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We theoretically describe the dynamics of swimmer populations in rigidly confined thin liquid films.

We first demonstrate that hydrodynamic interactions between confined swimmers depend solely on their

shape and are independent of their specific swimming mechanism. We also show that, due to friction with

the nearby rigid walls, confined swimmers do not just reorient in flow gradients but also in uniform flows.

We then quantify the consequences of these microscopic interaction rules on the large-scale hydro-

dynamics of isotropic populations. We investigate in detail their stability and the resulting phase behavior,

highlighting the differences with conventional active, three-dimensional suspensions. Two classes of polar

swimmers are distinguished depending on their geometrical polarity. The first class gives rise to coherent

directed motion at all scales, whereas for the second class we predict the spontaneous formation of

coherent clusters (swarms).
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Soft materials composed of motile particles have seen a
surge of interest over the last couple of years. They encom-
pass autophoretic colloids [1], self-propelled droplets [2],
and vibrated grains [3,4]. This interest was triggered by
their remarkable structural and transport properties akin to
the one found in biological systems such as bacterial
suspensions, migrating cells, and cytoskeletal extracts
(see Ref. [5] and references therein). These so-called active
fluids are ensembles of self-driven particles capable of self-
propulsion in the absence of any external actuation [5–9].

From a theoretical perspective, such systems are com-
monly separated into two classes depending on the way
they exchange momentum with their surroundings [5–7].
‘‘Dry’’ systems, typically walkers or crawlers, achieve
locomotion by transferring momentum to a rigid substrate
and interact via short-range contact interactions. In con-
trast, ‘‘wet’’ systems, typically suspensions of swimmers,
conserve momentum, and the particles interact at finite
distance via long-range hydrodynamic interactions.
A number of experimentally relevant situations involve
monolayers of active particles living in rigidly confined
fluid films and thus belong to both classes—e.g., bacteria
swimming in micrometer-thick films at the surface of cell-
culture gels [10–12] or active colloids and droplets moving
in microfluidic channels [2].

In this Letter, we describe the phase behavior of
active fluids confined, at least by one rigid wall, in two-
dimensional (2D) geometries. In order to do so, we first
revisit the description of hydrodynamic interactions under
rigid confinement. We demonstrate that the far-field flow
induced by a swimmer does not depend on the specifics of

its swimming mechanism. The notions of pushers and
pullers, for instance, prevalent in three dimensions (3D),
are found to no longer be relevant in rigidly confined thin
films [13]. In addition, on the basis of a prototypal micro-
scopic model, we show that, due to friction with the walls,
rigidly confined polar swimmers are not only prone to
align along the local elongation axis but with the flow field
itself. We then exploit these new interaction rules in 2D to
address the large-scale dynamics of confined populations
of swimmers. We establish a novel set of hydrodynamic
equations for confined active films that qualitatively differ
from the modified Leslie-Eriksen equations for active
liquid crystals [5]. An investigation of the resulting phase
behavior leads to the distinction between two classes of
polar swimmers depending on their geometrical polarity.
The first class (large head), gives rise to the emergence
of coherent particle motion along the same direction at
all scales, whereas, for the second class (large tail), we
predict the spontaneous formation of coherent clusters
(swarms).
Let us consider an ensemble of self-propelled particles

confined in a thin film of a Newtonian liquid between two
rigid walls or by one rigid wall and a free surface. We
address strongly confined geometries where the particle
height is comparable to the film thickness, h; see Fig. 1
(left). At scales larger than h, the fluid flow is characterized
by the projection of the z-averaged velocity field in the
(x, y) plane. Far from a swimmer, the projected flow field
uðr; tÞ is potential

u ðrÞ ¼ �Gr�ðrÞ; (1)
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where �ðrÞ is the pressure at r ¼ ðx; yÞ. The Darcy factor
G scales as G� h2=�, where � is the fluid viscosity.

How does confinement affect hydrodynamic interactions
between swimmers? In unbounded fluids, the flow induced
by a swimmer depends on the microscopic details of the
propulsion mechanism [14–16]. In the far field, this flow is
often well approximated at leading order by a force-dipole
singularity, with a �1=r2 spatial decay, and as such has
been used in most theoretical models [13,17–19]. This
description results in the distinction between so-called
pushers (or extensile swimmers) and pullers (or contractile
swimmers). They correspond to force dipoles having oppo-
site signs and displaying different large-scale dynamics
[13,17,18]. When confined by solid walls, these flows are
screened algebraically and decay as�1=r3, while retaining
their angular symmetry. This screening of hydrodynamic
interactions was shown to suppress generic instabilities,
which are the hallmark of isotropic pusher suspensions [5].

