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We use the boundary element method to study the low-Reynolds-number locomotion
of a spherical model microorganism in a circular tube. The swimmer propels itself
by tangential or normal surface motion in a tube whose radius is of the order of
the swimmer size. Hydrodynamic interactions with the tube walls significantly affect
the average swimming speed and power consumption of the model microorganism.
In the case of swimming parallel to the tube axis, the locomotion speed is always
reduced (respectively, increased) for swimmers with tangential (respectively, normal)
deformation. In all cases, the rate of work necessary for swimming is increased
by confinement. Swimmers with no force dipoles in the far field generally follow
helical trajectories, solely induced by hydrodynamic interactions with the tube walls,
and in qualitative agreement with recent experimental observations for Paramecium.
Swimmers of the puller type always display stable locomotion at a location which
depends on the strength of their force dipoles: swimmers with weak dipoles (small α)
swim in the centre of the tube while those with strong dipoles (large α) swim near
the walls. In contrast, pusher swimmers and those employing normal deformation are
unstable and end up crashing into the walls of the tube. Similar dynamics is observed
for swimming into a curved tube. These results could be relevant for the future design
of artificial microswimmers in confined geometries.

Key words: biological fluid dynamics, boundary integral methods, low-Reynolds-number
flows, microorganism dynamics, swimming/flying

1. Introduction
The locomotion of self-propelled microorganisms have recently attracted sizable

attention in both the applied mathematics and biophysics communities (Lighthill
1975, 1976; Brennen & Winet 1977; Purcell 1977; Yates 1986; Berg 2000; Fauci
& Dillon 2006; Lauga & Powers 2009). A number of novel phenomena have been
discovered, including the dancing behaviour of pair Volvox algae (Drescher et al.
2009), the collective motion of motile Bacillus subtilis bacteria (Dombrowski et al.
2004) and tumbling dynamics of flagellated Chlamydomonas (Polin et al. 2009;
Stocker & Durham 2009). One area of particularly active research addresses the
variation in cell mobility as a response to complex environments, including the
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dependence on the rheological properties of the medium where cells swim (Lauga
2007; Fu, Powers & Wolgemuth 2008; Elfring, Pak & Lauga 2010; Liu, Powers &
Breuer 2011; Shen & Arratia 2011; Zhu et al. 2011; Zhu, Lauga & Brandt 2012),
the presence of an external shear flow (Hill et al. 2007; Kaya & Koser 2012),
gravity (Durham, Kessler & Stocker 2009) or a sudden aggression (Hamel et al.
2011).

Many microorganisms swim close to boundaries, and as a result the effect of
boundaries on fluid-based locomotion has been studied extensively. Escherichia coli
bacteria display circular trajectories near boundaries, clockwise when the wall is
rigid (Lauga et al. 2006) and anticlockwise near a free surface (Leonardo et al.
2011). Experiments, simulations and theoretical analysis are employed to investigate
locomotion near a plane wall (Katz 1974, 1975; Ramia, Tullock & Phan-Thien 1993;
Fauci & Mcdonald 1995; Goto et al. 2005; Berke et al. 2008; Smith et al. 2009;
Shum, Gaffney & Smith 2010; Spagnolie & Lauga 2012) explaining in particular the
accumulation of cells by boundaries (Ramia et al. 1993; Fauci & Mcdonald 1995;
Berke et al. 2008; Smith et al. 2009; Shum et al. 2010; Drescher et al. 2011). Most of
these past studies consider the role of hydrodynamic interaction in the kinematics and
energetics of micro-scale locomotion, developing fundamental understanding of how
microorganisms swim in confined geometries.

Although most past studies consider interactions with a single planar, infinite
surface, microorganisms in nature are faced with more complex geometries. For
example, mammalian spermatozoa are required to swim through narrow channel-like
passages (Winet 1973; Katz 1974), Trypanosoma protozoa move in narrow blood
vessels (Winet 1973), and bacteria often have to navigate microporous environments
such as soil-covered beaches and river-bed sediments (Biondi, Quinn & Goldfine
1998).

Locomotion of microorganisms in strongly confined geometries is therefore
biologically relevant, and a few studies have been devoted to its study. An
experimental investigation was conducted by Winet (1973) to measure the wall drag
on ciliates freely swimming in a tube. Perturbation theory was employed to analyse
the swimming speed and efficiency of an infinitely long model cell swimming along
the axis of a tube (Felderhof 2010). Numerical simulations using multiple-particle
collision dynamics were carried out to study the motion of model microswimmers in
a cylindrical Poiseuille flow (Zöttl & Stark 2012). Recent experiments (Jana, Um &
Jung 2012), which originally inspired the present paper, showed that Paramecium cells
tend to follow helical trajectories when self-propelling inside a capillary tube.

In this article, we model the locomotion of ciliated microorganisms inside
a capillary tube. Specifically, we develop a boundary element method (BEM)
implementation of the locomotion of the squirmer model (Lighthill 1952; Blake 1971)
inside straight and curved capillary tubes. The BEM has been successfully used in
the past to simulate self-propelled cell locomotion at low Reynolds numbers (Ramia
et al. 1993; Ishikawa, Simmonds & Pedley 2006; Shum et al. 2010; Nguyen et al.
2011). Our specific computational approach is tuned to deal with strong geometrical
confinement whereas traditional BEM show inaccuracy when the tube becomes too
narrow (Pozrikidis 2005).

After introducing the mathematical model, its computational implementation and
validation, we calculate the swimming speed and power consumption of spherical
squirmers with different swimming gaits inside a straight or curved capillary tube.
The effect of tube confinement, swimming gait and cell position is investigated. By
studying trajectories of squirmers with varying initial cell positions and orientations,
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we show that cells end up either swimming parallel to the tube axis or performing
wavelike motions with increasing/decreasing wave magnitudes. The dynamic stability
of the cell motion is also analysed revealing the importance of the swimming gaits.
In particular, squirmers employing the gait leading to minimum work against the
surrounding fluid are seen to generically execute helical trajectories, in agreement with
the experimental observation of swimming Paramecia inside a capillary tube (Jana
et al. 2012).

