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Abstract. Motivated by the experimental ability to produce monodisperse particles in microfluidic devices,
we study theoretically the hydrodynamic stability of driven and active crystals. We first recall the theo-
retical tools allowing to quantify the dynamics of elongated particles in a confined fluid. In this regime
hydrodynamic interactions between particles arise from a superposition of potential dipolar singularities.
We exploit this feature to derive the equations of motion for the particle positions and orientations. After
showing that all five planar Bravais lattices are stationary solutions of the equations of motion, we consider
separately the case where the particles are passively driven by an external force, and the situation where
they are self-propelling. We first demonstrate that phonon modes propagate in driven crystals, which are
always marginally stable. The spatial structures of the eigenmodes depend solely on the symmetries of
the lattices, and on the orientation of the driving force. For active crystals, the stability of the particle
positions and orientations depends not only on the symmetry of the crystals but also on the perturbation
wavelengths and on the crystal density. Unlike unconfined fluids, the stability of active crystals is indepen-
dent of the nature of the propulsion mechanism at the single-particle level. The square and rectangular
lattices are found to be linearly unstable at short wavelengths provided the volume fraction of the crystals
is high enough. Differently, hexagonal, oblique, and face-centered crystals are always unstable. Our work
provides a theoretical basis for future experimental work on flowing microfluidic crystals.

1 Introduction

The dynamics of passive suspensions is a field with a long
history in physical hydrodynamics. Much effort has been
devoted to understand, e.g., the origin of fluctuations in
the sedimentation of spheres under gravity as well as in-
stabilities in suspensions of elongated fibers (see reviews
in [1,2] and references therein). More recently, a signifi-
cant experimental [3–5] and theoretical [6–8] research ef-
fort has focused on the dynamics of active suspensions
where instead of having particles driven by an external
field (e.g. gravity), one considers the dynamics and inter-
actions of self-propelled synthetic or biological swimmers.
In this case, the interplay of activity and hydrodynamic
interactions leads to long-wavelength instabilities [9,10].

Most of the past work on passive (driven) and active
suspensions has focused on instabilities and fluctuating
behavior in three-dimensional systems. However, over the
last ten years microfluidics has offered a number of simple
and effective solutions to produce and manipulate large
ensemble of highly monodisperse microparticles, prone
to form crystal structure in quasi-two dimensional chan-
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nels [11]. For driven particles, these technological advances
have motivated, for example, the study of the nonlinear
dynamics of finite flowing crystals [12,13], phonons in one-
dimensional microfluic-droplet crystals [14] and flowing
lattices of bubbles [15]. In the case of active particles, these
fabrication methods could be extended to self-propelled
catalytic colloids [16,17] or reactive droplets [18].

Motivated by these advances, we take in this paper an
approach contrasting with the traditional study of disor-
dered suspensions and consider the dynamics of confined
driven and active hydrodynamic crystals. We first develop
a formalism to study theoretically position and orientation
instabilities for flowing discrete suspensions under confine-
ment. In the case of driven particles, we demonstrate for-
mally that all crystals are marginally stable and study
in detail the eigenmodes of deformation for all five two-
dimensional Bravais lattices. For active particles, we show
that square and rectangular crystals are linearly unstable
at short wavelengths provided the volume fraction of the
crystals is high enough. Differently, hexagonal and oblique
(respectively face-centered) crystals are always unstable
for long- (respectively short-) wavelength perturbations.
In contrast with past work on three-dimensional swim-
mers suspensions, the stability of confined active crystals
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Fig. 1. Schematic representation of the problem addressed in
this paper: an extended hydrodynamic crystal is composed of
anisotropic particles confined in a channel of height h which
are either actively swimming or passively driven by an external
force (top- and side-views).

is found to be independent of the pusher vs. puller nature
of the actuation of individual active particles [19].

2 Theoretical setup

2.1 Particle crystal in a confined fluid

We start by describing the theoretical framework we use
to quantify the large-scale dynamics of both active and
driven microfluidic crystals. We focus our study on the
case of identical particles living in quasi-bidimensional flu-
ids, as sketched in fig. 1. The fluid is Newtonian and has a
homogeneous thickness h in the z-direction, comparable to
the size of the particles. Our formalism will be valid both
for thin films lying on a solid substrate (with one free sur-
face and one no-slip wall), and for microfluidic geometries
where the fluid is confined between two parallel plates.
The particles can be either axisymmetric or anisotropic
and are organized in two-dimensional crystal, see fig. 1.
If a denotes the typical lattice spacing of the crystal and
b the typical extent of the particle in the (x, y)-plane, we
consider in this paper the dynamics in the dilute limit,
e.g., a � b. In this limit, each particle i is appropriately
modeled as a pointwise body characterized by its in-plane
position, Ri(t) ≡ (xi(t), yi(t)), and its in-plane orienta-
tion, p̂i(t), where p̂i is a unit vector making an angle θi(t)
with the x̂-axis. Having microscopic systems in mind, we
neglect the particle inertia and work in the limit of zero
Reynolds number. In this Hele-Shaw setup, it is a classical
result that the fluid flow is potential [20]. The z-averaged
fluid velocity, V and the z-averaged pressure, P , are there-
fore related by

V(r) = −G∇P, (1)

where G = αh2/η; here η is the fluid viscosity, and α = 1/3
for a thin film, and α = 1/12 for a shallow microchannel.
Together with incompressibility, ∇ ·V = 0, eq. (1) deter-
mines the fluid flow and stress away from the particles.