As it turns out, however, the two main consequences
of confinement have actually been overlooked so far.
Any multipolar stress distribution on the surface of the
swimmer actually yields only subdominant contributions
to the flow in the far field. For any particle-transport
mechanism (swimming, driving, advection), the far-field
flow induced by a particle moving in a confined fluid has
instead the symmetry of a potential source dipole and
decays as �1=r2 [20,21]. The usual distinction done
between pushers and pullers thus becomes irrelevant under
rigid confinement [13,17]. Irrespective of the propulsion
mechanism, the flow induced by a swimmer located at
r ¼ RðtÞ is defined by Eq. (1) and by a modified incom-
pressibility relation,

r � uðrÞ ¼ �� � r�½r�RðtÞ�; (2)

where the dipole strength is � � �½ _RðtÞ � uð0ÞðRðtÞÞ�,
where uð0Þ is the velocity field in the absence of the particle
and � scales as the square of the particle size (for a disk-
shaped particle, � is twice the particle area) [21]. The
dipolar solution, udðrjRðtÞ;�Þ, of Eqs. (1) and (2) is given,
for a particle located at the origin, by

u dðrj0;�Þ ¼ 1

2�jrj2 ð2r̂ r̂�IÞ � �; (3)

where r̂ � r=jrj and I is the identity tensor [20,21]. This
framework has proven to accurately describe the interac-
tions between confined advected droplets even in concen-
trated systems [21,22]. Importantly, the angular symmetry
of ud is different from the one of a force dipole: It is a polar
flow field displaying the same angular dependence as that
of a force monopole under confinement [20] despite the
swimmers being self-driven. The reason for this apparent
paradox lies in the continuous momentum exchange with
the confining rigid walls, via the shear flow in the thin films
that lubricate the swimmer-wall contacts (Fig. 1).
The second important difference with 3D suspensions

concerns hydrodynamic interactions between swimmers.
In order to account for these interactions, we first establish
the equations of motion of an isolated swimmer in an
arbitrary fluid flow. We focus on swimming bodies with
polar shapes (i.e., front-back asymmetric), as is the case for
most motile cells. For a swimmer at position RðtÞ, we
denote as pðtÞ its orientation (jpj2 ¼ 1) and vs the magni-
tude of its swimming velocity along p. From symmetry
considerations and at leading order in jruj, the equations
of motion of a polar swimmer for fRðtÞ;pðtÞg take the
generic form

_R� ¼ vsp� þ�?ð��� � p�p�Þu� þ�kðp�p�Þu�; (4)

_p� ¼ �ð��� � p�p�Þu� þ �0ð��� � p�p�Þðr	u�Þp	;

(5)

where �? (respectively, �k) is a transverse (respectively,

longitudinal) mobility coefficient and � and �0 are two
rotational mobility coefficients. To better understand the
effect of confinement on particle motion, let us first con-
sider the advection of a passive particle by a uniform,
unbounded flow. In that case, the velocity field is uniform
everywhere in space and the passive particle undergoes
translation at the same speed as the fluid. In unbounded
fluids, we therefore have � ¼ 0, �? ¼ �k ¼ 1, and

Eq. (5) then reduces to Jeffrey’s equation that is commonly
used to quantify the orientation of anisotropic particles
with the flow-elongation axis [13,14].
In contrast, rigidly confined suspensions offer the

possibility of having a nonzero value for �. Instead of
reorienting due to flow gradients, swimmers can reorient
because of the flow itself, a new type of orientational
dynamics that has not been considered so far. To provide
insight into the conditions for nonzero values of �, we
derive the equations of motion above for a prototypal
microscopic model (dumbbell). We show how the lubri-
cated friction with the walls induces both anisotropic mo-
bility (�? � �k) and a direct coupling between the flow

velocity and the particle orientation (� � 0). Consider a
rigid-dumbbell swimmer, composed of two disks of radius
b1 (respectively, b2) located at R1 (respectively, R2), and
connected by a frictionless rigid rod of length a � fb1; b2g

FIG. 1 (color online). Left: sketch of a confined suspension of
active particles swimming freely in the (x, y) plane. Right: close-
up on a single polar swimmer (see the text for notation).
The active particles are confined between two rigid walls in
the z direction.
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(see Fig. 1, right). The lubrication forces between a disk-
shaped particle and the solid walls hinder its advection by
the fluid. Passive disks would be transported at a velocity
_RiðtÞ ¼ �iuðRiÞ (i ¼ 1, 2), where the mobility coefficient
�i is comprised between 0 (fixed obstacle) and 1 (passive
tracer). We also introduce the drag coefficients �i: When a
disk is pulled by an external force F in a quiescent fluid, it
moves at a velocity _RiðtÞ ¼ �iF. Let us now assume that

the two disks would propel at a velocity vð0Þ
s p when alone

and let us compute the swimming speed and mobility
coefficients from Eqs. (4) and (5) for the dumbbell.