2. Mathematical model
2.1. Squirmer model

In this work we use steady squirming as a model for the locomotion of ciliated cells
such as Paramecium: more specifically, as a model for the envelope of the deforming
cilia tips at the surface of the cells. This steady model has been employed in the past
to address fundamental processes in the physics of swimming microorganisms, such as
nutrient uptake (Magar, Goto & Pedley 2003), locomotion in stratified and viscoelastic
fluids (Doostmohammadi, Stocker & Ardekani 2012; Zhu et al. 2012), biomixing (Lin,
Thiffeault & Childress 2011) and the collective behaviour of microorganisms (Ishikawa
& Pedley 2008; Underhill, Hernandez-Ortiz & Graham 2008; Evans et al. 2011).
Furthermore, simulations of two interacting Paramecium using the squirmer model
showed good agreement with corresponding experiments (Ishikawa & Hota 2006).

In the model, a non-zero velocity, uST , is imposed at the surface of the spherical
swimmer as first proposed by Lighthill (1952) and Blake (1971). In this work,
we consider for the most part pure tangential surface deformation (normal surface
deformation will be covered in § 4.6 only) and adopt the concise formulation
introduced in Ishikawa & Pedley (2008) where the imposed velocity on the surface
of a squirmer centred at the origin is explicitly given as

uST(r)=
∑
n>1

2
n(n+ 1)

BnP′n

(
ê · r

r

)(
ê · r

r

r
r
− ê
)
, (2.1)

where ê is the orientation vector of the squirmer, Bn is the nth mode of the tangential
surface squirming velocity (Blake 1971), Pn and P′n are the nth Legendre polynomial
and its derivative with respect to the argument, r is the position vector and r = |r|. In
a Newtonian fluid, the swimming speed of the squirmer in free space is UF

ST = 2B1/3
(Blake 1971) and thus dictated by the first mode only. The second mode, B2, governs
the signature of the flow field in the far field (stresslet). As in many previous
studies (Ishikawa et al. 2006; Ishikawa & Pedley 2008), we assume Bn = 0 for n > 2.
In that case, the power consumption by the swimmer is PF

ST = 8πµa(2B2
1 + B2

2)/3,
where µ is the dynamic viscosity of the fluid and a the radius of the sphere.

The tangential velocity on the sphere in the comoving frame is therefore
simply expressed, in spherical coordinates, as uθ(θ) = B1 sin θ + (B2/2) sin 2θ , where
θ = arccos(ê · r/r) is the polar angle between the position vector r and the swimming
direction ê. We introduce an additional dimensionless parameter, α, representing the
ratio of the second to the first squirming mode, α = B2/B1. When α is positive, the
swimmer is called a puller and obtain the impetus from its front part. As α is negative,
the cell is called a pusher and thrust is generated from the rear of the body. A puller
(respectively, pusher) generates jet-like flow away from (respectively, towards) its sides,
as shown in Ishikawa (2009) and references therein. A squirmer with α = 0 is termed
a neutral squirmer and it is associated with a potential velocity field.
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FIGURE 1. Schematic representation of a spherical squirmer of radius a swimming in a tube
of radius R. The centre of the squirmer is located at a distance b from the tube axis. The origin
of the Cartesian coordinates coincides with the centre of the tube. The bounding surfaces to
the fluid are denoted S (surface of squirmer), B (bottom tube cap), T (top tube cap) and C
(surface of the tube conduit).

We note that the model we consider does not capture the unsteadiness of the flow
arising from the periodic beating of flagella and cilia in microorganisms such as
Paramecium or Volvox (Drescher et al. 2010; Guasto, Johnson & Gollub 2010). Here
we assume that the steady, time-averaged, velocity dominates the overall dynamics,
and will consider the underlying unsteadiness in future work.

2.2. Swimming in a tube
The spherical squirmer (radius, a) is swimming in a cylindrical tube of radius R, as
illustrated in figure 1. The centre of the squirmer is located at a distance b from the
tube axis. We use Cartesian coordinates with an origin at the centre of the tube and the
x-direction along the tube axis. As in Higdon & Muldowney (1995) we introduce the
non-dimensional position β as

β = b/(R− a), (2.2)

so that β = 0 indicates that the squirmer is at the centre of the tube while for β = 1
the squirmer is in perfect contact with the tube wall.

3. Numerical method
3.1. Formulation

The BEM has already been successfully adopted to study the hydrodynamics of
swimming microorganisms in the Stokesian regime (Ramia et al. 1993; Ishikawa et al.
2006; Shum et al. 2010). Our current work mainly follows the approach in Pozrikidis
(2002), the important difference being that we use quadrilateral elements instead of
triangle elements as typically used and originally proposed. The method is introduced
briefly here.
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In the Stokesian realm, fluid motion is governed by the Stokes equation

−∇p+ µ∇2u= 0, (3.1)

where p is the dynamic pressure and u the fluid velocity. Owing to the linearity of the
Stokes equation, the velocity field, u(x), resulting from moving bodies with smooth
boundary S can be expressed as

u(x)= 1
8πµ

∫
S
f (x′) ·S(x, x′) dSx′, (3.2)

where f (x′) is the unknown force per unit area exerted by the body onto the fluid. The
tensor S is the Stokeslet Green’s function

Sij(x, x′)=
(

δij

d
+ didj

d3

)
, (3.3)

with di = xi − x′i, d2 = |x− x′|2 = d2
1 + d2

2 + d2
3 and δij denoting the Kronecker delta

tensor.
We discretize the two bodies in the problem, namely the spherical squirmer and

the surrounding tube, into N zero-order elements with centres at the locations
{xq, q = 1→ N}, with q = 1→ NS denoting the elements on the squirmer surface
and q= NS + 1→ N the elements on the surface of the tube. For the rth element, f (x′)
is assumed to be constant over the element and is thus approximated by the value fr.
As a consequence, the discretized version of (3.2) is, when evaluated on one of the
elements,

u(xq)= 1
8πµ

N∑
r=1

fr ·

∫
Sr

S(xq, x′) dSx′, q= 1→ N. (3.4)

In its discrete form, equation (3.4) represents a total of 3N equations for the 3N
unknown force density components.

