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2.1 Introduction

In these lecture notes I will briefly review the fundamental physical principles of loco-
motion in fluids, with a particular emphasis on the low-Reynolds-number world. The
notes cover the material discussed over three hours in two separate lectures at the
Les Houches Summer School, and as such cannot unfortunately do justice to the rich-
ness and variety of the field. A number of outstanding and longer pieces should be
consulted by the interested reader. As a general introduction I recommend the won-
derful book Life in Moving Fluids by Vogel [73]. A classic and early treatise on the
different ways animals move is the book Animal Locomotion by Gray [28]. A modern
review of the hydrodynamic aspects at high Reynolds numbers can be found in the
comprehensive book Nature’s Flyers: Birds, Insects, and the Biomechanics of Flight
by Alexander [2] while I recently co-authored a review article on aspects relevant to
the low-Reynolds-number world [42]. An earlier comprehensive article focusing on the
kinematics is that of Brennen and Winet [9] while the one by Pedley and Kessler ad-
dresses collective effects [54]. Readers specifically interested in the hydrodynamics of
bacteria will find the book E. coli in Motion by Berg [6] the best entry point. Finally,
for the mathematically inclined, aspects of mathematical modelling are discussed at
length by Lighthill in Mathematical Biofluiddynamics [44] and Childress in Mechanics
of Swimming and Flying [10].

2.2 Locomotion in fluids

Cellular life on earth includes two different types of organism: prokaryotes (bacteria
and archaea) and eukaryotes. Their distinction comes from the fact that prokaryotic
cells do not possess a nucleus, whereas eukaryotic cells do. In both worlds, however,
many organisms exploit the presence of a surrounding fluid for self-propulsion. In the
world of prokaryotes, many bacteria are motile: they actuate long and slender append-
ages, termed flagella, to swim in viscous and complex fluids (see section 2.5). Examples
of flagellated bacteria include Escherichia coli, Bacillus subtilis, and Helicobacter pylori

(a) (b) (c)

Fig. 2.1 Three examples of locomotion and transport on small scales. (a) Flagellated bacter-
ium Helicobacter pylori ; (b) Swimming human spermatozoa; (c) Cilia arrays on lung–trachea
epithelium. (Source: Wikimedia Commons.)
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(illustrated in Fig. 2.1a). Other types of swimming bacteria such as the spirochetes
family or spiroplasma have helical bodies.

The domain of eukaryotic organisms includes four kingdoms (protists, animals,
plants, and fungi): two of which include numerous examples of swimming in fluids.
Protists include all single-celled protozoa, many of which are swimmers, including
Paramecium and Euglena. Algae also belong to the kingdom of protists, and many
planktonic organisms show some form of propulsion, including the oft-studied single-
celled algae Chlamydomonas and the multicellular Volvox. Beyond protists, the animal
kingdom obviously displays a unique diversity in fluid-based locomotion. Without list-
ing them all, one can mention jellies, worms, flying and hovering insects, molluscs such
as gastropods crawling on mucus, and of course vertebrates including fish, amphibians,
birds, seals, and mammals. Within the animal kingdom, the swimming of spermatozoa
during sexual reproduction (see Fig. 2.1b) and the beating of lung cilia (Fig. 2.1c) pro-
vide two relevant examples of locomotion and fluid transport at low Reynolds number.

In all these cases, locomotion in a fluid is achieved by the periodic change of the
shape of a particular organism. In a viscous fluid of density ρ and dynamic viscosity η,
shape changes lead to the generation of stresses in the fluid which propel the organism
forward. When the time-averaged swimming speed is denoted by U and the typical
organism size is L, fluid-based locomotion ends up being characterized by a single
dimensionless parameter, the Reynolds number � = ρUL/η.

For the most part, locomotion in fluids in the biological or industrial world (in man-
made machines such as airplanes or submarines) occurs either at very large or very
small Reynolds number. Consider two illustrative examples. An Olympic swimmer
swims the 100 m dash at a speed of about U ≈ 2 m/s. With a body size of L ≈ 2 m
and in water, this leads to a Reynolds number of � ≈ 4 × 106. In contrast a small
bacterium such as E. coli has a length of about 2 μm, and swims at an approximate
speed of U ≈ 30 μm/s, leading to a Reynolds number in water of about � ≈ 6× 10−5.

