active normal stresses

1. Setup

In the section above we neglected the details of the
activity within the membrane, in favor of a more generic
modeling approach describing the relationship between fluid
flow, internally applied bending moments, and passive bending
resistance. In a biological context, many sources of activity
could instead generate normal stresses in the membrane. Our
second model, described below, considers a concentration
of active elements dispersed throughout the membrane and
generating fluid stresses. Active membranes, consisting of
elements roughly similar to the model that we use, have been
considered in the past for modeling the morphology of cellular
membranes [6,29], or measuring nonequilibrium effects in
shape fluctuations [10,30], but in this work we seek to use
a fluid mechanics motivated model to describe as simply as
possible methods of force generation due to active inclusions.

A schematic of the proposed model system is sketched in
Fig. 3. A dilute concentration of “pumps,” each one capable of
driving a microscopic flow through the membrane surface, act
as inclusions, effectively modifying the material properties.
Not only does the shape of the individual pump alter the shape
of the membrane [6,30], but the flow itself generates fluid
stresses on the surface.

Each pump is modeled as a circular aperture of radius d.
Since d is a molecular length scale far smaller than any other
length scale L in the system, we can approximate the flow as
resulting from a point source embedded in a flat surface [31],
such that the stream function is given by ψ = −q/2π [1 − (t̂ ·
r/r)3], where t̂ is the radial tangent vector on the surface, r
is the position of interest in the fluid, and q is the volumetric
flow rate through the inclusion. The corresponding pressure
drop across the aperture is δp = 3qμ/d3.

In order to satisfy the equations of force balance we need
to calculate the normal and tangential stress due to not just

q

(a)

(b) (c)

FIG. 3. (Color online) Schematic illustration of membrane de-
formation by active inclusions. (a) Active inclusions embedded in
the surface; the inclusions induce flow fields which lead to pressure
drop and thus normal stresses acting on the membrane. (b) Zoomed-in
version of the membrane where the size of each inclusion and the local
bending of the membrane are schematically represented. (c) Sketch of
the streamlines for a single circular aperture in a flat surface pumping
fluid with flow rate q; at leading order the molecular length scale d is
much smaller than the typical membrane scale L, and thus the flow
is assumed to be unaffected by membrane curvature.

one pump, but a concentration of inclusions. Each pump has
a preferred direction, and thus we must generally consider
the concentration difference, n = n+ − n−, where n+ and n−
are the concentrations of pumps pointing in the positive and
negative z directions, respectively. For convenience we will
consider the dimensionless quantity φ = n/n0, where n0 is
the equilibrium concentration difference [30].

The normal stress on the membrane due to a single inclusion
is simply the pressure drop from the fluid, while the tangential
stress on the surface of the membrane decays like 1/ρ2, where
ρ =

√
x2 + y2. The length scale d dominates this contribution,

and locally this implies that the tangential stress per length is
of the same order as the pressure drop; i.e., t̂ · σ · n̂ ∼ qμ/d3.
However, because the stream function is axisymmetric, the
tangential component of the fluid stress integrates to zero over
the entire membrane, and thus does not enter the force balance
equations.

A general functional describing the enthalpy of the mem-
brane including active pumps is given by

G =
∫

κ

2
(C − H0φ)2dS, (12)

where H0 a signed measure of the intrinsic curvature for
the active elements, and we have neglected effects from
2D compressibility in the concentration, as well as higher
order effects coming from gradients in the concentration field
[10,30,32].

Performing the functional extremization and linearization
for the active pump enthalpy, and including the fluid stresses
from pump activity, we now find the dynamic equations to be

2κ
∂4h(1)

∂x4
− κH0

∂2φ

∂x2
= −p(1) − qμ

d3
φ − 2μ

(
∂2ψ (1)

∂z∂x

)
S

,

(13a)

τ (1) = μ

[
∂2ψ (1)

∂z2
− ∂2ψ (1)

∂x2

]
S

. (13b)

As in the case addressed in the previous section, the tangential
stress balance yields zero tension at leading order.

2. Scalings

Here again we use scaling arguments to derive the expected
form for the macroscopic flow pumped by the membrane. In
addition to the stiff (s) versus floppy (f) regimes explained
above, we must consider the competition between the spon-
taneous curvature and the deformation induced by the active
pumping mechanism: In one limit the local stiffness introduced
by the molecular curvature of the inclusions overrides the
pumping activity (we denote this limit h), while in the opposite
limit the spontaneous curvature is dominated by the pump
activity (denoted a). We have thus four different limits to
characterize.

Let us denote by φ0 the typical magnitude of the di-
mensionless concentration of pumps, and the typical force
generated by the pumps as fact = qμ/d. To measure the
competition between the natural curvature of the inclu-
sions (h case) and the one arising from the activity-
induced fluid flow (a case), we introduce the dimensionless
parameter, A = H0κd2k2/fact.
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For stiff membranes (a � 1), in the limit where the bending
from activity is predominant, i.e., A � 1, force balance reveals
that beff ∼ factφ0/κd2k4, while in the opposite limit where
the bending arises from molecular curvature (A � 1), we get
beff ∼ φ0H0/k2. In contrast, for floppy membranes (a � 1),
the case of active inclusions (A � 1) leads to the scaling beff ∼
factφ0/μω0d

2k, while in the limit where the inclusions pump
a very small amount of fluid transverse to the membrane (A �
1), we obtain beff ∼ H0φ0κk/μω.