We henceforth consider either swimmers moving along
their principal axis p̂i, or passive particles driven by a
uniform force field oriented along the x-direction (gravita-
tional, electrostatic, magnetic, . . . ). In all cases, the speed
of an isolated particle in a quiescent fluid is constant and
denoted U0. In addition to their individual dynamics, par-
ticles also follow the surrounding flow, and the equation
of motion for particle i thus reads

∂tRi = U0q̂ + μV(Ri), (2)

where q̂ = p̂i for swimmers, q̂ = x̂ for driven particles,
and μ is a non-dimensional mobility coefficient [14,21].
Passive tracers have μ = 1. Conversely, for thick particles,
the friction against the solid wall(s) can significantly re-
duce the advection speed, which is smaller than the local
fluid velocity, and thus 0 < μ < 1. In principle, μ should be
a tensor for anisotropic particles but for simplicity we con-
sider only particles which are weakly anisotropic and thus
μ is assumed to remain a scalar1. In addition to a change
in their velocity, anisotropic particles experience hydrody-
namic torques which favor an orientation along the local
elongation axis of the flow. This classical hydrodynamic
result, which can also be anticipated from symmetry ar-
guments, leads to the so-called Jeffery’s orbits [22]. As
the flow is irrotational (potential flow), the orientational
dynamics reduces to

∂tp̂i = γ (I − p̂ip̂i) · E(Ri) · p̂i, (3)

where E is the strain rate tensor, E = 1
2 [∇V + (∇V)T ],

and γ ≥ 0 is a rotational mobility coefficient which is non-
zero for anisotropic particles and zero for axisymmetric
bodies.

2.2 Long-range hydrodynamic interactions

As a particle located at R(t) moves in the fluid, it in-
duces a far-field velocity, denoted v(r−R), at position r.
A given particle i responds to the flow induced by all the
other particles in the crystal, and is therefore advected at
velocity V(Ri) = μ

∑
j �=i v(Ri − Rj). In this section we

provide a quantitative description of the far-field hydro-
dynamic coupling, v, between the particles; for the sake of
clarity, we separate the case of passive and active particles.

2.2.1 Hydrodynamic interactions between driven particles

In the driven case, each particle of the crystal is subject
to a constant external force, f = f x̂, which results in
a far-field perturbation which we denote v1 and is the

1 Note that the anisotropy of the mobility coefficient is much
weaker in confined than in unbounded fluids due to the short
range of hydrodynamic interactions in quasi-2D geometries.
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Fig. 2. Sketch of the dipolar flow field (potential source dipole)
induced by driven particles (left) and active swimmers (right).

Green’s function of eq. (1). In three-dimensional flows,
the response to a force monopole is known as a Stokeslet,
and decays spatially as ∼ 1/r. In our quasi-2D geometries,
solid walls act as momentum sinks and screen algebraically
the Stokeslet contribution, which then decays as v1 ∼ 1/r2

and takes the functional form of a potential source dipole,
as shown in [23,24]. In addition, the particles have a fi-
nite size and their advection by the surrounding fluid is
hindered by the lubrication forces induced by the confin-
ing walls (even in the absence of external driving). Due to
incompressibility, any relative motion with respect to the
fluid results in another algebraic far-field contribution, v2.
As shown, e.g., in [14], v2 has also the form of a poten-
tial dipole with the same spatial decay, v2 ∼ 1/r2. (We
note that in unbounded fluids, this potential contribution
scales as 1/r3 and is thus subdominant with respect to the
flow induced by a pointwise force, which decays as 1/r.)
Therefore, in confined flows, the two contributions have
the same form [14,23] and the overall flow disturbance,
vd = v1 + v2, takes the form of a x-dipole

vd(r) =
σ

2πr2
(2r̂r̂ − I) · x̂, (4)

where r = |r| and the dipole strength, σ, is the sum of
the two contributions, σ = Ab2Gf + Bb2U0, where A and
B are two dimensionless shape factors (I is the identity
tensor). The symmetry of the streamlines for this flow field
are illustrated in fig. 2 (left).

2.2.2 Hydrodynamic interactions between active swimmers

By definition swimmers do not require an external force to
propel themselves. The stress distribution on the surface
of a self-propelled particle has thus, at least, the symme-
try of a force dipole [25]. The canonical theoretical setup
used to describe (dilute) suspensions of swimmers is to
consider an ensemble of such force-dipoles as all other
multipolar contributions to the far field are subdominant
in an unbounded fluid [9,19,26]. However, as mentioned
above, confinement results in an algebraic screening of the
hydrodynamic interactions. In the quasi-2D geometry at

the center of our paper a force dipole decays spatially as
∼ 1/r3, a contribution which is therefore subdominant
compared to the ∼ 1/r2 potential dipole arising from in-
compressibility (similarly to driven particles) [23]. For ac-
tive swimmers, the far-field flow disturbance has thus also
the symmetry of a potential source dipole, the difference
with the passive case being that the dipole direction is
now the swimmer orientation (fig. 2, right). For a swim-
mer orientated along p̂, we obtain a flow given by

vs(r, p̂) =
σ

2πr2
(2r̂r̂ − I) · p̂, (5)

with the dipole strength σ = Bb2U0 (B is the same shape
factor as in eq. (4)). We therefore see that, in confined
fluids, the usual distinction between pushers and pullers
swimmers (contractile and extensile), which is at the heart
of qualitatively different behaviors in unconfined fluids [7,
8], is irrelevant. The magnitude and sign of the induced
dipolar flow are solely set by that of the swimming speed,
irrespective of the microscopic swimming mechanism.