In these two lectures I focus on biological fluid mechanics at small Reynolds num-
bers. My purpose is threefold. First I will emphasize the distinction between the
low and the high-Reynolds-number worlds (see section 2.3) and qualitatively explain
the physical and mathematical consequences of swimming at low Reynolds number
(section 2.4). Second I will explain how real microorganisms are able to swim, show
mathematically how to address their locomotion using the canonical problem of the
waving locomotion of an inextensible flagellum, and show intuitively the role played
by noise on the locomotion of the smallest cellular swimmers (sections 2.5, 2.6, and
2.7). Finally I will give a brief overview of what I think are interesting current research
questions in the realm of low-Re locomotion (section 2.8).

2.3 Interpreting the Reynolds number in the context
of locomotion

In order to shed light on the distinction between the low-Re world and its high-Re
counterpart, let us consider the following elementary calculation. Consider a swimmer
of size L steadily swimming in a viscous fluid (density ρ, viscosity η) with velocity U .
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At t = 0 the swimmer instantaneously stops deforming its shape periodically. How
long does it take for the swimmer to come to a complete stop? Our intuition tells
us that the resistance from the surrounding environment will play a crucial role—for
example compare the time it takes for a bike to stop on a smooth road vs on mud.

The characteristic time T necessary for the swimmer to stop is found by balancing,
through Newton’s second law, the drag from the surrounding fluid with the deceler-
ation of the swimmer. Let us assume that the swimmer has density ρs and thus its
mass scales as m ∼ ρsL

3. The deceleration from the swimmer is therefore of the order
of ∼ ρsL

3U/T , where the value of T is still to be determined. The scaling of the fluid
drag, denoted by FD, depends critically on the typical value of the Reynolds num-
ber. If Re is large FD has an inertial scaling, and we expect roughly FD ∼ ρU2L2.
The balance between the fluid force and the deceleration leads to the simple estimate
T ∼ Lρs/ρU . Given that the swimmer started at speed U , the distance travelled
before coming to a complete stop, denoted by d, is given by d ∼ UT ∼ Lρs/ρ. Non-
dimensionalized by the swimmer size we therefore see that this coasting length is given
by the ratio of body to fluid density, d/L ∼ ρs/ρ. For a human being at the swimming
pool we thus get d/L ∼ 1 whereas for birds in air we get d/L� 1, hence their ability
to glide.

How does this scaling change in the low-Re world? When the Reynolds number
is small, the fluid drag slowing down the swimmer has a different, viscous scaling,
FD ∼ ηLU . As a result, the characteristic slowdown time now scales as T ∼ ρsL

2/η,
and thus the coasting length is now given by d ∼ ρsL

2U/η. If, as above, we non-
dimensionalize d by the swimmer size L we obtain d/L ∼ ρsLU/η, which can be
simply rewritten as d/L ∼ �ρs/ρ, where � is the Reynolds number based on the
swimming speed. For microorganisms the ratio of density, ρs/ρ, is close to one, and
we finally obtain d/L ∼ �. In the context of animal locomotion, the Reynolds number
can thus be interpreted as a dimensionless gliding distance.

Since for microorganisms the Reynolds number is typically much less than one, we
thus obtain the result that d/L is essentially zero [55]. The world of low-Re locomotion
is therefore an instantaneous world, where organisms have to constantly input energy
into the fluid. Physically, the forces acting on the microorganisms are dominated by
viscous stresses from the fluid, and the inertial forces arising from the velocity changes
of the swimmer can be neglected. Living in a world subject to the laws of low-Re
hydrodynamics leads to two notable physical consequences.

2.4 The two physical consequences of low-Re swimming

We saw in section 2.3 that microorganisms live in an instantaneous world governed
by the physics of low-Reynolds-number hydrodynamics. How can these physical con-
straints be exploited by organisms to generate self-propulsion? This is done according
to two physical principles.