3.2. Swimming and squirmer boundary conditions
On the squirmer surface, the left-hand side of (3.4) is not fully known. The swimmer
has an instantaneous surface deformation, uS, plus six unknown components, namely
its instantaneous translational velocity vector, U and its instantaneous rotational
velocity vector, Ω . Thus, the left-hand side of (3.4), when evaluated on the surface
of the squirmer, becomes u(xq) = U + Ω × x̃q + uS(xq) for q from 1 to NS (here
x̃q = x − xR, where xR is an arbitrary reference point, the centre of the spherical
squirmer for convenience). The six additional equations necessary to close the linear
system are the force- and torque-free swimming conditions, namely∫

f (x) dSx = 0,
∫

x̃× f (x) dSx = 0, (3.5)

for x ∈ squirmer.

3.3. Other boundary conditions
The situation addressed in our paper is that of a squirmer swimming inside an
infinitely long tube filled with a quiescent fluid. Numerically, we close both ends
of the tube with appropriate boundary conditions. If the tube caps are sufficiently
far away from the squirmer, the velocity near the caps is almost zero, so we
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have uB = uT = 0, and the pressure over the bottom and top cap is pB and
pT respectively (Pozrikidis 2005). The force density fT over the top cap can be
approximated by fT = pTn (Pozrikidis 2005), where n is the unit normal vector
pointing from the top cap into the fluid domain. Since pressure is defined up to
an arbitrary constant, without loss of generality, we set pT = 0, fT = 0 and the top
cap does not requires discretization. However, unlike Pozrikidis (2005), we do perform
discretization on the bottom cap, solving for the normal and tangential components of
the force density fB there. For the conduit part of the tube, we use no-slip boundary
condition, thus write uC = 0.

Since we set the velocity on both caps of the tube to be zero, the error due to
domain truncation need to be carefully considered. A truncated tube length L of πR
or 2πR was chosen in Pozrikidis (2005) and L = 3R in Higdon & Muldowney (1995).
In our computation of hydrodynamic force on a moving sphere inside, we tested
different values L and examined the truncation error. We find the length, L = 2πR, to
be long enough for required accuracy (see figure 3 and details below). In the case
of swimming squirmers, we set L = 3πR, and larger values of L were shown to have
negligible differences in the results.

3.4. Discretization and integration
Zero-order constant quadrilateral elements are used to discretize all of the surfaces.
We use a six-patch structured grid to discretize the sphere (Higdon & Muldowney
1995; Cortez, Fauci & Medovikov 2005; Smith 2009), mapping six faces of a cube
onto the surfaces of a sphere with each face latticed into a square mesh. The conduit
part of the tube is divided into cylindrical quadrilateral elements obtained from the
intersections of evenly spaced planes normal to tube axis and evenly spaced azimuthal
planes (Higdon & Muldowney 1995; Pozrikidis 2005; Wen, Aliabadi & Wang 2007).
Moreover, orange-like quadrilateral elements are used for the bottom cap of the tube
(Higdon & Muldowney 1995; Wen et al. 2007). For the sphere we adopt the six-
patch quadrilateral grid with parameterized coordinates instead of triangle elements
(Pozrikidis 2002, 2005). Such discretization with its natural parametrization facilitates
Gauss–Legendre quadrature when performing numerical integration. Template points
used in the quadrature lie exactly on the sphere surface since their coordinates are
derived from the parametrization. The resulting improved quadrature gives superior
accuracy (see table 1). The integration for singular elements are performed by using
plane polar coordinates with Gauss–Legendre quadrature (Pozrikidis 2002).

In many instances, the squirmer is so close to the cylindrical wall that near-singular
integration has to be performed, a key point to achieve the required accuracy and
efficiency (Huang & Cruse 1993). We perform local mesh refinement in the near-
contact regions between the squirmer and the tube (Ishikawa et al. 2006; Ishikawa &
Hota 2006) as illustrated in figure 2. The agreement between numerical results with
our method and existing results from high-order spectral BEM (Higdon & Muldowney
1995) improves significantly when applying such local mesh refinement as shown in
the next section where we compute the resistance of a translating sphere inside a
cylindrical tube.

3.5. Validation and accuracy
We first compute the drag force, F, on a translating sphere in an unbounded domain
and compare it with the analytical expression, F = 6πµaU, where µ is the dynamic
viscosity of the fluid and U is the translational speed of the sphere. As shown in
table 1, the current method is very accurate when compared to the three similar
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FIGURE 2. (Colour online) Local mesh refinement of the cylinder (shown in red online) and
the sphere (shown in green online). The geometrical parameters are a/R = 0.3 and β = 0.95.
For a better visualization, the mesh on the squirmer surface is reproduced on the displaced
sphere as indicated by the black arrow.
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FIGURE 3. (Colour online) Relative error in the three components of the drag force, Rx, Ry
and Rz, on a sphere translating inside a tube (a/R = 0.4) between the present paper and
Higdon & Muldowney (1995). Note that the three largest values of β chosen are 0.95, 0.975
and 0.99.

approaches (Pozrikidis 2002; Cortez et al. 2005; Smith 2009). We then compute the
drag force and torque on a sphere translating parallel to an infinite, flat, no-slip surface.
The surface is modelled by a discretized plate of size 40a× 40a. Our simulation agree
well with analytical results (Goldman, Cox & Brenner 1967), as shown in table 2.
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Cortez et al.
(2005)

Smith (2009) Pozrikidis
(2002)

This
paper

Element order 0 0 0 0
(functional
variation)
Element type Quad Quad Tri Quad
Element number 6× 12× 12 6× 6× 6 512 6× 6× 6
Singular Regularization Regularization Analytical Analytical
integration ε = 0.01 ε = 0.01 integration integration

with adaptive with with
Gauss Gauss Gauss

Quadrature Quadrature Quadrature
Relative error (%) 12.6 0.431 9.6× 10−3 1.4× 10−5

TABLE 1. Relative error, as a percentage, in the drag force on a translating sphere in
an unbounded domain between the method in this paper and three other methods. The
parameter ε is the regularization parameter first introduced in Cortez et al. (2005).

h/a Ferr(%) Terr(%)

3.7622 0.00426 0.09488
2.3523 0.01911 0.37879
1.5431 0.04274 0.20478
1.1276 0.07809 0.25773
1.0453 0.09405 0.74217
1.005004 0.17669 1.13493
1.003202 0.27472 1.74313

TABLE 2. Relative error in the drag force, Ferr , and torque, Terr , in percentage, on a
sphere translating parallel to an infinite wall between our computations and the analytical
results (Goldman et al. 1967). Here a is the radius of the sphere and h the distance
between the centre of the sphere and the wall.