The displacement of each disk results from the competi-
tion between (i) self-propulsion, (ii) the advection by the

external flow uð0Þ, (iii) the advection of the disk i by the
dipolar perturbation induced by the motion of the disk
j, udðRijRj;�jÞ, and (iv) the inextensibility constraint,

R2 �R1 ¼ ap. At leading order in bi=a, these contribu-
tions yield the following equations of motion for the
‘‘head’’ (i ¼ 2) and the ‘‘tail’’ (i ¼ 1) of the swimmer:

_R1 ¼ vð0Þ
s pþ�1½uð0ÞðR1Þ þ udðR1jR2;�2Þ� þ �1T;

(6)

_R2 ¼ vð0Þ
s pþ�2½uð0ÞðR2Þ þ udðR2jR1;�1Þ� � �2T;

(7)

where the tension T ensures the inextensibility condition,
p � ð _R2 � _R1Þ ¼ 0. Defining the center of drag of the
swimmer as R � ð�1R2 þ �2R1Þ=ð�1 þ �2Þ, Eqs. (6)
and (7) are readily recast into the form of Eqs. (4) and
(5) with a dumbbell velocity and mobility coefficients

given at leading order by vs ¼ vð0Þ
s þOððbi=aÞ2Þ, �? ¼

�2�1ð1� 	2Þ þ �1�2ð1� 	1Þ, �k ¼ �2�1ð1þ 	2Þ þ
�1�2ð1þ 	1Þ, and �¼½ð�2þ�1	2Þ�ð�1þ�2	1Þ�=a,
where 	i � b2i ð�i � 1Þ=a2. We first see that the transla-
tional mobility coefficients �?;k depend only on the

anisotropy of the swimmer and are independent of its
geometrical polarity (they remain unchanged upon a 1 $
2 permutation). In addition, as �k <�?, a nonswimming

dumbbell making a finite angle with a uniform flow field
would drift at a finite angle from the flow direction. We
also obtain that indeed � � 0 for polar swimmers. Since
the�i’s are decreasing functions of the particle radius, � is
negative for large-head swimmers (b2 > b1) and positive
otherwise. From Eq. (5), we thus get that, in a uniform
flow, large-head swimmers would reorient against the
flow and thus self-propel upstream. In contrast, large-tail
swimmers (b1 > b2) would swim downstream. These
results are to be contrasted with the dynamics in unbounded
fluids where, as discussed above, no such reorientation is
present. In confinement, � vanishes for apolar swimmers,
and the orientation of a symmetric dumbbell evolves
according to the Jeffrey’s orbits, Eq. (5), where � ¼ 0
and �0 ¼ a½�2ð1þ 	1Þ þ�1ð1þ 	2Þ�=2. Note that, since

u is irrotational, the orientation of an isotropic swimmer
made of a single disk is not coupled to the background flow.
In the rest of the Letter, we discard the conventional �0
contribution to the orientational dynamics. It only yields
short-wavelength corrections to the large-scale description
of polar-swimmer suspensions described below.
We now turn to the dynamics of a dilute population of

interacting swimmers in a quiescent fluid. We introduce the
one-point probability distribution function, �ðr;p; tÞ, for
swimmers with orientation p at position r and time t. The
dynamics of the active particles is defined by Eqs. (4) and
(5), with the fluid velocity field, uðr; tÞ, resulting from the
linear superposition of force dipoles induced by each
swimmer, uðr; tÞ ¼ R

dpdr0�ðr0;p; tÞudðrjr0;� 0Þ, where

� 0 ¼ �vsp. Assuming that swimmers are subject to
translational and rotational diffusion, �ðr;p; tÞ obeys the
continuity equation

@t� ¼ �r � ð� _RÞ � rp � ð� _pÞ þDr2�þDRr2
p�;