The first is that of drag-based thrust. In the macroscopic world we think of drag as
something which impedes motion and thus it might sound somewhat counterintuitive
that drag could be used to create motion. At low Reynolds number, however, the
viscous drag on a moving body scales linearly with the speed of the body, but in general
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Fig. 2.2 Illustration of the principle of drag-based thrust along a flagellum. Because the drag
coefficient for motion perpendicular to the flagellum is larger than that for motion parallel to
it, the total drag force on the flagellum includes a non-zero propulsive component at a right
angle to the local motion.

it does so in an anisotropic, tensorial fashion—in a manner which can be exploited to
generate thrust. This physical principle is illustrated in Fig. 2.2. Imagine zooming in
on a beating flagellum. The filament moves relative to the fluid with an instantaneous
velocity denoted by u, which is typically perpendicular to the desired locomotion
direction (u is vertical in Fig. 2.2 and the swimming direction is horizontal). The local
fluid drag (per unit length) opposing the motion, denoted by f, scales linearly with
the filament velocity in the form f = −C · u, where C is a resistance matrix. This
linear dependence is a consequence of the linearity of the equations of fluid mechanics
at low Reynolds number. If the filament was spherical, C would be an isotropic tensor
and the fluid drag would also be in the vertical direction. However, the filament is
locally slender, and therefore C is anisotropic. If we denote by t the local tangent to
the flagellum, C takes the approximate form C ≈ c‖t t + c⊥(1 − tt), where the ratio
c⊥/c‖ > 1 is slightly less than 2 [30]. Drag on a slender filament translating along its
length is thus about half the drag for the same filament translating perpendicularly
to its length.

As shown graphically in Fig. 2.2, this non-isotropy of the drag is sufficient to
generate a propulsive force at a right angle to the flagellum motion. Decomposing the
local filament velocity along its parallel (u‖ = (u·t)t) and perpendicular (u⊥ = u−u‖)
components allows one to easily compute the parallel (f‖ = −c‖u‖) and perpendicular
(f⊥ = −c⊥u⊥) components of the fluid drag and, by adding them up, the total fluid
drag f. As c⊥ > c‖, the perpendicular-force component is relatively larger than the
parallel one, and the net force f is thus not exactly in the same direction as that of
the filament velocity, u. If we denote by û the direction of the instantaneous velocity,
i.e. û ≡ u/|u|, then we see that the propulsive force, fprop, induced at a right angle to
the flagellum velocity is given by

fprop = (1 − ûû) · f = (c⊥ − c‖)(u · t)(1 − ûû) · t. (2.1)
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If the swimming direction is not perpendicular (û · t 	= 0) or parallel (û · t 	= 1) to
the local tangent to the filament, a non-zero propulsive force is thus induced along the
swimming direction (fprop 	= 0). This is the physical principle for drag-induced thrust
and one which is exploited by the majority of swimming microorganisms.

In addition to taking advantage of fluid drag to generate propulsion, a second
physical consequence of life at low Reynolds number has to be carefully considered.
The description above of drag-induced thrust is a local statement, both spatially along
the flagellum and in time (i.e. instantaneous). The propulsive force induced locally in
Fig. 2.2 is pointing to the left but perhaps somewhere else along the flagellum an
identical force is being induced, pointing this time to the right. In addition, organisms
undergo periodic shape changes, and thus perhaps at a later time in its periodic cycle
the force at the location in Fig. 2.2 will point to the right. What is really important
for propulsion is thus not only the instantaneous, local value of fprop but also, for
its spatial and time average, denoted by 〈fprop〉, to be non-zero. Instead of a local
consequence, this is thus a global constraint on the distribution of the forcing in space
and time at the whole-organism level.

