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In a variety of biological processes, eukaryotic cells use cilia to transport flow. Although cilia have a

remarkably conserved internal molecular structure, experimental observations report very diverse kine-

matics. To address this diversity, we determine numerically the kinematics and energetics of the most

efficient cilium. Specifically, we compute the time-periodic deformation of a wall-bound elastic filament

leading to transport of a surrounding fluid at minimum energetic cost, where the cost is taken to be the

positive work done by all internal molecular motors. The optimal kinematics are found to strongly depend

on the cilium bending rigidity through a single dimensionless number, the Sperm number, and closely

resemble the two-stroke ciliary beating pattern observed experimentally.
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Cilia are slender filaments, typically a few microns in
length, used by eukaryotic cells to transport or sense flows
[1,2]. Familiar examples include those densely packed on
the surface of Paramecia enabling locomotion [1], the cilia
covering our airways and helping expel mucus toward the
pharynx [3], or those responsible of the left-right symmetry
breaking during embryonic development [4].

The cilium internal structure has been highly conserved
throughout evolution. It generally consists of a central pair
of microtubules surrounded by nine microtubule doublets,
to form the so-called ‘‘9þ 2’’ structure [5]. Deformation of
the cilium is achieved by the action of ATP-fueled protein
motors (dynein) that generate internal torques from the
relative sliding of adjacent microtubule doublets. Yet, the
mechanisms that regulate dynein activity and thus ciliary
deformation are not well understood [6].

The beating cycle of a cilium typically consists of two
phases (Fig. 1, left): an effective stroke aimed at generating
flow, during which the cilium is almost straight while
moving in a plane normal to the cell surface, and a recovery
stroke, during which the cilium returns to its initial position
by exhibiting large curvatures and possibly moving out of
the normal plane. Past experimental studies have shown that
cilia from different cells can exhibit qualitatively different
kinematics [1]. However, the parameters, physical or bio-
logical, that select or constrain these kinematics are still
unknown.

In this Letter, we address this open question by comput-
ing the optimal kinematics of an elastic cilium attached to a
wall, i.e., the time-varying deformation that minimizes the
energetic cost for a given transport of the surrounding fluid.
Recent work focused on the optimal deformation of flag-
ellated cells [7] and cilia [8] by minimizing the energy
lost to viscous dissipation in the fluid. Here, we argue that
one needs to rigorously consider the internal structure of
the cilia and measure the energetic costs as the sum of the
positive work done by internal molecular torques, similar

to the currentmodels ofmuscle energetics [9]. Thismodeling
approach leads to optimal ciliary kinematics displaying
the experimentally observed two-stroke cycle and strongly
dependent on the cilium bending rigidity.
The cilium is modeled as an inextensible elastic filament

of length L and radius a, clamped normally into the plane
Oxy (Fig. 1). The filament centerline is described by the
vector rðs; tÞ, where s is the curvilinear coordinate, and the
material frame (d1, d2, d3) describes the local orientation
of the filament, with d3 ¼ r0 the tangential unit vector,
such that

d0
i ¼ D� di; _di ¼ �� di; for i ¼ 1 � � � 3; (1)

where the primes and dots note the differentiation with
respect to s and t, respectively, D is the Darboux vector
[10,11], and � the angular velocity.
The balance of forces and moments on a cross section

are expressed by the Kirchhoff equations for a rod [11]

T 0 � F ¼ 0; M0 þ d3 � Tþ q ¼ 0; (2)

(d)

x y
zO

d1 d2

d3

s
s+ds

-T

-Fds T+dT

M+dM

-M

qds

(e)

(c)

x
z

(a)

(b)

x
y

x
z

FIG. 1 (color online). Typical two-dimensional (a) and three-
dimensional (b),(c) cilium kinematics as observed for
Pleurobrachia [24] and Mytilus edulis [25], respectively.
Sketch of the coordinates (d) and of the forces and moments
that apply on a filament element ds (e).
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supplemented by clamped-free boundary conditions,
where T and M are the internal tension and bending
moment, respectively, and �F is the fluid drag per unit
length (opposite to the force density F exerted by the
filament on the surrounding fluid). In the relevant slender
limit a=L � 1, the internal forces generated by the dynein
arms contribute, at first order, to an active torque per unit
length, q, as in Eq. (2) [12]. Since the energy needed to
produce torsion is of order L=a larger than that to produce
bending [13], the tangential component of this internal
torque can be neglected, q � d3 ¼ 0, which yields no twist
of the filament, D � d3 ¼ 0.