Finally, we compute the drag force acting on a sphere translating inside the tube with
confinement a/R = 0.4, up to a maximum value of β = 0.99, and compare our results
with published data obtained with high-order spectral BEM (Higdon & Muldowney
1995). As illustrated in figure 3, the maximum relative error is less than 1.2 %. In all
simulations, the maximum confinement is taken to be β = 0.99 to ensure sufficient
accuracy.

4. Swimming inside a tube: results
We now have the tools necessary to characterize the locomotion of squirmers inside

a tube. Our computational results, presented in this section, are organized as follows.
We first compute the swimming kinematics and power consumption of a squirmer
instantaneously located at various positions inside the tube while its orientation is kept
parallel to the tube axis. These results then enable us to understand the origin of the
two-dimensional wave-like trajectory for a neutral squirmer inside the tube. We also
analyse the asymptotic stability of trajectories close to solid walls (Yizhar & Richard
2009; Crowdy & Yizhar 2010). We then move on to examine the general three-
dimensional helical trajectory of a neutral squirmer and also consider the kinematics of
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FIGURE 4. (Colour online) Instantaneous swimming speed for a squirmer in a capillary tube.
(a) Swimming velocity in the axial direction, Ux (independent of α), scaled by the swimming
speed in free space UF

ST ; different values of a/R are reported with a maximum value of
β = 0.99. (b) Swimming velocity Uz in the transverse direction, scaled by the swimming
speed in free space; here a/R is fixed to 0.3. Different values of α are reported with maximum
value of β = 0.99. In both figures, the squirmer is located at (0, 0,−β(R − a)) with its
orientation parallel to the tube axis.

pusher and puller swimmers. Finally, we study locomotion induced by normal surface
deformation and consider locomotion inside a curved tube.

4.1. Static kinematics and energetics
To start our investigation, we first numerically calculate the swimming speed and
power consumption for a squirmer exploiting pure tangential surface deformation (for
completeness, results on squirmers with normal surface deformations are shown in
§ 4.6). We fix B1 = 1 and vary the value of α, while different values of a/R and β

are chosen to address the effect of confinement and eccentricity on the instantaneous
swimming kinematics.

In figure 4, we plot the instantaneous swimming speed of a squirmer with
orientation parallel to the tube axis (positive x direction) and location (x, y, z) =
(0, 0,−β(R − a)). The swimming velocity parallel to the tube axis (Ux) is displayed
in figure 4(a) while the velocity perpendicular to it (Uz) is shown in figure 4(b).
Interestingly, both pushers and pullers have the same swimming speed, Ux, as the
neutral squirmer. This is due to the fact that the second squirming mode, ∼B2 sin 2θ ,
is front–back symmetric, and thus produces zero wall-induced velocity (Berke et al.
2008), as confirmed by our simulation. We observe numerically that when α = 0, there
is only one non-zero velocity component, namely Ux. In contrast, for pushers and
pullers (α 6= 0) a non-zero transverse velocity component, Uz, is induced. The value
of Ux is seen to decrease with confinement, a/R, and eccentricity, β, as shown in
figure 4(a). The sharp decrease when β is beyond ≈0.8 is due to the strong drag
force experienced closer to the wall which overcomes the propulsive advantage from
near-wall locomotion.

The transverse velocity, Uz, shown in figure 4(b), is plotted against the swimmer
position, β, for different values of α while the confinement is fixed at a/R = 0.3.
In the case of a puller (α > 0), the swimmer will move away from the nearest wall
(Uz > 0) while a pusher (α < 0) will move towards the nearest boundary (Uz < 0), as
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FIGURE 5. (Colour online) (a) Rotational velocity of the squirmer in the direction normal to
the plane of locomotion, Ωy. The squirmer is located at (0, 0,−β(R− a)) with its orientation
parallel to the tube axis. Different values of a/R are plotted with maximum value of β = 0.99.
(b) Physical picture of cell rotation near the walls. The circle indicates the spherical squirmer
and the arrows (shown in green online) denote the tangential surface velocity imposed by the
squirmer. Straight arrows and curved arrows (shown in blue online) denote the cell orientation
and rotational velocity respectively; 1 indicates the closest point on the cell to the top wall
and 2 the closest point to the bottom wall while FP

1 and FP
2 are the wall-induced shear forces

generated near point 1 and 2.

expected considering the dipolar velocity field generated by squirmers (see also § 4.4).
The absolute value of Uz increases with α and is of the same magnitude for pushers
and pullers of equal and opposite strength. A similar effect was explained by Berke
et al. (2008) for a plane wall, although in that case, the cell was approximated by a
point stresslet and the cell–wall distance was considerably larger than the cell size. By
probing hydrodynamics very close to the wall, we observe that the magnitude of Uz

does actually not vary monotonically with β, instead reaching a maximum value as
β ≈ 0.9. Moving away from the tube centre, the transverse velocity increases due to
stronger hydrodynamic interactions with the tube walls before decreasing owing to a
significantly larger hydrodynamic resistance very close to the tube boundaries.

