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In this paper, we study the dynamic response of 1D microfluidic-

droplet streams to finite-amplitude longitudinal perturbations and

demonstrate experimentally that the excitation of localized jams

results in the propagation of shock waves. The shock velocity is

shown to vanish as the average particle density approaches a critical

value thereby leaving long-lived disturbance in the spatial organi-

zation of the streams. Using a gradient expansion of the hydrody-

namic coupling between the advected particles, we then theoretically

derive the non-linear constitutive equation relating particle current

to particle density, and show that it leads to the Burgers equation for

the droplet stream density.
Numerous microfluidic techniques rely on the streaming of particles

in microchannels. In flow cytometry devices, focused streams of

microparticles such as cells and colloids are sorted and analysed.1 In

droplet-based devices,2 liquid droplets are produced and transported

at high rates—up to several kHz—and the resulting one-dimensional

(1D) droplet crystals form a useful collection of independent micro-

reactors to perform parallel chemical reactions. In the engineering of

functional polymeric particles, either by polymerizing prepolymer-

based droplets or in situ lithographic techniques,3 one-dimensional

streams of solid particles are typically created, and handled in shallow

microchannels. As these applications are intended to yield high-

throughput analysis, controlling the stability of the 1D streams of

microfluidic particles can be a major issue. Several solutions exist to

enhance the robustness of the particle transport with respect to

transverse perturbations, e.g. using guiding rails along the micro-

channels.4,6 However, the stabilization with respect to longitudinal

perturbations remains an unsolved problem.

From a fundamental perspective, our understanding of particle

transport in microchannels has mostly focused on hydrodynamic

phenomena occurring at the single-particle level, including droplet

formation and breaking, inertial effects, and lubrication-induced

deformations.5 In contrast, little work has been devoted to the large

scale dynamics of 1Dparticle streams.Notable exceptions include the

investigations of Beatus and co-workers, who demonstrated that 1D

droplet crystals are linearly stable, with small perturbations propa-

gating while leaving the crystalline order unchanged.7,8 In recent

work, we have shown that there exists a maximal boundary for the
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stationary current of 1D particle streams driven in Hele-Shaw

geometries and in obstacle networks.9 When the (imposed) particle

current exceeds this critical value, long-range hydrodynamic inter-

actions between the advected particles lead to the spontaneous

formation of jams, resulting in the longitudinal and the subsequent

transverse destabilization of the 1D streams.

In this paper, we study the dynamic response of regular 1D streams

(crystals) to finite-amplitude longitudinal perturbations. Using

a microfluidic device, we show that the excitation of localized jams

results in the propagation of shockwaveswhose speed vanishes as the

average particle density approaches a critical value, thereby leaving

long lived disturbance in the spatial organization of the crystals. To

account theoretically for this non-linear dynamics, we use a far-field

description of the hydrodynamic coupling between the advected

particles to derive the non-linear constitutive equation relating

particle current to particle density. Our results show that the polar

symmetry of the hydrodynamic interaction kernel governs the

dynamic response and the stability of 1D streams.

Our experiment consists of flowing a 1D crystal made by injecting

droplets at a constant rate in a straight channel, as illustrated in

Fig. 1. We then suddenly increase the injection rate for a short period

of time, thereby creating a localized jam along the particle stream.

The dynamic response of the stream to this longitudinal perturbation

is characterized by analyzing the spatiotemporal evolution of the

droplet packing fraction.

The device is a microfluidic sticker made of a thiolene based resin

(NOA 81, Norland optical adhesive).10 The microchannel is straight,

with length L ¼ 1.8 cm, width W ¼ 500 mm and height h ¼ 70 mm.

Water droplets, colored with a macaroon food-dye, are formed at

a conventional flow-focusing junction and injected in the channel

(Fig. 1). All the experiments in the paper employ the same droplet

diameter, b ¼ 140 mm. The continuous phase is a mixture of hex-

adecane oil (viscosity h ¼ 2 mPa s) and span 80 surfactant (3 wt%).