The mathematical constraint associated with this observation is usually referred
to as the ‘scallop theorem’, first introduced by E. Purcell in his famous lecture [55].
It is essentially the theorem of kinematic reversibility for Stokes flows applied to loco-
motion [30]. The equations governing the pressure, p, and velocity field, v, are the
incompressible Stokes equations (∇p = η∇2v, ∇ · v = 0), which have the property
of being linear and independent of time. The resulting locomotion speed, say U , of
an organism changing its shape, S, in time is thus linearly proportional to the rate
of change of the shape, with an expected scaling of the form U ∼ f(S)Ṡ, where f
is a potentially complicated function of the instantaneous shape. If the sequence of
shape is identical under a time-reversal symmetry, which is the case for example if it
is described by a single degree of freedom, then the average locomotion speed, 〈U〉, is
exactly zero. The essence of this constraint is simply that, in the absence of all iner-
tial forces, if the actuation on the fluid (swimming stroke) is time-reversible, then the
net locomotion gained during the first half of the stroke will be exactly cancelled out
during the second half of the stroke independently of the rate at which either stroke
is performed.

2.5 How do real microorganisms swim?

In order to be able to swim, microorganisms have to exploit the two constraints arising
from living in a low-Re world outlined above. They have to take advantage of drag in
order to be able to generate thrust, and deform their body or appendages in a non-
time-reversible manner. Combining the response to both constraints, microorganisms
typically generate propulsion by actuating slender filaments termed flagella or cilia in a
waving motion. A slender filament is able to generate a large ratio of drag coefficient,
and thus exploit effectively drag-induced thrust. Deforming filaments in a waving
fashion allows their kinematics to indicate a clear direction of time, and thus escape
the global constraints of the scallop theorem.

Prokaryotes and eukaryotes generate the actuation responsible for this filament
motion in a different manner [8]. Bacteria flagella are rigid helical filaments, which are
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passively actuated in rotation by rotary motors embedded inside the wall of the cells.
In contrast, eukaryotic flagella are active filaments, which are internally actuated in
bending by ATP-fuelled molecular motors distributed all along their length, giving
rise to waving deformation. As a consequence, whereas a bacteria flagellum has a
fixed shape rotating in the fluid, a eukaryotic flagellum is constantly modifying its
shape by balancing internal forcing, its passive elastic resistance, and the forces from
the surrounding fluid.

2.6 Example of kinematics: the waving motion of a flagellum

In order to gain insight into the relationship between the motion of an actuated fla-
gellum and the resulting locomotion of a cell, we consider in this section a simple
example: the waving motion of an infinitely long eukaryotic flagellum. This calcula-
tion was originally made by Lighthill [44], and we reproduce here its main steps [9].
The equivalent classical calculation for a rotating helical flagellum was the work of
Chwang and Wu [11].

The set-up is illustrated in Fig. 2.3. The flagellum is assumed to have a fixed
periodic shape which is deforming as a travelling wave. Denoting by i the axis of the

(a)

(b)

(c)

u∞ = 0

u∞ = U

u∞ = U − V

−U
V − U

V

−Q

i

t

λ

Λ

Fig. 2.3 Kinematics for the planar waving motion of an infinitely long periodic flagellum. The
flagellum swims to the left with speed U and deforms its shape into a pure travelling wave
moving with speed V to the right. The wavelength of the flagellum measured along its shape is
Λ while that measured along the swimmer axis (unit vector i) is λ. Kinematics in the laboratory
frame (a), the swimming frame (b), and the wave frame (c). The tangent vector to the flagellum
shape is denoted by t and the speed of the material points in the waveframe is Q.
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swimmer and assuming the wave is top-down symmetric and propagates in the +i
direction with wave speed V in the swimming frame, we expect locomotion to occur
in the −i direction with unknown magnitude U . In order to determine the value of
U we first need to determine the instantaneous velocity of points along the flagellum,
then calculate the distribution of fluid forces. The swimming speed will then be the
only value of U leading to zero net force on the swimmer. For simplicity we neglect
the presence of a head [9].