Beyond the translational velocities, the squirmers also rotate due to hydrodynamic
interactions with the tube boundaries. Numerical results show that the magnitude of
the rotational velocity, Ω , is independent on the dipole strength, α, and that all
squirmers rotate away from the closest wall. This is also attributed to the front–back
symmetric distribution of the second squirming mode. Using our notation, we therefore
obtain that squirmers rotate in the −y direction. The value of Ωy is displayed in
figure 5(a). Its magnitude increases with eccentricity, β, and confinement, a/R, as
a result of stronger hydrodynamic interactions. To explain the sign of the rotational
velocity, we look in detail at a neutral squirmer in figure 5(b), in the case where the
swimmer is located closer to the top wall. Arrows (shown in green online) display the
tangential surface deformation which generates locomotion. Given points 1 and 2 on
the squirmer surface, the black arrows indicate the velocity field and show that the
shear rate is higher near point 1 than point 2. Consequently, the wall-induced force
on point 1, FP

1 , is larger than that on point 2, FP
2 , producing a resultant clockwise

torque. Since the total torque on the squirmer is zero, the squirmer has to rotate in
the clockwise direction to balance this torque, escaping from the top wall. When the
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FIGURE 6. (Colour online) Power consumption, P , of the neutral squirmer (α = 0, a) and
puller (α = 5, b), scaled by their corresponding values in free space. Insets display P as a
function of a/R in the case β = 0. The orientation of the squirmer is parallel to the tube axis
with the maximum value of β = 0.99.

squirmer is closer to the top wall, an increased asymmetry will induce a stronger
rotation.

Next, we analyse the power consumption by the squirmer. The power, P , is defined
as P = ∫S fout · uS dS, where fout is the force per unit area exerted from the outer
surface of the body onto the fluid and uS is the squirming velocity. In the single-layer
potential formulation, equation (3.2) as in Ishikawa et al. (2006), the unknown f is
the sum of the force density from outer (fout) and inner (fin) surface. We therefore
rewrite the power as P = ∫S f · uS dS − ∫S fin · uS dS, where

∫
S fin · uS dS denotes the

viscous dissipation of the flow inside the squirmer. We thus need to subtract the
internal viscous dissipation in the fluid given by the numerics where fin can be derived
analytically based on the squirming velocity. In figure 6, we depict the dependence of
P , scaled by the corresponding value in free space, with β and for different values of
α. For each gait, P increases slowly until β ≈ 0.8 followed by a rapid increase for
cells closer to the wall. Such a drastic power increase is in agreement with the sharp
decrease in swimming speed close to the tube, and consequently, a significant decrease
in swimming efficiency is expected. In addition, as the confinement is getting stronger,
the eccentricity of the swimmer’s position becomes more important. For example, as
β changes from 0 to 0.99, the power consumption of a neutral squirmer P increases
only by around 45 % for a/R= 0.2 but by 85 % for a/R= 0.5.

4.2. Two-dimensional wavelike motion of the neutral squirmer

We next study in detail the trajectory of a squirmer inside a tube with fixed
confinement; unless otherwise stated, all results in this section use the same value,
a/R = 0.3. The cell is neither a pusher nor a puller, but a neutral squirmer generating
potential flow field (α = 0). The initial position and orientation of the cell are defined
as in figure 7. The cell is initially placed at (0, 0,−bI), with bI = βI(R − a), and
oriented parallel to the axis (ξI = 0); the motion of the cell will also be restricted to
the x–z plane (χI = 0). We calculate the translational and rotational velocity of the cell
at each time step and update its position using fourth-order Adams–Bashforth scheme
as in Giacché & Ishikawa (2010). Note that in the simulations the cell always remains
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FIGURE 7. Sketch of the spherical squirmer inside the tube with coordinate system and
angles. The initial dimensionless off-axis distance is measured by βI while the angles ξI and
χI control the initial cell orientation, ê. For χI = 0, and in the absence of noise, the squirmer
motion is restricted to the x–z plane.
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FIGURE 8. (Colour online) Two-dimensional trajectories of a neutral squirmer inside a
capillary tube with confinement a/R = 0.3. All positions are measured in units of cell
radius a (same for all figures hereinafter unless otherwise specified). Circles (shown in blue
online) and arrows (shown in red online) indicate, respectively, the instantaneous position and
orientation of the squirmer. The cell is released from (0, 0,−βI(R− a)) with βI = 0.9 (a) and
βI = 0.7 (b), while the initial orientation is parallel to the axis. We denote λ the wavelength of
the periodic trajectory and A its amplitude.

in the centre of the computational domain (while its axial velocity is stored for
post-processing), which allows to minimize the error introduced by domain truncation.

Our computations show that the squirmer always displays a periodic wavelike
trajectory in the tube, with amplitude A and wavelength λ. This is illustrated in
figure 8 for βI = 0.9 (a) and βI = 0.7 (b). The wave amplitude does not change over
time and is twice the initial off-axis distance, namely, A = 2bI . The presence of a
non-zero rotational velocity, Ωy, discussed above and shown in figure 5, is the key
parameter leading to the periodic trajectory. By considering cases where the initial
orientation of the cell is not parallel to the axis (thus, for which the orientation vector
has non-zero x and z components) and we find that as long as the squirmer does not
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FIGURE 9. (Colour online) Phase portrait for the neutral squirmer inside the tube in the (z, ξ)
plane with confinement a/R = 0.3. Closed orbits correspond to 2D wavelike trajectories. The
black cross denotes the equilibrium point (z, ξ)= (0, 0).

immediately descend into the wall, a wavelike trajectory is also obtained. To present
all results in a concise manner, we consider the motion of the neutral squirmer as a
dynamical system similarly to recent work on two-dimensional swimming (Yizhar &
Richard 2009; Crowdy & Samson 2011). The trajectory is defined by two parameters,
the off-axis distance (z) and the angle between the swimmer orientation and the tube
axis (ξ ). We report the phase portrait of the neutral squirmer in the (z, ξ) plane in
figure 9, where the solid curves show the trajectories. The marginally stable point
(0, 0) corresponds to locomotion along the axis of the tube. For any initial conditions
(z, ξ), the neutral squirmer swims along wavelike trajectories corresponding to the
periodic orbits in figure 9 (the largest periodic orbit in the figure has a maximum β of
0.95).