The Hookean constitutive relation relates the bending
moment M to the Darboux vector D through a linear
relation. In the absence of torsion and for an axisymmetric
filament, it simplifies toM ¼ BD ¼ Bd3 � d0

3, with B the

bending rigidity. Combining this constitutive relation, the
free boundary condition at s ¼ L, and Eq. (2), the internal
torque q can be expressed as a function of d3 and F alone:

q ¼ Bd00
3 � d3 þ d3 �

Z L

s
FðuÞdu: (3)

Assuming the cilium kinematics is known, we need to
evaluate the hydrodynamic forces F in order to fully deter-
mine the internal torque q. Since the cilia are few microns
long, their Reynolds number is small and the surrounding
flow follows the Stokes equations. In this limit, FðsÞ repre-
sents a distribution of stokeslets, which are the Green
functions (point forces) of the Stokes equations.

Taking advantage of the small aspect ratio of the filament,
we use the slender-body theory [14,15], which allows us to
linearly relateFðsÞ to the instantaneous distribution of veloc-
ities _rðsÞ along the cilium centerline. To take into account the
presence of the no-slip wall to which the cilium is anchored,
slender-body theory is supplemented with Blake’s system of
hydrodynamic images [16], allowing us to formally write

_rðsÞ ¼ LRFT � Fþ LSBTðFÞ þ LimageðFÞ; (4)

where LRFT is the local linear operator of the so-called
resistive-force theory [2], given by LRFT¼ð1þd3d3Þ=�?,
with 1 the 3� 3 identity matrix, �? ¼ 4��= lnðL=aÞ, and
� the dynamic viscosity of the fluid. The linear integral
operators LSBT and Limage, which are of order lnðL=aÞ
smaller, account for the cilium-cilium and cilium-wall
hydrodynamic interactions, respectively. Their full expres-
sions can be found in Refs. [14,16]. Numerically, Eq. (4) is
regularized by using Legendre polynomials to diagonalize
the singular part of LSBT [15]. Once this regularization is
performed, the discretization and inversion of Eq. (4) is
straightforward. The resulting computational implementa-
tion of Eq. (4) is correct to the orderO½ða=LÞ2 lnðL=aÞ� [14].

Without loss of generality, the net flow transported by
the cilium is assumed to occur in the x direction. This
transport is quantified by the flow rate, Q, across the Oyz
half-plane (Fig. 1), which, by virtue of incompressibility,

is equal to the flow rate through any parallel half-plane, and
can thus be evaluated in the far field for convenience [8].
Far from the filament, the flow is dominated by the con-
tribution of stokeslets along the cilium, FðsÞ, and their
images, which consist of stokeslets, force dipoles, and
source dipoles [16]. Combined together, these singularities
are equivalent at leading order to a symmetric combination
of two force dipoles located inO, known as a stresslet [17],
leading to a flow rate given by

Q ¼ 1

��

�Z L

0
Fxrzds

�
; (5)

where the brackets denote time averaging.
The power expended to convert ATP into work with the

molecular motors is then assumed to be proportional to the
mechanical power, P, consumed by the internal torques, q,
where only positive work is accounted for [9]:

P ¼
�Z L

0
maxð0;q ��Þds

�
: (6)

Distinguishing between the positive and negative work
means that the dynein arms cannot harvest energy, which
breaks the conservative nature of elastic energy. The mean
power spent by the internal torque is thus larger than the
power given to the fluid; i.e., P � hRL

0 F � _rdsi.
From the definition of the flow rate, Q, and the mean

mechanical power, P, a dimensionless efficiency can be
constructed similarly to the one proposed in Ref. [8] as

� ¼ Q2�2=ðP�?L3Þ: (7)

With this definition, the transport efficiency, �, does
not depend on the beat angular frequency, !, or on the
aspect ratio at first order, since the flow rate scales as
Q�!L3�?=� and the power as P� �?!2L3.
Dimensional analysis shows that the problem is entirely

governed by two dimensionless numbers. The first is the
aspect ratio of the cilium, L=a. The cilia covering the body
of Paramecium have L � 12 �m and a � 0:12 �m, so we
assume that L=a ¼ 100. Note that since the aspect ratio
appears only logarithmically in the problem through
Eq. (4), its influence is essentially negligible. The second
dimensionless number is the Sperm number, introduced by
Lagomarsino et al. [18] as

Sp ¼ Lð!�?=BÞ1=4; (8)

which measures the ratio between the cilium length and the
elasto-viscous penetration length. The kinematics of optimal
ciliary motion depend strongly on the value of Sp. For
Paramecium, the angular frequency is ! � 200 rad s�1

[1], and with the bending rigidity estimated to be
B ¼ 25 pN�m2 [19], one obtains Sp � 4:6 in water.
Some cilia are shorter, such as the nodal cilia involved in
embryonic development with L � 2:5 �m for mice [20]
and L � 5 �m for humans [4], corresponding to Sp � 1
and Sp � 2, respectively. Other cilia can be much longer,
reaching hundreds of microns (thus Sp> 100), such as the
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cilium of Pleurobrachia reproduced in Fig. 1(a). In this
Letter, we focus on the range 1 	 Sp 	 7, corresponding
approximately to cilia of lengths 2:5 & L & 18 �m, for
which themost drastic changes appear in optimal kinematics.