In summary, eqs. (2), (3), and either eq. (4) (in the
driven case) or (5) (active case) fully prescribe the dy-
namics of the discrete particle positions and orientations.
As noted above, the main difference between active and
passive particles concerns the orientation of the dipolar
flow field: the orientation is slaved to the swimmer direc-
tion for active particles whereas it is constant and aligned
along the x-direction for driven particles (the difference
is further illustrated in fig. 2). We will show in the next
sections that this distinction markedly impacts the large-
scale crystal dynamics.

3 Are hydrodynamic crystals stationary?

When addressing the dynamics of an ordered phase, the
first important question is whether this phase does corre-
spond to a stationary state. We focus here on the five pla-
nar Bravais crystals, which encompass all possible symme-
tries for bidimensional mono-atomic crystals (see fig. 3).

Let us first consider the case of crystals composed of
driven axisymmetric particles. The equations of motion
reduce to

∂tRi = U0x̂ + μ
∑

j �=i

vd(Ri − Rj), (6)

where Ri’s belong to one of the Bravais crystals from
fig. 3. The lattice structure is conserved provided that
∂t(Ri−Rj) = 0 for all i and j. It follows from eq. (6) that
∂t(Ri−Rj) = μ

∑
k �=i v

d(Ri−Rk)−μ
∑

k �=j vd(Rj−Rk).
By definition, all crystals are invariant upon translation
along (Ri −Rj), which readily implies that the two sums
are equal, and therefore that any driven crystal made
of axisymmetric particles is a stationary structure (i.e.,
∂t(Ri − Rj) = 0).

To extend this result to driven crystals composed of
anisotropic particles, we first recall that all the Bravais lat-
tices are invariant upon the parity transformation r → −r.
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Fig. 3. Geometry of the five planar Bravais lattices. Anisotropic cells are characterized by the ratio, ε, between the two cell
dimensions. The angle β is the tilt angle of the oblique and hexagonal cells. For each particle labeled “0” we also display and
number all nearest neighbors.

Moreover, as vd(r) is invariant upon this transformation
whereas the sign of the gradient operator is reversed, we
see that the strain rate tensor constructed from a super-
position of potential source dipoles, eq. (4), transforms
according to E(−r) = −E(r). This implies that for any
Bravais crystal, E(Ri) is identically zero anywhere on the
lattice. It follows from the equation for the orientational
dynamics, eq. (3), that ∂tp̂i = 0 for all the particles. In
conclusion, in the driven case, both the crystalline struc-
ture and the particle orientations remain stationary (in
other words, the crystals are fixed points of the dynami-
cal system).

It is straightforward to generalize the above results to
swimmer crystals. The equation of motion for the posi-
tions, eq. (6), is given by

∂tRi = U0p̂i + μ
∑

j �=i

vs(Ri − Rj , p̂j). (7)

Obviously, ∂t(Ri −Rj) cannot be zero if the p̂i’s are not
all identical. Therefore, the crystal structure cannot be
conserved if the initial orientation of the particles is not
uniform —in such cases the crystal would “melt”. For uni-
form orientations, say along x̂, eqs. (6) and (7) are identi-
cal, and so is the equation for the orientational dynamics
since vs(r, p̂i) = vd(r). We are thus left with the same
problem as in the driven case, which implies that the struc-
ture of the crystals is conserved as long as the particles all
swim along the same direction.

4 Driven hydrodynamic crystals are
marginally stable

We start by investigating in this section the linear stability
of the five Bravais crystals with respect to perturbations in
both the position and the orientation of the particles, with
a special focus on the experimentally relevant square and
hexagonal lattices. Anticipating on our results, we note
that the geometrical classification in terms of the Bravais
lattices might not necessarily be relevant to the dynamics
of flowing crystals.

In order to proceed, we make use of two additional as-
sumptions. Firstly, we consider the case of particles uni-
formly aligned along the x̂-axis prior to the perturbations,
as depicted in fig. 3. Secondly we assume that the driving

force is aligned with one of the principal axes of the crys-
tal. Our following study can be easily extended to a more
general setup, but this would make the formula and the
discussions much more tedious.

We denote δRi and δp̂i ∼ θiŷ the infinitesimal pertur-
bations of the particle positions and orientations, respec-
tively, so that Ri → Ri + δRi, and p̂i → x̂ + θiŷ. Using
the property that E = 0 for dipoles organized into a Bra-
vais lattice (as discussed in the previous section), and after
some algebra, the linearization of the equations of motion,
eqs. (3) and (6), yields

∂tδRi = μ
∑

j �=i

[
∇vd(Rij)

]
· δRij , (8)

and

∂tθi =
γ

2

∑

j �=i

(
∇[∂xvd

y (Rij) + ∂yvd
x(Rij)]

)
· δRij , (9)

where Rij = Ri − Rj , and δRij = δRi − δRj . Equa-
tions (8) and (9) dictate the dynamics of the elementary
excitations in the frame where the unperturbed crystal is
stationary. We note that the direction of the crystal trans-
lation is, in general, different from the driving direction.