The average flow velocity of the continuous phase varies between

5 mm s�1 and 15 mm s�1. The typical Reynolds number is smaller
Fig. 1 Design of the microfluidic device. The flow-focusing module is

coupled to a dilution module to induce localized jams along the 1D

droplet stream. The colored water droplets are advected by a hexadecane

phase. The flow focusing module is fed at the imposed flow rates: Qwater

and Qoil. Qdilution is the hexadecane flow rate in the dilution channel.
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Fig. 3 Spatiotemporal evolution of the density field, f(x,t), after a is jam

induced at t ¼ 0 (f0 ¼ 0.4 initially). Color map: local density. The white

arrow indicates the motion of a droplet far from the jam.
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than 10�1, and inertia plays a negligible role in the observed

dynamics. To focus on longitudinal responses, the droplets are guided

by cylindrical posts which impede the transverse destabilization of the

crystal (diameter 100 mm, spacing 100 mm).

To create a localized longitudinal perturbation (jam) at the

entrance of the channel, we use an additional oil inlet to dilute or

concentrate dynamically the droplet stream (Fig. 1). Increasing the

flow rate in this dilution channel,Qdilution, results in a reduction of the

packing fraction.We systematically use the same protocol for the jam

formation. First we prepare the system in a stationary state corre-

sponding to a uniform droplet packing-fraction, f(x,t)¼ f0.We then

suddenly stop the dilution flow for a short period of time. Specifically,

Qdilution is set to 0 after a 250 ms linear ramp, kept at the 0 value for

100 ms, and then reset to its initial value after a 250 ms linear ramp.

The resulting peak in the local packing fraction, f(x,t), and its

evolution in time are shown in Fig. 2. Using pictures taken at 60 fps

with a 10 bit CMOS camera mounted on a Nikon SMZ1500

stereomicroscope, the linear packing-density f(x,t) is defined as the

instantaneous number of droplets in a rectangular region of size

200� 75 mm2 centered around the position x and normalized by the

number of droplets in the same window for a close-packed crystal.

The position x is defined along the centerline of the channel, with the

dilution module connecting the main channel at x¼ 0. The origin of

time t ¼ 0 is set at the end of the imposed perturbation.

We show in Fig. 2 three snapshots of the density profile illustrating

how the local packing fraction, initially in a homogeneous state

(f0 ¼ 0.4), relaxes after a jam is induced at t ¼ 0. The full spatio-

temporal evolution of the density field in the same experimental

conditions is displayed in Fig. 3. Independent of the initial density, all

our experiments yield similar phenomenology: the jams are advected

along the channel but their shape is not conserved. As seen in Fig. 2,

the initial density peak is deformed in an asymmetric manner, with

the left front remaining sharp while the right front spreads at a speed

comparable to the mean advection velocity. In addition, as the
Fig. 2 Time-evolution of the density profiles along the centerline of the

channel after a jam induced at t ¼ 0. Initial density: f0 ¼ 0.4. The arrows

follow the position of the maximum/minimum of the initial density

perturbations.

This journal is ª The Royal Society of Chemistry 2011
pressure controller used to tune the Qdilution systematically induces

a minute and brief dilution of the droplet stream prior to the jam

formation (see Fig. 2), we also observe an asymmetric spreading of

this negative density perturbation.

The dynamic response we observe for both positive and negative

density perturbations is not compatible with a linear response to the

initial longitudinal excitations, and can thus not be described as

the linear superposition of dispersive compression waves (phonons).7

The breaking of the left–right symmetry in the spreading dynamics
Fig. 4 Red triangles: positive front velocity, VS, normalized by the

velocity of an isolated dropV0, vs. the front density fS. Empty circles: the

normalized droplet velocity, in the homogeneous state is plotted vs. the

initial packing fraction, f0. The error bars are comparable to the symbol

size. Solid line: best linear fit for the droplet velocity (slope: �0.4).

Dashed line: best linear fit for the shock velocity (slope:�0.7). Inset: fS is

defined as the average of f(x) over the shaded region.
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indicates that, instead, a non-linear phenomenon governs the relax-