The three panels of Fig. 2.3 allow us to simplify the analysis in order to deter-
mine the flagellum kinematics. In Fig. 2.3a we illustrate the problem as it takes place
in the laboratory frame, where the velocity at infinity, u∞, is zero. Since V i is the
wavespeed expressed in the moving frame, the apparent travelling speed of the wave
in the laboratory frame is (V − U)i. In Fig. 2.3b we look at the same problem but
expressed in the moving frame. The velocity at infinity is thus u∞ = U i, and the
wave is travelling with constant wavespeed V i. In order to be in a frame in which the
shape of the flagellum is fixed we now have to jump into the frame which is translating
with the wave at speed V i. The problem in that frame is summarized in Fig. 2.3c.
The speed at infinity is now u∞ = (U − V )i and, most importantly, in that frame
the shape of the flagellum remains constant. Consequently, material points along the
flagellum can only move tangentially to the flagellum, with speed denoted by −Qt,
where Q is constant to ensure inextensibility of the flagellum. What is the value of
Q? Let us denote by λ the wavelength of the periodic flagellum measured along the
i direction and Λ ≥ λ the curvilinear wavelength measured along the flagellum itself
(see Fig. 2.3a). Geometrically, during one wave period wave crests are displaced by
an amount λ along the i direction and at speed V, whereas material points have to
move a length scale of Λ along the flagellum at speed Q, and thus we necessarily have
Q = (Λ/λ)V .

Moving back into the laboratory frame, we finally get that each point moves with
velocity

u = (V − U)i − Λ
λ
V t, (2.2)

and the spatial dependence of u occurs implicitly through the spatial variations of
the tangent vector, t, to the flagellum. The dependence on the overall wave geometry
comes from the values of Λ and λ. With the kinematics determined we can use the
results from section 2.4 to compute the distribution of force per unit length, f, due to
the surrounding fluid, f = −C ·u. Solving for the value of U which leads to a net zero
force on the swimmer,

∫
fds = 0, leads to a solution for the swimming speed of

U

V
=

(1 − γ)(1 − β)
1 + β(γ − 1)

, (2.3)

where γ = c‖/c⊥ is the ratio of drag coefficients (with a value slightly above one half)
and β = [

∫ Λ

0
(dx/ds)2d s]/Λ ≤ 1, where x(s) is the function describing the wave along

the i vector (s is the curvilinear coordinate along the flagellum).
The solution in Eq. (2.3) is noteworthy for four reasons. First we see that U >

0 and thus swimming occurs always in the direction opposite to that of the wave
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propagation. Secondly, it is clear that U/V ≤ 1 and therefore the swimming speed
is always below the wavespeed. Thirdly, for isotropic drag, we have γ = 1, and thus
U = 0: drag anisotropy is therefore crucial to be able to swim. Finally, the only
geometrical parameter impacting the value of the swimming speed is β, which is the
integral along one period of the square of the cosine of the angle between the local
tangent and the swimming direction.

To get an idea of the typical value expected for U , we can consider sinusoidal
waves of the form y(x) = a sin(2πx/λ), where a is half the peak-to-peak amplitude.
Elementary algebra shows that in that case (dx/ds)2 = [1 + (2πa/λ)2 cos(2πx/λ)2]−1

and thus

β =
1
λ

∫ λ

0

dx
1 + (2πa/λ)2 cos(2πx/λ)2

· (2.4)

Assuming γ = 1/2, and taking a wave with peak-to-peak amplitude equal to the
wavelength (a = λ/2), we obtain β ≈ 0.3 and U/V ≈ 0.4. If instead the peak-to-
peak amplitude is one third of the wavelength (a = λ/6), we get β ≈ 0.7 leading to
U/V ≈ 0.25.

2.7 Locomotion vs diffusion

With our understanding of how microorganisms are able to generate the forces pro-
pelling them in viscous fluids, we are now able to address problems relevant to the
interactions of swimmers with their environment. Some of these questions are ac-
tive research topics and we will provide a brief overview of these in section 2.8. One
particularly fundamental issue concerns the role of noise and fluctuations in the cell
dynamics. The discussions in the previous sections were made under the assumption
of deterministic fluid mechanics, with no consideration of noise. Noise can arise from a
variety of sources. Thermal noise leads to fluctuations in flagella shapes and Brownian
motions of the cells, as well as their reorientation. Athermal noise can also arise from
microscopic fluctuations in the behaviour of molecular motors or from the random
changes in actuation at the whole-cell level, in particular for bacteria [5]. Physically,
the deterministic approach outlined above will be valid on short time scales, whereas
on longer time scales (to be defined) the effect of noise becomes important and cells
will typically undergo effective diffusion.