For given values of both L=a and Sp, the cilium
kinematics that maximizes the pumping efficiency, �, is
computed numerically. The elastic filament is first discre-
tized as an assembly of ns discrete rods connected by
springs [21], and the stokeslet distribution is evaluated nt
times per cycle. The values ns ¼ 16 and nt ¼ 32 have been
used in this study and allow us to evaluate the efficiency of
a given kinematics rapidly without compromising preci-
sion. The filament kinematics is parametrized by imposing
the curvatures at Ns points along the filament centerline Nt

times per period. The curvatures on the ns � nt points are
then interpolated with a cubic spline from those Ns � Nt

points. Our results are obtained with Ns ¼ Nt ¼ 6, giving
36 and 72 degrees of freedom in two and three dimensions,
respectively, and the optimal kinematics are computed
using a sequential programming (SQP) algorithm. A pre-
liminary optimum can be found using the resistive-force
theory only (i.e., neglecting the last two terms in Eq. (4)),
which is qualitatively similar to the optimum found with
the full hydrodynamics, but at a much lower cost. This
preliminary optimum can then be used as an initial guess in
full hydrodynamics optimization. Our numerical approach
is validated by a comparison with the results of Ref. [8]
obtained with a bead model and an energetic measure of
the dissipation in the fluid only. The transport efficiency in
Ref. [8] is � ¼ 0:0035, corresponding to the large values
of Sp here and comparing well with our optimum for
Sp ¼ 7, � ¼ 0:0033.

Optimal two-dimensional kinematics are displayed in
Fig. 2 for Sp ¼ 2 and 4. We see that our optimization
approach, which rigorously quantifies the internal work
expended by molecular motors, leads to kinematics with
the experimentally observed two-stroke cycle: an effective
stroke during which the filament is rotating almost rigidly
around its anchor point, and a recovery stroke exhibiting
large curvatures. The energy dissipated in the fluid repre-
sents only a fraction of the total energetic costs (this
fraction increases with Sp: from 5% for Sp ¼ 1, to 38%
for Sp ¼ 2, to 90% for Sp ¼ 4). For small values of
Sp (short or stiff cilia), the curvature is essentially always
of the same sign [Fig. 2(a)], whereas for larger values of
Sp (long or flexible cilia), the curvatures are larger and
occasionally change their sign [Fig. (2(b))]. In order to
minimize backflow during the recovery stroke, the trajec-
tory has to be as close to the wall as possible, and in order
to achieve such a trajectory, large curvatures with high
energetic costs are necessary; the resulting optimum is
thus a balance, tuned by the value of Sp, between the
distance to the wall and curvature.
The optimal three-dimensional ciliary kinematics have

also been determined. The results are illustrated in Fig. 3
for Sp ¼ 1, 2, and 4. For small values of Sp, the cilium is
rotating around an axis inclined at an angle of approxi-
mately 45 degrees with respect to the surface normal
[Fig. 3(a)]. This optimal motion is similar to the observed
trajectories of nodal cilia [4]. For larger values of Sp, the
optimal cilium kinematics break the x ! �x symmetry,
and, as in two-dimensional case, the motion can be decom-
posed into an effective stroke in the vertical plane and a
recovery stroke with large curvatures. During the recovery
stroke, the filament takes advantage of the third dimension
to achieve a trajectory closer to the wall, and therefore is
more efficient than in the two-dimensional case. These
three-dimensional optimal kinematics reproduce the ex-
perimental observations of real cilia motions, as can be
seen by comparing the kinematics of Mytilus edulis
[Figs. 1(b) and 1(c)] with Fig. 3(c), for instance. For
Sp ¼ 4, the mechanical power expanded to produce the
optimal kinematics is P ¼ 0:13�?!2L3, which gives for a
typical cilium of Paramecium, P � 2:5� 10�14 W, in
agreement with experimental observations [22].