(8)

where _R and _p are defined by Eqs. (4) and (5), D and DR

are the translational and the rotational diffusion coeffi-
cients, respectively, and rp stands for the gradient on the

unitary circle. For simplicity, we neglect translational dif-
fusion. Specifically, anticipating our results, we assume
that D � v2

s=DR, which is true for most biological and
artificial microsize swimmers. Note that, for homogeneous
suspensions and due to the symmetry of the dipolar
coupling, the sum of all hydrodynamic interactions
vanishes: Indeed, when r�ðr;p; tÞ ¼ 0, we haveR
dr0udðrjr0;� 0Þ ¼ 0, and thus from Eqs. (4) and (5) it

follows that _p ¼ 0 and r � _R ¼ 0. The dynamics of a
homogeneous population, from Eq. (8), reduces thus to
the orientational diffusion of an isolated swimmer, and
homogeneous phases relax toward an isotropic state over
a time �D�1

R .
We now investigate the dynamic response of the homo-

geneous and isotropic phases to spatial fluctuations of the
concentration and orientation of the active particles. The
phase behavior is described in terms of (i) the concentration
field, cðr; tÞ � R

�ðr;p; tÞdp; (ii) the local polarization,
Pðr; tÞ � 1

c

R
p�ðr;p; tÞdp; and (iii) the local nematic-

orientation tensor, Qðr; tÞ � 1
c

Rðpp� 1
2 IÞ�ðr;p; tÞdp.

To establish their equation of motion, we need to add a
closure relation to Eq. (8). As we focus on deviations
from isotropic and homogeneous states, we expand �
linearly in its three first moments [17,18],

�ðx;p; tÞ ¼ 1

2�
cð1þ 2p�P� þ 4p�p�Q��Þ; (9)

where the numerical coefficients are chosen so that c, P,
and Q are defined in a self-consistent fashion. Defining
�� � 1

2 ð�k þ�?Þ and ~� � ð�k ��?Þ, and after some

elementary but tedious algebra, the three nonlinear equa-
tions of motion are inferred from Eqs. (8) and (9) as
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@tc ¼ �r�½vscP� þ ��cu� þ ~�cQ��u��; (10)

@tðcP�Þ ¼ �

2
u�c� �cu�Q�� �DRcP� �r�I��;

(11)

@tðcQ��Þ ¼ �

2
cu	ð2�	ð�P�Þ � ���P	Þ

� 4DRcQ�� �r	J 	��; (12)

where the (potential) fluid velocity satisfies

@�u� ¼ ��vs@�ðcP�Þ (13)

and where the expressions for the fluxes I and J are given
in the Supplemental Material [23].

Equations (10)–(13) fully describe the dynamics of
the isotropic phase. We investigate their linear stability
with respect to plane-wave excitations of the form
ð�c; �P; �QÞ expðik � r� i!tÞ, with k ¼ kx̂. At linear
order, we can integrate Eq. (13) for the fluid velocity
and recast the equations of motion into a set of
two uncoupled linear systems having the form
@tð�Py;�QxyÞ¼Mbendð�Py;�QxyÞ and @tð�c;�Px;�QxxÞ¼
Msplayð�c;�Px;�QxxÞ. The first system couples the

transverse polarization and the bend modes only.
These modes are stable for all k; they correspond to
damped sound waves. The associated dispersion

relation is deduced from the eigenvalues of Mbend as i! ¼
1
2 ½5DR � i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�9D2

R þ ðkvs=2Þ2
q

�. In contrast, long-range

hydrodynamic interactions between swimmers can desta-
bilize the concentration (c), the longitudinal polarization
(Px), and the splay modes (Qxx). To convey an intuitive
description of this instability, we introduce the two govern-
ing dimensionless numbers. First, Pe � �c0�vs=ð2DRÞ is
a signed Péclet number comparing the rotational diffusion
constant, DR, to the rate of rotation of a polar swimmer
induced by a source dipole of magnitude �c0vs (c0 being
the average concentration); large-tail swimmers (respec-
tively, large-head swimmers) correspond to Pe> 0
(respectively, Pe< 0). The second dimensionless number,
H � ð ���c0vsÞ=vs, compares the swimming speed, vs, to
the advection velocity induced by a source dipole of mag-
nitude �c0vs. In the long-wavelength limit (k ! 0), the
eigenfrequencies associated with the stability matrixMsplay

then take the form

!c ¼ �i
v2
s

2DR

�
1�H

1þ Pe

�
k2; (14)