What is the purpose of bypassing the scallop theorem if eventually small swimming
cells always end up showing zero time-averaged locomotion? The answer lies in the
value of their diffusion constant. To illustrate this point, let us consider the Brownian
dynamics simulations shown in Fig. 2.4. We show on the left the Brownian motion for
a 1 μm-radius colloidal sphere in water and at room temperature over a time period
of 100 s (five different realizations are shown). On the right, in the same environment
and over the same time period, we show the dynamics of the same spherical body
in a scenario where it is able to swim at a speed of 5 μm/s. The combination of dir-
ected swimming with thermal reorientation of the sphere leads to an effective diffusion
characterized by a diffusion constant significantly above that given by pure Brownian
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Fig. 2.4 Effective diffusion of swimmers. We use Brownian dynamics simulations on a spherical
swimmer of 1 μm radius at room temperature to show that when the sphere is swimming (b)
steady speed of 5 μm/s) it displays effective diffusive motion with a diffusion constant much
above that of purely Brownian motion ((a) no swimming). Five different realizations are shown
over a time scale of 100 s.

motion. Swimming does not prevent cells from eventually diffusing, but it can allow
them to enhance their diffusion constants, possibly by orders of magnitude.

A simple mathematical model allowing us to quantify swimming-enhanced diffusion
consists in approaching the cell dynamics as similar to a random walk [5]. Imagine
cells swimming along straight lines at a constant velocity U for a time τ after which
they reorient. This reorientation could be due to rotational diffusion, a change in the
swimming direction due to the ‘tumbling’ process of bacteria with many flagella [6], or
another mechanism. The length of a step in the random walk is thus d = Uτ. After a
number n of such steps, the mean square displacement of the cell would be 〈x2〉 ∼ nd2

and since the total time elapsed is t = nτ , we obtain diffusion, 〈x2〉 ∼ Dt, with an
effective diffusion constant scaling as D ∼ d2/τ ∼ U2τ .

What is the critical reorientation time scale, τmin, after which swimming always
induces enhanced diffusion? It is found by setting the magnitude of U2τ equal to the
Brownian diffusion constant of the cell, DkBT , and thus we get τmin ∼ DkBT /U

2. For
a 1 μm swimmer in water at room temperature we have DkBT ≈ 0.2 (μm)2/s, and a
thermal reorientation time scale of a few seconds. With a swimming speed of 5 μm/s,
this leads to τmin ≈ 10 ms, much less than the time scale for thermal loss of direction,
hence the very large enhancement in diffusion constant seen in Fig. 2.4. Note that in
the case where reorientation is due to diffusion in orientation only, the exact solution
for the effective diffusion constant in three dimensions is D = DkBT +U2/6DR, where
DR is the coefficient of rotational diffusion of the cell [5].

Peritrichously flagellated bacteria such as E. coli have multiple flagella and they
change their reorientation as a result of a so-called tumbling process during which
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at least one of the rotary motors driving a flagellum changes its rotation direction.
E. coli has a cell body with a length scale of about ≈ 2 μm and swims at a speed
of U ≈ 30 μm/s, leading to τmin of the order of 0.1 ms, which is smaller than the
typical time scale between reorientation events (of the order of 1 s) and again leads to
enhanced diffusion [5, 46]. Note that other organisms, in particular marine bacteria,
employ reorientation mechanisms which have yet to be fully elucidated [29].

In his famous lecture, Purcell put forward a physical argument giving an estimate
of the useful value of τ [55]. He argued that for bacteria such as E. coli which swim in
order to probe their chemical environment, the important thing is for cells to outrun
the diffusion of nutrients—allowing them to check whether indeed life was greener on
the other side. On short time scales, the diffusive dynamics of a passive molecule will
always be faster than the ballistic swimming of the cells, and thus swimming has to
be sustained for a finite amount of time. Over a time scale τ , a cell swimming straight
explores an environment of size ∼ Uτ , whereas a nutrient molecule characterized by
a diffusion constant D0 explores a typical size ∼ (D0τ)1/2. Cells have thus to swim
at least during a time such that Uτ > (D0τ)1/2, or τ > τc with τc = D0/U

2. With
a typical molecular value D0 ≈ 10−9 m2/s and U ≈ 30 μm/s this leads to τc ≈ 1 s,
of the order of the reorientation time scale seen experimentally. Cells do not need to
swim for longer than that because they have now acquired the relevant information
about the local chemical nature of the new environment.