The main characteristics of the squirmers’ trajectories are shown in figure 10
for different initial positions, βI . We display the trajectory wavelength, λ, and the
wavelength-to-amplitude ratio, λ∗ = λ/(A/2). It is clear that λ and λ∗ both decrease
with βI . Indeed, when the swimmer is at the crest or trough of the periodic trajectory,
stronger rotation occurs for larger βI . Therefore, the swimmer will escape from the
nearest wall more rapidly, resulting in a decrease of the wavelength. We also show
in figure 10 that the time-averaged axial speed, Ūx, and the time-averaged swimming
speed along the trajectory, Ū, decrease with βI whereas the time-averaged power
consumption, P̄ , increases when the squirmers move closer to the wall.

4.3. Three-dimensional helical trajectory of the neutral squirmer
By tilting the initial cell orientation, ê, off the x–z plane, the squirmer trajectories
become three-dimensional and take the shape of a helix, a feature we address in
this section. As in the two-dimensional case, these three-dimensional trajectories are
a consequence of hydrodynamics interactions only. Recent experiments in Jana et al.
(2012) showed that Paramecium cells display helical trajectories when swimming
inside capillary tubes, a feature our simulations are thus able to reproduce. Note
that some Paramecium cells also follow helical trajectories in free space due to
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FIGURE 10. Dynamics and kinematics of the neutral squirmer in a tube as a function of
the initial dimensionless off-axis position, βI . (a) Wavelength, λ, of the periodic trajectory.
(b) Wavelength-to-amplitude ratio, λ∗ = λ/(A/2). (c) Time-averaged swimming speed in the
axial direction, Ūx, and along the trajectory, Ū, both rescaled by the free-space swimming
velocity. (d) Time-averaged power consumption, P̄ , rescaled by value in free space.

asymmetries in the shape of their body and the beating of its cilia. In the current work
we focus on swimmers whose helical dynamics arises only in confinement.

We introduce χI as the yaw angle between the initial cell orientation and the x–z
plane (see figure 7), so that the initial orientation becomes (cos(χI), sin(χI), 0). In our
simulations, βI ranges from 0.3 to 0.9 and χI from 20 to 40◦. Within these parameters,
squirmers always display helical trajectories. One such helix is plotted in figure 11,
for an initial position βI = 0.8 and a yaw angle χI = 40◦. The helical trajectory is a
combination of wavelike motions developed in the azimuthal y–z plane and in the axial
direction, see figure 11(b,c). In figure 11(b), we show the projected circular trajectory
of the swimmer in the y–z plane. In figure 11(c), we show that the curves y(x) and
z(x) share the same wavelength and time period. We then plot the values of z and
h (cell off-axis distance) as a function of the axial position, x, during one period
in figure 11(d) to show that the wave frequency of h(x) is three times that of z(x).
Indeed, the trajectory projected in the plane perpendicular to the tube axis resembles
a regular triangle (∆1∆2∆3), with vertices corresponding to locations of maximum
off-axis distance where the cell bounces back inside the tube. In this particular case,
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FIGURE 11. (Colour online) Three-dimensional trajectory of the neutral squirmer in the tube.
The initial position and orientation are given by βI = 0.8, χI = 30◦, ξI = 0◦: (a) trajectory in
perspective view; the empty circle and solid triangle indicate the start and end of one periodic
orbit; (b) trajectory in the y–z plane (axes shown in figure 11a); (c) trajectories in the x–y
(dashed) and x–z (dot-dashed) planes; (d) relation between the wavelike motion developed in
the axial and azimuthal direction.

the cell bounces off the wall three times during one orbit with an angle ψ = 60◦.
A variety of other wave patterns can be observed for different initial cell positions
and yaw angels (βI, χI). We display two of them in figure 12 in the y–z plane, with
(βI, χI) = (60, 30◦) (figure 12a) and (60, 20◦) (figure 12b). The swimmer on the left
approaches the wall 21 times during one periodic orbit with ψ = 42.86◦, whereas the
example on the right displays a five-fold helix with ψ = 36◦.

Finally in figure 13 we show the variation of the averaged swimming speed (a) and
power consumption (b) with the initial cell position (βI) and orientation (χI), where
both the speed and power are non-dimensionalized by their corresponding values in
free space. The time-averaged swimming speed along the axial direction, Ūx, and
along the trajectory, Ū, decrease clearly with χI but slowly with βI . Larger values of
χI and βI result in larger maximum off-axis distance, leading to higher hydrodynamic
resistance from the boundaries and thus hindering locomotion. We also observe that
Ūx decreases with χI more rapidly than Ū. As χI increases, the swimmer trajectory
becomes more coiled, which significantly decreases the swimming velocity in the axial
direction. We also note that the power consumption, P̄ , increases with the initial
orientation, χI , but does not change significantly with βI .

4.4. The trajectory of a puller inside the tube
In this section, we study the trajectories of a puller swimmer (α > 0) in the tube.
We first consider the case where the motion is restricted to the x–z plane, as
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FIGURE 12. (Colour online) Periodic orbits of the neutral squirmer in the transverse
plane for two different initial positions and orientations: (a) (βI, χI) = (0.6, 30◦);
(b) (βI, χI)= (0.6, 20◦).
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FIGURE 13. (Colour online) Non-dimensional time-averaged swimming speed and power
consumption of squirmers with different initial position (βI) and orientation (χI) with three-
dimensional kinematics.

in § 4.2. In figure 14 we show the two-dimensional trajectories of pullers having
dipole parameters of α = 3 (a) and α = 5 (b), for different initial positions, βI , and
orientations, ξI . In both cases, the swimmers initially follow wavelike trajectories with
decreasing magnitude, and eventually settle along straight trajectories, displaying thus
passive asymptotic stability (Yizhar & Richard 2009). The puller with α = 3 ends
up swimming along the tube axis, with (rCYL, ξCYL) = (0, 0) as its equilibrium point
(cylindrical coordinates are used here, and rCYL and ξCYL denote the off-axis distance
and orientation of the cell, respectively). In contrast, the puller with α = 5 swims
parallel to the axis near the top or bottom wall depending on its initial position
and orientation, thus its equilibrium point corresponds to swimming along an off-axis
straight line. In that case, even though the trajectory is parallel to the tube axis,
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FIGURE 14. (Colour online) Two-dimensional trajectories, z(x), of pullers in a tube: (a)
α = 3; (b) α = 5. Different combinations of the initial position (βI) and pitching angle (ξI) are
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FIGURE 15. (Colour online) Equilibrium points, {rCYL, ξCYL}, of the puller in the tube as a
function of the dipole strength, α, and for a confinement a/R = 0.3. Dashed lines (α < 3.86;
shown in blue online) show the equilibrium point at (0, 0), corresponding to swimming in the
centre of the tube and along its axis. For α > 3.86, the combination {rCYL, ξCYL} characterizes
the equilibrium state for swimming along a straight line with off-axis distance rCYL and
orientation towards the wall ξCYL .

the swimmer remains slightly inclined towards the wall to offset the hydrodynamic
repulsion from the wall.