We now exploit the symmetries of the dipolar inter-
actions. Inspecting the flow given by eq. (4), we deduce
that ∂xvd

y = ∂yvd
x, and ∂xvd

x = −∂yvd
y . Using these rela-

tions, we look for plane waves solutions, (δXi, δYi, θi) ≡
(δX, δY, θ) exp(iωt − iq · Ri). By doing so, we obtain a
linear-stability system, which we write in the generic form

ω

⎛

⎝
δX

δY

θ

⎞

⎠ =

⎛

⎝
M1 M2 0
M2 −M1 0
M3 M4 0

⎞

⎠

⎛

⎝
δX

δY

θ

⎞

⎠ , (10)

where the coefficients of the stability matrix M are

M1 = −iμ
∑

j �=i

[1 − exp(iq · Rij)] ∂xvd
x(Rij), (11)

M2 = −iμ
∑

j �=i

[1 − exp(iq · Rij)] ∂xvd
y (Rij), (12)

M3 = −iγ
∑

j �=i

[1 − exp(iq · Rij)] ∂xxvd
y (Rij), (13)

M4 = −iγ
∑

j �=i

[1 − exp(iq · Rij)] ∂yxvd
y (Rij). (14)
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We readily deduce from the matrix structure that a
perturbation in orientations only would not induce any
change in the crystal conformation. This is a direct conse-
quence of the dipolar coupling between the particles, vd,
which is only a function of the driving force direction and
not of the particle orientation. On the contrary, pertur-
bations in the position of a particle modify both position
and orientation. In addition, perturbations in orientation
only neither relax, grow or propagate. As the third col-
umn of the matrix M is always 0, this implies that it will
always admit the eigenvalue ω0 = 0, associated to the
pure-orientation eigenmode (0, 0, 1).

The other two eigenvalues of the M matrix are ω± =
±

√
M2

1 + M2
2 . Exploiting again the fact that all Bravais

lattices are invariant upon parity transformation, we write

M1 = − iμ

2

∑

j �=i

[1 − exp(iq · Rij)] ∂xvd
x(Rij)

− iμ

2

∑

j �=i

[1 − exp(iq · Rji)] ∂xvd
x(Rji). (15)

By definition Rij = −Rji, and due to the dipolar sym-
metry of the hydrodynamic interaction, we have ∂xvd

x(r) =
−∂xvd

x(−r). Using these two equalities in eq. (15), we infer
that M1 = −μ

∑
j �=i sin(q · Rij)∂xvd

x(Rij), and therefore
M1 is a real number. Using the same method, and the
identity ∂xvd

y (r) = −∂xvd
y (−r), one can show that M2

is real as well. Therefore, for any symmetry of the crys-
tal, the pulsations of the plane waves, ω±, are real. In
other words, for any Bravais lattice the crystal structure
of driven particles is dynamically marginally stable.

Notably, the dipole strength σ can be eliminated from
the equations of motion, eqs. (8) and (9), by rescaling the
timescale. Therefore, the linear stability of the monocrys-
tals is a purely geometrical problem. The corresponding
eigenmodes do not depend on the translational speed U0,
but only on the orientation, and on the symmetries of the
lattice.

Interestingly, we see that phonons propagate with the
pulsations ω±, despite the fact that particles have no in-
ertia and that no potential forces couple the particle dis-
placements. This seemingly counterintuitive result gener-
alizes the experimental observations made by Beatus and
coworkers in [14] where they revealed that sound modes
propagate along 1D droplet crystals flowing in quasi-2D
microchannels. These results are, importantly, specific to
the quasi-2D geometry, which is relevant for numerous mi-
crofluidic and thin films applications. In unbounded fluids,
the change in the symmetry of the hydrodynamic interac-
tions results in the destabilization of the crystal structure
as shown theoretically and experimentally [27].

Below, we derive the dispersion relation for each of the
five Bravais crystals, with a special attention given to the
case of square and hexagonal lattices

4.1 Square lattice

In order to compute the coefficients of the M-matrix an-
alytically, we now make a nearest-neighbor approxima-

Fig. 4. Normalized dispersion relation for the square lattice
plotted from eq. (17) (ω+ only), for 2μσ/πa2 = 1, and a = 1.

tion. In a similar context, this approximation has proven
to yield qualitatively correct results for unbounded flu-
ids [27]. We introduce a reference particle labelled as 0.
The four nearest neighbors in the square crystal are la-
beled as 1, 2, 3, and 4 (fig. 3). In this geometry, we easily
compute the coefficient of the M matrix as

M=
2μσ

πa3

⎛

⎜
⎝

sin(qxa) − sin(qya) 0

− sin(qya) − sin(qxa) 0

0 − 3γi
μa [cos(qxa) + cos(qya) − 2] 0

⎞

⎟
⎠ .

(16)
The dispersion relation of the infinitesimal excitations

can be deduced by diagonalizing M. The three eigenvalues
are ω0 = 0, and

ω± = ±2μσ

πa3

√
sin2(qxa) + sin2(qya). (17)

This dispersion relation is plotted in fig. 4.
To gain insight into the propagating modes, we focus

on the large-scale (long-wavelength) response of the crys-
tals. Expanding eq. (16) at leading order in the wave vec-
tor amplitude for q → 0, we find

M =
2μσ

πa2

⎛

⎝
qx −qy 0
−qy −qx 0
0 0 0

⎞

⎠ + O(q2). (18)

We notice that in this small-q limit, the orientation
and the position degrees of freedom are totally decoupled.
The three eigenvalues are ω0 = 0, and ω± = ±2μσq/(πa2).
The two non-trivial modes are non-dispersive and propa-
gate with a constant “sound velocity” c± = ±2μσ/(πa2),
which increases with the magnitude of the hydrodynamic
coupling.