2.8 Research questions

So far I have presented a quick overview of some of the classical results in the hydro-
dynamics of swimming microorganisms. In this section I will highlight actively pursued
research questions in the field, emphasizing three themes. This is obviously a personal
point of view, and one shaped by my own interests. The current literature in the field
is vast and I have tried to give enough references to provide appropriate entry points
for the interested reader.

(1) The first active research theme is that of locomotion in complex environments.
The physical results introduced in the previous sections focused on swimmers in an
infinite Newtonian fluid in the absence of boundaries. In numerous biologically relevant
situations the fluids are non-Newtonian and locomotion occurs under confinement, for
example during spermatozoa transport in mammalian reproduction [19, 68].

The impact of non-Newtonian stresses on locomotion has recently been at the
centre of numerous studies. The main question addressed by these studies concerns
the difference in swimming behaviour between a non-Newtonian environment and a
Newtonian fluid, and whether locomotion is helped or reduced by the change of envir-
onment. Small-amplitude analysis in viscoelastic fluids first showed that locomotion
speeds were always reduced compared to the Newtonian situation for planar [39] or
helical-waving actuation [21]. Computations showed however that for large-amplitude
waving motion the result could be the opposite, and viscoelasticity could in fact en-
hance swimming [69]. Even in cases where swimming speeds are reduced, swimming
in viscoelastic fluids is more hydrodynamically efficient [80, 81]. Furthermore, the
non-linearities intrinsic to non-Newtonian fluids can be exploited to generate novel
modes of propulsion, ones which are otherwise inefficient in Newtonian fluids [40, 52].
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Locomotion in suspensions and heterogeneous fluids was also considered, and in this
case locomotion is enhanced by the presence of a microstructure in the fluid [43].
Recent work has further investigated locomotion in gels, detailing in particular the
conditions under which locomotion might be helped by the presence of an underlying
elastic network [22].

A small number of experimental studies were also able to address the role of visco-
elastic stresses. The nematode C. elegans was shown to decrease its swimming speed
in an elastic fluid without modifying its swimming gait [60]. The locomotion of a
force-free helix, used as a model for locomotion induced by helical flagella, showed a
transition from reduced to enhanced swimming with an increase in the helix ampli-
tude [45]. Finally, flexible synthetic swimmers driven by external fields under planar
actuation were shown to go faster than in a Newtonian fluid [16]. The physical picture
emerging is that of a kinematic-specific impact of elastic stresses in the fluid on the
locomotion performance: certain modes of locomotion are negatively affected while
others are enhanced, in a manner which future work will have to fully unravel.

Boundaries and confinement have also been shown to affect the spatial distribution
of swimming microorganisms, their swimming kinematics, and their ability to gener-
ate propulsive forces. Swimming cells are attracted by boundaries, a classical result
recently revisited theoretically and experimentally [7, 14, 20], and thus in a confined
environment cells are expected to be always located near boundaries. The details of
the hydrodynamic description in this case were the focus of studies on spermatozoa
[61, 64], active filaments [18], flagellated bacteria [25], and model microorganisms [67].
For swimmers with chiral shapes, such as helical bacteria, the presence of a wall close
to the organism leads to the generation of a surface-induced hydrodynamic torque
perpendicular to the surface. The combination of swimming and the presence of an
external torque leads to a circular motion of the microorganism, with the rotation
direction of the swimmers near a rigid wall [41] being the opposite of those near a free
surface [12].