We further examine the coordinates of equilibrium points (rCYL, ξCYL) as a function
of the dipole strength, α, in figure 15. For α below a critical value, αc ≈ 3.86 for
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FIGURE 16. (Colour online) Critical value of the dipole parameter, αc, for stable swimming
of the puller in the tube centre as a function of the confinement, a/R. The approximate values
of αc are denoted by the square symbols and the upper (respectively, lower) limit of the
error bar corresponds to the asymptotically stable swimming motion away from the centre
(respectively, along the tube axis).

the confinement chosen here (a/R = 0.3), the equilibrium point is (rCYL, ξCYL) = (0, 0)
denoted by the dashed line (shown in blue online). For α > 3.86, the equilibrium
point corresponds to swimming stably along a straight line with off-axis distance
rCYL and orientation ξCYL , both of which grow with increasing α. The relationship
between confinement, a/R, and the critical value, αc, is examined in figure 16.
Determining precisely the value of αc is not possible due to the large computational
cost so we report approximate values, with an upper (respectively, lower) limit of the
error bar corresponding to the asymptotically stable swimming motion near the wall
(respectively, along the tube axis). The critical dipolar strength first increases with the
confinement, reaching its maximum as a/R≈ 0.3, before decreasing.

By starting with different combinations of α, βI and χI , we obtain different three-
dimensional trajectories for the puller. Some of these trajectories are illustrated in
figure 17. Results similar to the two-dimensional simulations are obtained. For α
below a critical value, pullers eventually swim along the tube axis indicating the
equilibrium point (rCYL, ξCYL) = (0, 0). For larger values of α, the equilibrium point
corresponds to swimming motion with constant off-axis distance and orientation.
Hydrodynamic interactions between the swimmer and the tube alone are responsible
for such a passive stability, which could be of importance to guarantee, for example,
robust steering of artificial microswimmers in capillary tubes without on-board sensing
and control (Yizhar & Richard 2009).

We conclude this section by investigating in figure 18 the swimming speed of
the puller along the stable trajectory and the dependency of its magnitude on the
dipole strength, α. In the case of confinement a/R = 0.3, the swimming speed Ux

is larger than that in free space as α is above a critical value (around 4 here) and
it increases by ∼16 % as α = 5. This is an example of swimming microorganisms
taking propulsive advantage from near-wall hydrodynamics, as discussed in previous
analytical studies (Katz 1974; Felderhof 2009, 2010). In our case, as the squirmer
is oriented into the wall, the direction of the wall-induced hydrodynamic force, FR,
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FIGURE 17. (Colour online) Three-dimensional trajectories of pullers in the tube with
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and power consumption, P (upper triangles, shown in green online), of the puller as a
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FIGURE 19. (Colour online) The orientation, ê, of a puller swimming (arrow shown in red
online) on the stable trajectory near the tube wall. Curved arrows (shown in green online)
denote the flow imposed at the surface of the swimmer, black (FP

N) and grey (FP
F) dashed

arrows for the hydrodynamic force, while FR is the repulsive force.
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FIGURE 20. (Colour online) Two-dimensional trajectories of pushers for different
combinations of α, βI and ξI . The black circles indicate the moment the swimmers make
contact with the wall.

resulting from flow being ejected on the side of the puller, is not normal to the wall
but possesses a component in the swimming direction, as shown in figure 19. This
force contributes thus to an additional propulsion and increases the swimming speed.

4.5. The trajectory of a pusher inside the tube
We next address the spherical pusher squirmer, with a negative force dipole, α. We
find that the motion of the pushers inside the tube is unstable. The trajectories
of pushers confined in the x–z plane (χI = 0) are plotted in figure 20 for
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FIGURE 21. (Colour online) Swimming velocity in the axial direction, Ux, and rotational
velocity, Ωy, of the squirmer with normal surface deformation with modes An = −δn1; Ux is
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SN . The squirmer is located at (0, 0,−β(R−a))
and oriented parallel to the axis. Different values of a/R are reported with maximum value of
β = 0.99.

different combinations of dipole strength, initial position, and initial orientation. The
pushers always execute wavelike motions with decreasing wavelengths and increasing
amplitude, eventually crashing into the walls. Pushers and pullers display therefore
very different swimming behaviours, a difference which stems from the opposite
front–back asymmetry of the force dipole.

4.6. Squirmers with normal surface velocity
For the sake of completeness, we investigate in this section the dynamics of squirmers
in the tube in the case where the squirming motion is induced by normal (instead of
tangential) surface velocity, modelled as

uSN(r)=
∑
n=0

2
n(n+ 1)

AnPn

(
ê · r

r

)
, (4.1)

where An is the nth mode of the normal squirming velocity (Blake 1971). In free
space, the swimming velocity is UF

SN = −A1/3 (Blake 1971). For simplicity, we only
consider the instantaneous kinematics of a squirmer with A1 = −1 and An6=1 = 0,
corresponding thus to UF

SN = 1/3. The swimmer is located at (0, 0,−β(R − a)), and
is oriented in the positive x direction. We plot the axial velocity component, Ux,
(scaled by UF

SN) together with the rotational velocity, Ωy, in figure 21. Both Ux and
Ωy are seen to increase monotonically with the confinement and eccentricity. This
is in agreement with past mathematical analysis stating that microorganisms utilizing
transverse surface displacement speed up when swimming near walls (Katz 1974),
between two walls (Felderhof 2009) or inside a tube (Felderhof 2010).