To understand physically how the excitations propa-
gate, we focus on two specific cases. Let us first consider
longitudinal perturbations, q = qx̂. The mode ω− is here
associated with the eigenvector (0, 1, 0). It corresponds to
shear waves which propagate in the direction opposite to
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the driving, as illustrated in fig. 5A. The second sound
mode (ω+) corresponds to compression waves along the
x-axis propagating in the driving direction, see fig. 5B.
The corresponding eigenvector is (1, 0, 0).

For excitations propagating in the direction transverse
to the driving, q = qŷ, the eigenmodes couple the dis-
placements along the two principal axes of the crystal.
The mode ω− is associated with the eigenvector (1, 1, 0).
It corresponds to the superposition of a compression mode
in the ŷ direction, in phase with a shear in the x̂ direc-
tion. The second mode (ω+), with eigenvector (−1, 1, 0),
is a combination of a dilation in the ŷ direction, which
propagates in antiphase with a shear wave in the x̂ direc-
tion.

To close, we note that the dispersion relation of the
phonons remains unchanged if the driving force is not
aligned with one of the principal axes of the crystal, al-
though in that case the form of the eigenmodes is more
complex.

4.2 Hexagonal lattice

We now consider the case of the hexagonal lattice. The
main technical difference with the square lattice is that
the reference particle 0 has now six nearest neighbors, see
fig. 3. Repeating the same procedure as above, we compute
the coefficients of the stability matrix and obtain

M =
2μσ

πa3

⎛

⎝
M ′

1 0 0
0 −M ′

1 0
M ′

3 M ′
4 0

⎞

⎠ , (19)

where
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M ′
1 =sin(qxa) −2 sin

(qxa

2

)
cos

(
qy

√
3a

2

)

,

M ′
3 =

3γ
√

3i

μa
sin

(qxa

2

)
sin

(
qy

√
3a

2

)

,

M ′
4 =−3γi

μa

[

cos(qxa) − cos
(qxa

2

)
cos

(
qy

√
3a

2

)]

.

(20)

Notably, the upper-left 2 × 2 sub-bloc of M is diagonal.
As a consequence, an excitation of the position along one
direction (x or y) induces no net displacement in the trans-
verse direction. The dispersion relation, plotted in fig. 6,
is given by

ω± = ±2μσ

πa3

∣
∣
∣
∣
∣
sin(qxa) − 2 sin

(qxa

2

)
cos

(
qy

√
3a

2

)∣
∣
∣
∣
∣
.

(21)
We see from eq. (21) that there exist two specific orien-

tations of the wavevectors for which no excitation propa-
gates. For perturbations making angles equal to π/6, (re-
spectively, π/2) with the x-axis, we obtain M ′

1 = 0 (re-
spectively, M ′

1 = M ′
3 = 0); in these cases, the matrix is

not diagonalizable and the only solutions of eq. (19) is

Fig. 5. Sketch of the propagative eigenmodes in a square lat-
tice for qy = 0. The full line corresponds to the direction of
the driving, the dotted line indicates the direction of the wave
propagation. A: shear modes; B: compression modes. The par-
ticle orientations are not affected by the perturbation.

Fig. 6. Normalized dispersion relation for the hexagonal lattice
plotted from eq. (21) (ω+ only), for 2μσ/πa2 = 1, and a = 1.

ω = 0. Phonons therefore do not propagate in those two
directions.

To illustrate the difference in the dynamics between
the hexagonal and the square crystals we consider the be-
havior in the long-wavelength limit. Expanding eq. (19)
at leading order in q, we obtain

M =
2μσ

π

⎛

⎜
⎜
⎝

− 1
8q3

x + 3
8q2

yqx 0 0

0 1
8q3

x − 3
8q2

yqx 0
9γ

4μa2 iqxqy
9γ

8μa2 i(q2
x − q2

y) 0

⎞

⎟
⎟
⎠ , (22)

and the eigenvalue takes the form ω± = ±μσ
4π |3qxq2

y − q3
x|.

We infer from this formula that hydrodynamic crystals
having an hexagonal symmetry are “softer” than square
crystals. When q → 0, the speed of sound goes to 0 as
q2 and even the large-wavelength phonons are dispersive.
Furthermore, the sound modes couple the displacements
and the orientation of the particles.
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Fig. 7. Normalized dispersion relations for the rectangu-
lar, oblique and centered rectangular lattices (ω+ only), for
2μσ/πa2 =1, and a=1. Rectangular: ε = 0.8. Oblique: ε = 0.9
and β = (π/2) − 0.2. Centered rectangular: ε = 0.9.

To convey a more intuitive picture, we again focus on
two specific directions of propagation. We first consider
longitudinal perturbations along the first principal axis
of the crystal, q = qx̂. As above, we find that one of
the eigenvectors corresponds to a pure compression along
the x-axis, (1, 0, 0). The second eigenvector, (0,−iq/9, 1),
mixes shear and orientational waves (bending modes) in
quadrature, and depends explicitly on q. Such a coupling
was not observed for the square lattice. A second simple
case concerns the excitations propagating along the second
principal direction, namely q = cos(π/3)x̂ + sin(π/3)ŷ.
Here, the two eigenmodes mix the particle displacements
(in only one of the two directions, since x and y can-
not couple) and their orientation. They are given by
(0,−2iq/9, 1) and (−2iq/(9

√
3), 0, 1) and correspond to

ω− and ω+, respectively.