!P ¼ �iDRð1þ PeÞ þOðk2Þ; (15)

!Q ¼ �4iDR þOðk2Þ: (16)

At zeroth order in k, the total number of swimmers being
a conserved quantity, we have !c ¼ 0, andMsplay has only

two nontrivial eigenvalues. Whereas rotational diffusion
always stabilizes the nematic orientation (� i!Q < 0),

hydrodynamic interactions can in fact destabilize the
isotropic state. From Eq. (15), we see that large-head
swimmers with Pe<�1 experience a generic instability:
Fluctuations of the local polarization are amplified when
the rotation induced by the hydrodynamic couplings over-
comes the diffusional relaxation of Px (see Fig. 2).
Several comments are in order. First, although the

growth rate of the instability does not dependent on k,
the total polarization (k ¼ 0) is not unstable. As discussed
above, the sum of all the hydrodynamic interactions can-
cels in this limit and no global directed flow can emerge
spontaneously from an isotropic suspension. The instabil-
ity shows, however, that groups of particles swimming
coherently along the same direction form at all scales.
Second, the generic nature of the instability is specific to
the dipolar symmetry of the hydrodynamic interactions and
the polar shape of the particles and can be intuitively
rationalized as follows. From Eq. (13), we see that any
finite wavelength perturbation of Px along x results in a
fluid flow in the opposite direction, with amplitude
��c0vs�Px. Polar swimmers align with or against the
local flow direction depending on their polarity. Large-
head swimmers align along �u, thereby increasing the
initial perturbation of P and destabilizing the isotropic
state. Conversely, large-tail swimmers align in the opposite
direction and the local polarization relaxes to zero. As the
reorientation rate of the swimmers is set by the magnitude
of the velocity only (and not by the local strain-rate tensor),
the growth (or relaxation) rate of the polarization is inde-
pendent of the wave vector.
This novel generic instability is qualitatively different

from the one observed in unbounded suspensions of
pushers that, in contrast, is suppressed by confinement
[5]. They differ in both the physical mechanisms at work
and the structure of the unstable modes (bend versus splay
modes). The only similarity is that in both systems the
generic instability is a genuine collective effect due to the
long-range nature of hydrodynamic interactions.

FIG. 2 (color online). Stability diagram of a nearly isotropic
and homogeneous population of polar swimmers; Pe< 0
(respectively, Pe> 0) refers to large-head swimmers (respec-
tively, large-tail swimmers).

PRL 110, 038101 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

18 JANUARY 2013

038101-4



To investigate the stability of the active film when Pe>
�1, we need to consider the eigenfrequencies and the
eigenmodes of Msplay up to Oðk2Þ. From Eq. (14), we see

that the combination of self-propulsion and rotational
diffusion yields an effective diffusive dynamics of the
suspension scaling as !c � ðv2

s=DRÞk2, as could have
been anticipated from the single-swimmer problem [24].
However, hydrodynamic interactions result in a renormal-
ization of this single-swimmer effect. These interactions
control both the magnitude and the sign of the effective
translational diffusion. In the regions (Pe>�1, H > 1)
and (Pe<�1, H < 1), the effective diffusivity is negative
and thus slowly destabilizes the isotropic phase (Fig. 2).
The associated eigenmodes are now complex superposi-
tions of c, Px, and Qxx, and thus clusters of aligned
particles form and propel in a coherent fashion (swarms)
from a homogeneous film. Notably, both large-head
(�1< Pe< 0) and large-tail (Pe> 0) swimmers are
prone to this second splay-destabilization mechanism.
In the other regions of Fig. 2, the effective diffusivity is
positive and concentration fluctuations are stable.

In summary, we revisited in this Letter the theoretical
description of populations of microswimmers when con-
fined between two rigid walls. We showed that active
particles interact hydrodynamically in a generic manner
that is independent of the microscopic details of their
propulsion mechanism and that, depending on their polar-
ity, they may reorient in uniform flows instead of solely
flow gradients. Focusing on polar swimmers, we then
constructed a large-scale hydrodynamic theory from a
minimal microscopic model (dumbbells). Our analysis
showed that the macroscopic orientational dynamics is
very different from the modified Leslie-Eriksen model of
active liquid crystals due to a difference in the symmetry of
the microscopic coupling between confined polar particles
and the fluid flow. It results in a novel phase behavior for
active films, and, in particular, spontaneous large-scale
directed motion and swarming can emerge out of isotropic
populations of confined swimmers.
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