(2) Our second issue of interest concerns the collective modes of locomotion of
microorganisms. We refer to recent review articles for in-depth discussions of the topic
[38, 57]. As an organism is swimming it sets up in its vicinity a flow field which then
exerts stresses on nearby cells, possibly affecting their orientation and locomotion. A
natural question to ask is therefore whether these interactions are able to generate
non-trivial collective behaviour.

The classical theoretical approach looks at the dilute limit in which organisms
are modelled as point dipoles. These theories predict generic instabilities for uniform
suspensions of pusher-type swimmers being propelled from the back by their flagella
(such as flagellated bacteria; this is in contrast with puller swimmers such as the
algae Chlamydomonas swimming flagella-first) [34, 58, 59, 62]. Other theoretical ap-
proaches have also been proposed deriving effective hydrodynamic equations based on
the detailed modelling of interactions between swimmers [4].

Experiments and simulations allow the behaviour of cells and model swimmers
to be probed beyond the dilute regime. Early experiments focused on suspensions of
swimming bacteria and demonstrated the occurrence of coherent structures of jets
and swirls with speed and length scales significantly above those of individual or-
ganisms [13, 66, 72, 77]. Numerical computations were able to reproduce features of
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this non-linear dynamics, either by simulating an ensemble of model swimmers [32]
or by developing a coarse-grained continuum approach [3]. Computations were also
able to show that the generic instability also occurs for puller swimmers in the semi-
dilute regime [17], and allowed us to investigate the role of bounding walls of collective
locomotion [33] and study the difference between coherent structures in three dimen-
sions [36] and monolayers [37]. One aspect in particular where collective motion is
bound to play an important role is that of rheology [31]. A recent series of experi-
ments showed that active fluids display strongly shear-dependent viscosity [56, 65],
something which might in turn affect a number of biological and biomedical trans-
port phenomena. Future work will also have to uncover the impact of these collective
modes of locomotion on chemical transport within the surrounding fluid and cell–cell
communication.

(3) The final topic I wish to emphasize takes us outside the purely biological
realm and into bioengineering. The modes of locomotion seen in biological organisms
have inspired the community to develop a number of synthetic swimming devices
in the lab [1, 49, 50]; similarly to flagellated organisms with helical flagella, rigid
magnetic swimmers have been proposed [24, 79]. In this case, a magnetic body is
typically attached to a rigid helix, and an actuation in rotation of the head by an
external magnetic field leads to rotation of the helix, and propulsion. Alternatively,
the swimmer might be composed of a straight, flexible filament in lieu of a flagellum,
and that filament acquires a helical shape upon rotation by the external field [23, 51].
Similarly, a flexible filament under an external planar actuation undergoes a planar
waving motion and is also able to swim [15, 76].

Beyond modes of locomotion directly inspired by the biological world, a number of
other methods have also been proposed and implemented to generate self-propulsion on
the micron scale. Most notably, the last ten years have seen a lot of activity in chemical,
or catalytic swimming [74]. An early experiment showed that Janus Pt/Au metallic
rods were able to swim in aqueous solutions of hydrogen peroxide [53]. Physically this
class of small-scale swimmers are catalysts for a specific chemical reaction on a portion
of their surface, while the rest of their body is inert. The asymmetry in the location of
the catalyst leads to an asymmetry in the concentration of reactants and products of
the chemical reaction and a net self-propulsion through self-diffusiophoresis or, in the
case where the chemical reaction leads to the production of ions and electrons, self-
electrophoresis [26, 27, 35, 47, 48]. Other types of synthetic swimming method have in-
cluded the idea of taking propulsive advantage of the presence of nearby surfaces, either
rigid [63, 70, 78] or deformable [71], as well as exploiting external acoustic fields [75].

2.9 Conclusions

Over the last ten years, our knowledge of the physics of small-scale swimming has
grown tremendously, based in part on the joint efforts of many different research
communities: soft matter physics, applied mathematics, biophysics, colloidal science,
chemistry, and biological physics. I hope that these two lectures, even though they
provide only a glimpse of this active research field, are able to serve as an adequate
introduction to its richness.



References 95

Acknowledgements

I want to thank the organizers of the summer school (L. Bocquet, D. Quéré, T. Witten)
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