4.3 Rectangular, oblique, and face-centered lattices

The lattice geometries corresponding to the rectangular,
the oblique and the face-centered lattices are shown in
fig. 3. To derive the eigenmodes, we restrict our analysis
to calculations with four nearest neighbors, an assump-
tion which restrains the number of crystals for which our
calculations are correct (weakly anisotropic and weakly
tilted lattices only, as sketched in fig. 3). It is straightfor-
ward to proceed mathematically as in the two previous
cases and derive the two sound modes, ω±, propagating.
The results for the dispersion relation are plotted in fig. 7.
In the small q-limit, these phonons always propagate in a
dispersive manner. As q goes to zero, the sound velocities
reach a constant value which depends on the orientation
of the propagation due to the crystal anisotropy.

4.4 Response of driven hydrodynamic crystals to
finite-amplitude perturbations

Before closing this section, we make a final remark re-
garding the stability of all the five Bravais crystals with
respect to finite-amplitude perturbations. We start by a
simple observation on the relationship between the vari-
ous lattices. A rectangular lattice corresponds to a square
lattice transformed upon a finite homogeneous stretching.
An oblique lattice is obtained by stretching and shear-
ing a square lattice. The hexagonal lattice is an oblique

lattice with a tilt angle of π/3. Finally, a face-centered
lattice is obtained from a rectangular lattice by apply-
ing a shear modulated at the highest possible wavelength
(q = 2π/a). As all these structures are stationary, and
marginally stable at the linear level, we can deduce that
any finite amplitude deformation corresponding to a ho-
mogeneous shear, or stretch, of the crystal would also be
a marginal perturbation: their growth rate would be zero.
The same conclusion also holds for rectangular crystals de-
formed by the specific high-q shear that would transform
them into a face-centered lattice.

5 Hydrodynamic stability of active crystals

We now move on to investigate the linear stability of active
swimmer crystals. To do so, we use the same theoretical
framework as in the previous section. The swimmers self-
propel along one of the principal axes of the crystals. We
also recall that in this active case, the swimming direc-
tion is slaved to the particle shape and so is the dipolar
flow (fig. 2). Following the same strategy as in the case of
driven particles, we first establish the linearized equations
of motion. Combining eqs. (3), (5) and (7), we obtain

∂tδRi = U0θiey

+μ
∑

j �=i

([∇vs(Rij , x̂)] · δRij + [∂θvs(Rij , x̂)] θj) ,

(23)

and

∂tθi = γ
∑

j �=i

[
∇

[
∂xvs

y(Rij , x̂)
]
· δRij

+∂θE
s
yx(Rij , p̂j = x̂)θj

]
, (24)

where Es
yx is the (y, x) component of the strain rate tensor

associated with the dipolar perturbation induced by the
swimmer located at j, namely vs(Rij , p̂j = x̂).

Two important remarks can be made at this point.
First we see that the stability equations now depend ex-
plicitly on the swimming speed of the particles. In ad-
dition, contrary to driven lattices, the stability of the
swimmer crystals depends on the particle shape through
γ. Therefore, we discuss below isotropic and anisotropic
swimmers separately.

5.1 Isotropic swimmers

Isotropic particles correspond to γ = 0. Their dynamic
equation are significantly simplified as eq. (24) is now triv-
ial and the swimmer orientation remains constant. Since
the flow is irrotational, no hydrodynamic torque (from
vorticity) is present to modify the orientations of the par-
ticles. As in the previous section on driven suspensions,
we look for plane waves solutions, from which we infer the
form of the stability matrix M. This matrix is analogous
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to the one defined in eq. (10) but takes here a slightly
different structure

M =

⎛

⎝
M1 M2 M5

M2 −M1 M6

0 0 0

⎞

⎠ , (25)

where M1 and M2 are given by eq. (11) and eq. (12), re-
spectively. The two new coefficients are

M5 = −iμ
∑

j �=i

[1 − exp(iq · Rij)] ∂θv
s
x(Rij , x̂), (26)

M6 = −iU0−iμ
∑

j �=i

[1−exp(iq · Rij)] ∂θv
s
y(Rij , x̂). (27)

Independently of the crystal symmetry, we see that
the eigenvalues of the above matrix are identical to the
one we found for driven crystals, ω0 = 0, and ω± =
±

√
M2

1 + M2
2 . Therefore, crystals composed of isotropic

swimmers are marginally stable and phonons propagate
with the same dispersion relations as in driven lattices,
albeit with different eigenmodes.

5.2 Anisotropic swimmers

We now explore the richer phenomenology arising from
swimmer anisotropy. Generic results cannot be established
in a framework as general as in the isotropic case. We
proceed with the calculation under the nearest-neighbors
approximation, and deal with the five Bravais lattices sep-
arately.