Now, the expected fluid velocities in the four different
limits can be found by again using the analogy with the
swimming sheet, U ∼ c(beffk)2. For stiff active membranes
(a � 1, A � 1), we expect Usa ∼ ω(factφ0)2/κ2d4k7, while
stiff inactive membranes (a � 1, A � 1) should lead to
Ush ∼ ω(H0φ0)2/k3. In the inactive case we note that the fluid
velocity no longer depends on the membrane stiffness, as the
intrinsic curvature H0 governs the bending penalty at the same
order in κ as local deformations in the height field.

In the case of floppy active membranes (a � 1, A � 1), we
expect to obtain Uf a ∼ (factφ0)2/μ2d4ωk, while for inactive
floppy membranes (a � 1, A � 1) the pumping flow should
scale like Uf h ∼ (H0φ0κ)2k3/μ2ω. It is notable that even
in the inactive case, the mismatch of curvature between the
inclusions and the elastic membrane they are embedded in
can, alone, lead to deformation that gives rise to fluid transport;
even in the floppy limit consequences of the bending rigidity
κ cannot be neglected.

3. Asymptotics

Using the Fourier decomposition for the concentration of
inclusions, φ(x,t) = ∑

φne
in(kx−ωt), the linear response of

Eq. (13a) is found to give

n4k4bn + i2μωnk

κ
bn = −H0n

2k2φn − fact

κd2
φn. (14)

As before we must expand in the limit of small active
forcing so that we can recover linear response relationships;
for values of the relevant parameters that might be expected
in a physically realizable system, see the Discussion section
below.

The final linear response for the height takes the form

bn = − fact

κk4d2

1 + An2

n4 + i2a3n
φn. (15)

Plugging Eq. (15) into Eq. (4) we finally find that the
macroscopic velocity is given by

U (2) = 1

2

∑
n

ωk|nbn|2 =
∑

n

1

8

ωf 2
act

k7d4κ2

[
(1 + An2)2

n8 + 4n2a6

]
|φn|2.

(16)

In the stiff (a � 1) and floppy (a � 1) limits, as well as the
limits where intrinsic pump curvature dominates (A � 1) or
is dominated by (A � 1) deformation from the active normal
stresses, the final asymptotic results in Eq. (16) confirm all the
scaling predictions in Sec. III B 2.

IV. DISCUSSION

In summary, although the framework for characterizing
fluid transport and locomotion by a waving sheet has existed
since the 1950s, in this work we have attempted to go beyond
a prescription of surface deformation by instead prescrib-
ing internal activity (so starting from dynamics instead of
kinematics). Both membrane deformation and fluid transport
can then be solved by solving a dynamic balance between
activity, passive resistance, and external fluid stresses. We
have used two models to cover a range of possible forcing,
namely a planar distribution of bending moments that generate
normal deformation, and a simple model of active constituents
that produce normal permeative flow, resulting in sheet
undulation.

From an experimental standpoint, what is the typical
magnitude of the flow which could be induced by active
mechanisms similar to the ones described in this paper?
For lipid bilayers, bending rigidities are on the order of
κ ∼ 10−19Nm [29], and using cross-linked molecular motors
as one model microscopic force generator, a single molecular
machine could generate forces on the order of ∼1pN [33].
If these were distributed throughout a membrane, say with a
dimensionless concentration of φ ∼ 10−3, we could expect
a magnitude for the internal moment per unit length of
f0 ∼ 10−15N. On cellular length scales L ∼ 100 μm, with k ∼
1/L, the range of frequencies ω ∼ 100–102 Hz could include
both the stiff and floppy regimes, and as a result we could
expect macroscopic velocities on the order of U ∼ 1 μm/s
for low frequencies (stiff limit) or U ∼ 1–100 μm/s for higher
frequencies (floppy regime).

For transmembrane proteins capable of inducing a micro-
scopic flow through a surface, such as aquaporins or proton
pumps, the volumetric flow rate is difficult to estimate, but
we can use previous simulation results for guidance [34,35].
For membrane constituents such as lipids or proteins a typical
radius of gyration gives H0 ∼ 1 nm−1 [29]. This yields a value
for the parameter A ∼ (10−18N)/f0. For molecular motors
generating fluid flow normal to the membrane with a force
per motor on the order of f0 ∼ 1 pN, this makes A � 1, i.e.,
the active limit; for aquaporins or other active pores that are not
designed specifically to move cellular structures, A � 1. With
a frequency of oscillation of ω ∼ 1 Hz, these membranes are in
the stiff limit. With a dimensionless concentration as small as
φ0 ∼ 10−3, the macroscopic pumping velocity can be as large
as U ∼ 10–100 μm/s for the active case, and U ∼ 1 μm/s
for inactive membranes.

One possible experimental realization for a self-propelled
active membrane could be in the form of a closed bilayer
vesicle with embedded active pumps. For a spherical vesicle
of radius R and wavelength undulations satisfying λ � R, we
can use the above calculations in tandem with the swimming
results of Stone and Samuel [17] to get an estimate of the
vesicle swimming speed

U ẑ ≈ − 1

4πR2

∫
S

u dS, (17)

where u = U (2)t is the local fluid velocity created by the
activity-induced membrane deformation; up to a geometric
constant, we thus get that the instantaneous swimming velocity
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of this active vesicle is the same as that given in our
calculations above. Several previous studies have examined
the possibility of self-propelled vesicles [18,36,37], and our
results connecting the internal stress state to macroscopic
motion can thus be used as a probe of the activity. One could
envision a situation where the diffusivity of active vesicles
would be experimentally measured; in the presence of active
pumps, this diffusivity would be enhanced by the propulsion
velocity as Deff ∼ U 2/Dr , where Dr is the vesicle rotational

diffusion [38], which could then be directly related to the
activity via the results derived in this paper. Our framework
could serve, for example, as a way to rule out specific forms
of activity in a membrane.
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