ation dynamics of the initial jam. The spatiotemporal evolution of the

density field in Fig. 3 shows that the sharp fronts propagate at

a constant speed, which we denote VS, and which depends on the

local density fS at the location of the fronts. The fronts associated

with a positive perturbation propagate slower than the fronts asso-

ciated with a negative perturbation. By repeating the same experi-

ment for different f0, we can measure the explicit dependence of the

front velocity, VS, on the local density, fS, the results are plotted in

Fig. 4 (red triangles). We obtained a clear linear decrease of VS with

fS, which defines a critical packing fraction, f*, above which the

fronts should propagate upstream, VS h V0(1 � fS/f
*); note that

VS(fS ¼ 0) ¼ V0 is the velocity of an isolated droplet, which is

precisely the velocity of the smallest possible density excitation. A

linear fit yields f* ¼ 0.9. Experimentally, we could not achieve stable

uniform crystals of densities higher than f0 ¼ 0.7 over long time

scales; above this value, any uncontrolled perturbation leads to

transverse destabilization of the 1D streams despite the stabilizing

posts. Nonetheless, we measured reductions of the front velocities by

a factor of 5 as we increased fS to close to f*. In addition, the droplet

velocity in the homogeneous state, VD, was observed to decrease

linearly with the packing fraction (Fig. 3, open circles). Consequently,

the droplets at the rear of the density peak catch up with the jam,

where the density is higher and the droplet velocities lower. Simul-

taneously, the droplets ahead of the jam move faster, resulting in the

widening of the density perturbation. This mechanism, akin to the

Burgers shocks propagation,11 is responsible for the formation of

stable sharp fronts and asymmetric spreading.

In order to theoretically rationalize our experimental findings, we

now introduce a far-field model. With an aim at understanding

quantitatively how the hydrodynamic coupling between the droplets

results in the formation of sharp fronts and the anisotropic spreadings

of localized jams. To do so, we derive the local non-linear constitutive

equation that relates the density, f(x,t), to the droplet current, j(x,t),

which we write without loss of generality as j(x,t) h mu(x,t)f(x,t),

where u(x,t) is the continuous phase velocity, and m is the droplet

mobility. Together with mass conservation, vtf(x,t) + vxj(x,t) ¼ 0,

these two equations determine the non-linear dynamics of f. For

a given channel geometry, m depends only on the droplet shape. Since

the droplets are deformable, m could implicitly be a function of u(x,t),

but since the capillary numbers are below 10�4, droplets are not

deformed by the continuous flow and m can be assumed to be

a constant. We measure m ¼ 0.7, which is less than one due to the

dissipation in the lubricatingfilmbetween thedroplets and the channel

walls, and implies that the droplets disturb the external velocity field,

u0(x,t)h u0ex, of the continuous phase. The longitudinal component

of the flow disturbance, du(x,t) ¼ u � u0, correlates to the displace-

ments of the droplets, and is at the origin of the non-linear dynamics.

To provide an explicit expression for this hydrodynamic coupling,

we make two simplifying assumptions. First, having microfluidic

applications in mind, we consider mean flows averaged over the

height of the channel and thus describe the transport by a 2D

potential flow, which is typical of Hele-Shaw geometries independent

of the presence of regular obstacles.8,9 Second, we assume a dilute

suspension of droplets and treat the hydrodynamics in a far-field

sense. In that limit, the flow perturbation induced by a droplet at x¼
0 has the symmetry of a source dipole,8,9,12 and induces an instanta-

neous flow velocity, udip(x), at a distance x given by udip(x)¼�p/x2, if

x � W where W is the channel width, and udip(x) � exp(�x/W), if
11084 | Soft Matter, 2011, 7, 11082–11085
x [ W due to hydrodynamic screening by the walls. The dipole

strength, p, scales linearly with the area of the droplet in the plane of

the flow andwith the difference between the droplet speed and that of

the surrounding fluid, p � u0(1 � m)b2. In the dilute limit, the flow

disturbances can be treated as pair-wise additives and therefore the

flow perturbation induced by all the advected droplets can be written

down as a linear superposition of dipolar singularities,

duðx; tÞ ¼
ð
dx0

b
fðx0; tÞudipðx� x0Þ. The formula for du is non-local

due to the power-law decay of the hydrodynamic interactions. It also

requires regularization at x ¼ x0 to model the finite size of the

droplets, which we achieve by defining udip as udip(x,t)h�p/(x2 + a2)

without loss of generality, where a ¼ b/2 is the droplet radius.