5.2.1 Square lattice

To establish the linear stability of the square crystal we
compute all the coefficients of the M matrix using eqs. (23)
and (24) and obtain

M =
2μσ

πa3

⎛

⎜
⎝

M ′
1 M ′

2 0

M ′
2 −M ′

1 M ′
6

0 M ′
4 M ′

7

⎞

⎟
⎠ , (28)

with

M ′
1 = sin(qxa), (29)

M ′
2 = sin(qya), (30)

M ′
4 = −3i

γ

μa
[cos(qxa) + cos(qya) − 2] , (31)

M ′
6 = −ia

(

p +
1
2

[cos(qya) − cos(qxa)]
)

, (32)

M ′
7 =

γ

μ
sin(qxa), (33)

where we introduced the dimensionless number

p ≡ πU0a
2

2μσ
. (34)

Fig. 8. Unstable position/orientation mode for a square lattice
of active particles if the volume fraction is high enough (p < 1).
The mode is a compression along the y-direction out of phase
with a splay perturbation of the particles orientation and leads
to the formation of short-wavelength bands.

Differently from the driven case, the stability matrix
for active particles is not characterized solely by the ge-
ometry of the lattice. The parameter p quantifies the rel-
ative magnitude of the swimming speed and the dipolar
advection velocity induced by a neighboring particle. Re-
call that σ is itself a function of U0, and of the particle
shape, and σ ≡ BU0b

2, where B is a shape factor of or-
der 1. Therefore, p scales as p ∼ μ−1(a/b)2. Large values
of p correspond to the dilute limit, a � b, in which our
far-field approach is expected to be quantitatively correct.
Small values of p correspond to a dense crystal, for which
our model should capture the essential physical features.
The presence of p in the matrix M means that the crys-
tal stability now strongly depends on the particle volume
fraction.

As even in the large-p limit the eigenvalues of M take
a quite complex form, we proceed to consider the short-
and long-wavelength excitations separately. In the limit
q → 0, the matrix M has again three real eigenvalues, cor-
responding to three propagating modes with frequencies
ω0 = 2γσqx/(πa2), and ω± = ±2μσq/(πa2). The mode
ω0 is a combination of phonons and orientation waves,
whereas ω± are the phonon modes we found for driven
crystals (fig. 5).

In the high-q limit (small wavelengths) the phenome-
nology is markedly different. For wave vectors of the edge
of the Brillouin zone, qx = 0 and qy = π/a, we find ω0 = 0
as well as two non-trivial modes, ω± = ± 2σ

πa3

√
6γμ(p − 1).

Importantly, ω± are either real or pure imaginary num-
bers depending on the magnitude of p. In principle, p > 1
for dilute crystals, and therefore the modes ω± corre-
spond again to a combination of phonons and orienta-
tion waves. However, we can expect our results to hold
at a qualitative level for more concentrated systems, for
which p < 1. In such a case, the hydrodynamic cou-
pling destroys the square crystal structure. Specifically,
the ω− mode is unstable. It correspond to the eigenvector
(δX, δY, θ) = (0,−iπa3

6γσ ω−, 1), which combines a compres-
sion along the y-axis and splay distortions of the particle
orientation. In this strong hydrodynamic coupling limit,
the square crystal evolves to form short-wavelength bands
aligned with the average swimming direction, as sketched
in fig. 8.

At second order in q → 0 and given that p is small
enough, the eigenvalues ω± have a non-zero imaginary
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Fig. 9. Normalized growth rate (iω−) of the (qx, qy) modes of
the square lattice of active particles for p = 1/2. The parame-
ters are 2μσ/πa2 = 1, a = 1 and γ/μ = 1.

part which scales as q2. These eigenvalues correspond to
the roots of a 3rd-order polynomial, which has no analyt-
ical solution. Therefore, we proceed to a numerical inves-
tigation of the short-wavelength dynamics of the crystal.
We compute numerically the eigenvalues of the matrix M
for all q’s and 0 < p < 3. We find that the square crys-
tals are indeed always unstable for p < 1. In addition the
wave numbers qx = 0 and qy = π/a correspond to the
most unstable mode as shown in fig. 9 for p = 1/2.

5.2.2 Hexagonal lattice

When the lattice has hexagonal symmetry, the structure
of M is somewhat simplified and we obtain in this case

M =
2μσ

πa3

⎛

⎜
⎜
⎝

M ′
1 0 μa2

6γ M ′
3

0 −M ′
1 −iap − μa2

2γ M ′
4

M ′
3 M ′

4
γ
μM ′

1

⎞

⎟
⎟
⎠ , (35)

with,

M ′
1 = sin(qxa) − 2 sin(qxa/2) cos(

√
3qya/2), (36)

M ′
3 = i

3γ
√

3
μa

sin(qxa/2) sin(
√

3qya/2), (37)

M ′
4 = 3i

γ

μa

[
cos(qxa/2) cos(

√
3qya/2)−cos(qxa)

]
. (38)

Similarly to the square lattice, M does depend on the
relative magnitude of the hydrodynamic coupling through
p. The general form of the eigenvalues is too complex to
yield an intuitive picture. However, the salient features
correspond to small wave vectors. In this limit q → 0,
the eigenvalues of M are ω0 = 0, and ω± = ± σ

πa2√
9
2γμp(q2

x − q2
y). For all values of p, there exists therefore

an infinite number of unstable modes growing at a rate
|ω±|. They correspond to perturbations in the position of

Fig. 10. Normalized growth rate (iω−) of the (qx, qy) modes
of the hexagonal lattice of active particles for p = 5. The pa-
rameters are 2μσ/πa2 = 1, a = 1 and γ/μ = 1.

the particle propagating along a direction making an an-
gle comprised in the range [±π/4,±3π/4] with respect to
x. This behavior is illustrated in fig. 10, where we show
the variations of the imaginary part of ω± in the (qx, qy)
plane for p = 5. We note that the most unstable mode is
again a combination of compression along the y-axis and
splay-like instability of the particle orientation.