(a) Sp=2 (b) Sp=4

x
z

FIG. 2 (color online). Two-dimensional optimal ciliary motions
for Sp ¼ 2 (a) and Sp ¼ 4 (b). The stroboscopic views show the
cilium every 1=32 of the period. The energy dissipated in the fluid
represents, respectively, 38% and 90% of the total energetic costs
for Sp ¼ 2 and Sp ¼ 4.
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FIG. 3 (color online). Three-dimensional optimal ciliary motions for Sp ¼ 1 (a), Sp ¼ 2 (b), and Sp ¼ 4 (c). The fractions of energy
dissipated in the fluid are, respectively, 79%, 92%, and 99% of the total energetic costs for Sp ¼ 1, Sp ¼ 2, and Sp ¼ 4.
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It is to be noted that the value of the efficiency remains
unchanged for a given filament kinematics by the transfor-
mations x ! �x, y ! �y, or t ! �t. The same flow direc-
tion and efficiency could thus be obtained with clockwise or
counterclockwise rotations (by a y reflection), and with the
bend forward or tip forward during the recovery stroke (by
combining x and t reflections). For the real cilia, however,
chirality generally constrains the motion to be clockwise.

The influence of the value of Sp on the optimal pumping
efficiency is illustrated in Fig. 4, both for two- and three-
dimensional motions. As expected, three-dimensional de-
formation is more efficient for all Sp since the number of
degrees of freedom is larger, although the two cases con-
verge to similar efficiencies for large Sp. In both cases,
efficiency is a monotonically increasing function of the
Sperm number: increasing Sp is equivalent to reducing the
bending rigidity and thus allowing larger curvatures for
a lower energetic cost. In fact, the mean square curvature
of the motion appears to be almost an exponential function
of Sp in the range studied (inset of Fig. 4). Unless an
artificial dissipative term is introduced, one can thus expect
the problem to become mathematically ill posed in the limit
of a large Sp, which is equivalent to considering only the
energy dissipated in the fluid [8].

Interestingly, although an increase in bending rigidity
generally increases the energetic cost, it is not always
strictly true. Using the kinematics shown in Fig. 3(b)
corresponding to the optimum for Sp ¼ 2, ‘‘freezing’’ it,
and varying Sp, one finds the maximum efficiency when
Sp ¼ 3:2. However, this efficiency is only 0.05% larger
than the efficiency for Sp ¼ 1, and obviously a larger
efficiency can be achieved at Sp ¼ 3:2 if the kinematics
is allowed to vary. This result shows that bending of the
cilium allows the storage of elastic energy that can be
restored later in the motion.

As discussed above, we assumed that active internal
torques have no tangential components due to their pro-
hibitive cost in the slender limit, a=L � 1. As a result, and

because the cilium is assumed to be axisymmetric, opti-
mization always yields kinematics with zero twist. Even
if a more realistic model were adopted with slightly differ-
ent bending rigidities along the d1 and d2 directions owing
to the central microtubule pair, the twist would not be
larger than few degrees due to the large twist rigidity
[13]. In addition, even when torsion is not present, the
filament kinematics can give the illusion of twist, since
its extremity rotates, as shown in Fig. 5. This classical
result of differential geometry [10,11] can explain why
some studies reported the presence of twist on the cilia
of Paramecium [23].
In summary, we have proposed in this Letter that, in

order to derive the appropriate efficiency of cilia-driven
fluid transport, the detailed internal structure of cilia has to
be considered, and energetic costs have to be calculated as
the sum of the positive work done by the internal torques.
Using this approach, we have developed a numerical model
that allows us to compute the kinematics of a wall-bound
elastic cilium transporting the surrounding fluid at mini-
mum energetic cost. The optimal motions of the cilium
have been found to strongly depend on its bending rigidity
through a single-dimensionless parameter, Sp. These opti-
mal kinematics were found to display the experimentally
observed two-stroke cycle in both the two- and three-
dimensional motions. A large part of the total energy
consumed by a cell can be devoted to flow transport, in
particular for large eukaryotes. For instance, 70% of the
energy in Paramecium is estimated to be used for swim-
ming [22]. In the human body, the average power expended
by a single cell is approximately 10�11 W and is equal to
that required to actuate between a hundred and a thousand
cilia. Given these requirements, it is therefore quite pos-
sible that cilia kinematics have evolved to minimize the
internal energy expenditure.
Althoughwehave focused our study on the case of a single

filament, cilia in biology are generally densely packed on
surfaces, and as such are strongly influenced by hydrody-
namical interactions with their neighbors. These interactions
are an intriguing avenue for future work: they could affect
flow transport and be responsible for the different cilium
velocities observed during effective and recovery strokes [8].

FIG. 4 (color online). Optimal pumping efficiency, �, as a
function of Sp, for two- (2D) and three-dimensional (3D) cilium
kinematics. The inset shows the variation of the mean square
curvature for the optimal kinematics (semilog scale).
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FIG. 5 (color online). Illusion of twist for Sp ¼ 2. The three-
dimensional kinematics is plotted as if the filament was a ribbon
to emphasize the orientation of d1.
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