To derive the local current-density constitutive relationship, we

consider long-wavelength deformations of the droplet stream. We

perform a gradient expansion of the hydrodynamic coupling and

write thus the droplet velocity as mduðx; tÞ ¼ P
n anv

n
xfðx; tÞ. In

the long wavelength limit, the constitutive relation will reduce then to

j¼ mu0f + amf(x,t)v
m
xf(x,t), where am is the first non-zero coefficient

of the expansion for the flow perturbation du. The linear convolution

in real space leading to the flow perturbation, du(x,t) is best evaluated

in Fourier space where we get dû(q,u) ¼ b�1f̂(q,u)ûdip(q,u), where q

is the wavenumber, u the frequency, and dû(q,w) the Fourier trans-

form of dû(x,t). Considering longitudinal excitations with wave-

lengths larger than the cut-off size (qa [ 1) but smaller than the

channel width (qW� 1), we get dû(q,u)¼�(pp/ab)f̂(q,u)e�|q|a using

the Cauchy theorem. At leading order in qawe have dû(q,u)¼�(pp/

ab)f̂(q,u) + O(|qa|). In real space and time variables, we therefore

obtain that the velocity of the droplets decreases linearly with the

packing-fraction as u(x,t)¼ u0[1�pp/(abu0)f]. This first prediction is

in excellent agreement with the measurements of the droplet velocity

in the stationary state (Fig. 4, VD, open circles). Using this linear

relationship, we obtain the local constitutive relation as

jðx; tÞ ¼ mu0fðx; tÞ
h
1� 1

2
fðx; tÞ=f*

i
, where f* h abu0/(2pp).

When combined with mass conservation this leads to the non-linear

equation of motion for the density

vtfþ mu0

�
1� f

f*

�
vxf ¼ 0: (1)

Eqn (1) is a Burgers equation for which, as anticipated in the

experimental section, the response to a smooth localized density

perturbation is a shock wave.11 As f* > 0, eqn (1) predicts that an

initially symmetric jam evolves to form a sharp front on the upstream

side while spreading on the downstream side, which is in agreement

with our experimental observations (Fig. 2). The front velocity is

given byVS¼ mu0(1� fS/f
*), where fS is the average of the packing

fractions across the sharp front.11 It then follows that (vfS
VS)/

(vf0
VD)¼ 1/2, close to our experimental measurement of 0.55 for this

ratio (Fig. 4). The agreement between our experimental observations

and our theoretical predictions demonstrates that the non-linear

response of a 1D droplet stream can be described by Burgers

dynamics arising from long-range hydrodynamic interactions.

Although our experiments did not allow us to probe higher order

terms in the gradient expansion, we can theoretically compute the

dispersion relation of the compression waves at all orders in qa.

Searching for Fourier modes as f(x,t) ¼ f0 + 3exp(iut � iqx), we

obtain to first order in 3 perturbations propagating in a dispersive
This journal is ª The Royal Society of Chemistry 2011
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manner along the 1D stream,7,8 with a dispersion relation

u ¼ u0q
h
1� f0

2f*
ð1þ e�jqjaÞ

i
. Note, however, that 1D hydrody-

namic crystals having more than one spatial period and long wave-

length modulations are not the stationary solutions of eqn (1), and

any long wavelength density modulation would ultimately form

localized shocks.

Our results have implications beyond our immediate experimental

investigation. The Burgers phenomenology is not specific to particles

advected by potential flows. The leading order term in the gradient

expansion of du(x,t) always scales as f(x,t) provided that the

elementary flow perturbation is an even function of x (a0 represents

the spatial average of the flow perturbation induced by an isolated

particle). Our predictions do therefore not depend on the specifics of

the shape of the channel boundaries. More importantly, particles

driven by external forces (gravitational, electric, magnetic, etc.)

should follow a similar large scale dynamic, both in confined geom-

etries and in unbounded fluids. Notably, the sign of the induced

dipole depends on the details of the driving. Specifically, p is positive

(resp. negative) for particles moving slower (resp. faster) than the

surrounding fluid. A stream of particles driven by an external force

(or self-propelling) in a quiescent fluid could be flowed at an arbi-

trarily high current value, as in this case, the j(f) function has no

upper bound, jðfÞ ¼ mu0fðx; tÞ
h
1þ 1

2
fðx; tÞ=f*

i
, and would lead

to fast shocks propagating at a finite velocity,VS¼ mu0(1 +fS/f
*), for

all densities as observed in 2D particle streams (the mechanisms

responsible for the reversal of the shocks polarity in 2D streams will

be discussed in a forthcoming paper).13 In contrast, for advected

particles, there exists a maximum current, j(f*), to the quadratic
This journal is ª The Royal Society of Chemistry 2011
constitutive relation,9 and the shock velocity VS vanishes when

f / f*, leading to long-lived density perturbations with lifetimes

�(1 � f0/f
*)�1. Digital microfluidic setups in which particles are

driven by external fields, although they might require involved

fabrication steps, would thus be more robust to longitudinal density

perturbations.

This work was funded in part by the Paris Emergence 2009

program, the C’Nano Ile de FranceDypMoA research grant, and the

National Science Foundation (grant CBET-0746285).
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