5.2.3 Rectangular crystals

The behavior for the rectangular lattices is very simi-
lar to what we found for square lattice (within the lim-
its of the nearest-neighbor approximation). These crys-
tals are all stable for long wavelengths but can display
short-wavelength instabilities. Denoting ε the aspect ra-
tio of the lattice cell (fig. 3), a numerical diagonaliza-
tion of the stability matrix reveals that again the most
unstable mode lies on the edge of the Brillouin zone
in the y-direction. The associated eigenvalue is ω± =

σ
π(εa)3

√
3μγ[(2p − 1)ε2 − 1]. Hence, there exists a critical

value pc = 1
2 (1+ε−2) such that the crystal destabilizes for

p < pc; note that pc is a decreasing function of the aspect
ratio which plateaus at p = 1/2. Dilute crystals corre-
sponding to high-p values are stable and display phonons
modes. Note that, similarly to our observation on the rect-
angular driven lattices, the latter result implies that di-
lute swimmer crystals with a rectangular symmetry are
marginally stable with respect to finite amplitude stretch
deformations.

5.2.4 Oblique and face-centered lattices

The dynamics of active crystals having oblique, or face-
centered symmetries are much more complex. We here
briefly highlight some interesting large-scale properties,
and comment on the stability of these structures.
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The stability matrix of the oblique crystals takes a
simple form for the global modes only, q = 0, yet it reveals
an original dynamics. Indeed for q = 0 we get

M =
2μσ

πa3

⎛

⎜
⎜
⎝

0 0 − ia cos(β) sin(β)
ε2

0 0 −ipa + i cos(2β)a
2ε2 + ia

2

3γi sin(4β)
μaε4 0 0

⎞

⎟
⎟
⎠ , (39)

where β is the inclination of the lattice cells and ε their
aspect ratio (fig. 3). Recall that the nearest-neighbor
scheme restrains our analysis to weakly tilted and weakly
anisotropic lattices. Beyond the ω0 = 0 mode, the other
two eigenvalues are non-zero, and we obtain

ω± =
σ

π(εa)3
√

3μγ[cos(2β) − cos(6β)]. (40)

For weakly tilted lattices β ≈ π/2, so that the fre-
quencies are purely imaginary, and thus q = 0 modes are
unstable. Note that this result does not contradict the sta-
tionarity of the structure. Indeed, the orientation field is
here unstable, thereby inducing a coupled translation of
the lattice, as swimmers rotate.

Conversely, in the small-q limit, the face-centered lat-
tices are marginally stable for any amplitude of the hy-
drodynamic coupling, and phonons and orientation waves
propagate in a non-dispersive manner. For small wave-
lengths however, and looking specifically at the combi-
nation (qx = 0, qy = π/εa), we see that the eigenmodes
corresponding to compression along the y-direction cou-
pled to distortions of the orientation grow exponentially
at a rate 2σ

π(εa)3
√

3pγμ. This last result implies that face-
centered swimmer lattices are unstable for any amplitude
of the hydrodynamic coupling.

6 Conclusion

In this paper we considered theoretically the dynamics
and stability of both driven and active crystals. With a
geometry of elongated particles under confinement we de-
rived the dynamical system quantifying the time evolution
of the particle positions and orientations and showed that
all five planar Bravais lattices are stationary solutions of
the equations of motion. In the case of particles passively
driven by an external force, we formally demonstrated
that all five lattices are always marginally stable. The
phonons modes do not depend on the magnitude of the
driving force but solely on the orientation and on the sym-
metries of the lattices. We detailed the spatial structure
of the eigenmodes in the square and hexagonal geometry.

In the separate case where the particles are actively
self-propelling we showed that the stability of the particle
positions and orientations depends not only on the sym-
metry of the crystals but also on the perturbation wave-
lengths and the volume fraction of the crystal. We ob-
tained that the square and rectangular lattices are linearly
unstable at short wavelengths, provided the volume frac-
tion of the crystals is high enough. Differently, hexagonal,
oblique, and face-centered crystals are always unstable.

The results of our work can be compared with past
theoretical studies. In the driven case, planar crystalline
arrangements were shown to be hydrodynamically unsta-
ble in a three-dimensional fluid at long wavelengths [27].
The results in our paper demonstrate that confinement
of the crystals, which algebraically screens hydrodynamic
interactions between the particles, leads to a qualitatively
different behaviors and all lattices solely support phonon
modes.

In the active case, previous work demonstrated the
presence of long-wavelength instabilities in orientation,
density and stress (see [7,8] and references therein). In
this past work, aligned suspensions for both pusher and
puller swimmers were shown to be unstable in the dilute
regime, and so are isotropic suspensions of pushers [10]
whereas isotropic puller suspensions, which are linearly
stable at zero volume fraction, were shown numerically
to be unstable at high volume fraction [28]. In our pa-
per, again because of hydrodynamic screening, the stabil-
ity characteristics of confined active crystals were found
to be independent of the pusher vs. puller nature of the
self-propelled particle —the only flow singularity dictat-
ing hydrodynamic interactions in this case is the potential
flow dipole whose sign is set by the swimming direction
only.

This work was funded in part by the NSF (grant 0746285 to
E.L.). We acknowledge support from Paris Emergence research
program, and C’Nano Idf.
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