This increase (respectively, decrease) of swimming speed in the tube of a squirmer
with normal (respectively, tangential) surface deformation can be related to the
problem of microscale locomotion in polymeric solutions. It is well known that
actuated biological flagella generate drag-based thrust due to larger resistance to
normal than to tangential motion (Lauga & Powers 2009). When swimming in
polymer solutions, flagella undergoing motion normal to its shape push directly
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FIGURE 22. (Colour online) Three-dimensional swimming of the neutral squirmer inside a
torus-like curved tube. The dashed line indicates the circular axis of the torus with its radius,
RB = 20a, σ is the azimuthal position of the squirmer, R(σ ) is the distance between the
squirmer and the centre of the baseline circle. The wavelike motions for R(σ ) − RB and y(σ )
are shown on the right.

onto the neighbouring polymer network, whereas tangential motion barely perturb
these micro-obstacles (Berg & Turner 1979; Magariyama & Kudo 2002; Nakamura
et al. 2006; Leshansky 2009). In this case, the drag force increases more in the
normal direction than in the tangential, resulting in larger swimming speeds (Berg
& Turner 1979; Magariyama & Kudo 2002; Nakamura et al. 2006; Leshansky 2009;
Liu et al. 2011). Likewise, it was shown for a spherical squirmer that polymeric
structures in the fluid always decrease the swimming speed in case of tangential
surface deformation (Leshansky 2009; Zhu et al. 2011, 2012) but increase for normal
deformation (Leshansky 2009). The increase of swimming speed observed here in the
case of a squirmer with normal surface deformation can similarly be attributed to the
flow directly onto the tube wall.

The value of rotational velocity, Ωy, shown in figure 21 shows however that the
squirmer rotates into the nearest wall, thus getting eventually trapped there. In order
to avoid being trapped while at the same time taking advantage of the wall-induced
enhanced propulsion, ideally swimmers should thus use a combination of tangential
and normal deformation.

Interestingly, a superposition of the neutral squirming mode (Bn = δn1, see § 2) with
the first normal squirming mode (An = −δn1) results in a special swimmer able to
move without creating any disturbance in the surrounding fluid, characterized by a
uniform squirming velocity of −1 everywhere on the body (in the comoving frame),
no body rotation, and a swimming speed equal to 1. This remains true regardless of
the degree of confinement as confirmed by our numerical simulations.

5. Swimming inside a curved tube
In this final section, we investigate the squirmer motion inside a curved tube that is

a part of a torus. The axis of the torus is a circle on the plane y = 0 with its radius
RB = 20a. Trajectories of a neutral squirmer and a puller with the dipole strength α = 1
are shown in figures 22 and 23, respectively. In both cases, the trajectory is displayed
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FIGURE 23. (Colour online) Same as in figure 22 but for a puller with α = 1.

in both the x–z and y–z planes. The motion in the radial direction, represented by
R(σ )− RB, is plotted as a function of the azimuthal position of the swimmer, σ , where
R(σ ) is the distance between the cell and the centre of the circle. In both cases, the
dynamics of swimmers initially starting aligned with the tube axis is wavelike. For the
neutral squirmer, the wavelength and wave magnitude approach a constant value σ > π
(figure 22, right), indicating marginal stability of the motion. In contrast, for the puller,
decaying waves are observed (figure 23, right), indicating passive asymptotic stability.
As in the straight-tube case, pushers are unstable and crash into walls in finite time.

6. Conclusion and outlook
In this paper, a BEM code was developed, validated and used to present

computations for the locomotion of model ciliates inside straight and curved capillary
tubes. We used the spherical squirmer as our model microorganism and studied the
effect of confinement on the kinematics, energetics and trajectories of the cell. We
also investigated the stability of the swimming motion of squirmers with different gaits
(neutral, pusher and puller).

We found that tube confinement and near-wall swimming always decrease the
swimming speed of a squirmer with tangential surface deformation for swimming
parallel to the tube axis. In contrast, a swimmer with normal surface deformation
improves its swimming speed by directly pushing against the surrounding tube wall.
In both cases, however, tube confinement and near-wall swimming always lead to
additional viscous dissipation, thus increasing the power consumption.

Focusing on swimming with tangential forcing, we then studied in detail the
dynamics of neutral, puller and pusher squirmers inside a straight tube. For a neutral
squirmer, swimming motion on the tube axis is marginally stable and generically
displays three-dimensional helical trajectories as previously observed experimentally
for Paramecium cells. Importantly, these helical trajectories arise purely from
hydrodynamic interactions with the boundaries of the tube.

In the case of puller swimmers, their trajectories are wavelike with decreasing
amplitude and increasing wavelength, eventually leading to stable swimming parallel
with the tube axis with their bodies slightly oriented toward the nearest wall. The
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locations for these stable trajectories depend on the strength of the force dipole, α.
Swimmers with weak dipoles (small α) swim in the centre of the tube while those
with strong dipoles (large α) swim near the walls. The stable orientation of the
swimmers makes a non-zero contribution of the wall-induced hydrodynamic forces
in the direction of locomotion, thus leading to an increase of the swimming speed
(although accompanied by an increase of the rate of viscous dissipation). In contrast,
pushers are always unstable and crash into the walls of the tube in finite time. Similar
results are observed for locomotion inside a curved tube.

We envision that our study and general methodology could be useful in two
specific cases. First, our results could help shed light on and guide the future
design and maneuverability of artificial small-scale swimmers inside small tubes and
conduits. Second, the computational method could be extended to more complex, and
biologically relevant, geometries, to study for example the locomotion of flagellated
bacteria or algae into confined geometries, as well as their hydrodynamic interactions
with relevant background flows. It would be also interesting to relax some of our
assumptions in future work, and address the role of swimmer geometry on their
stability (we only considered the case of spherical swimmers in our paper) and
quantify the role of noise and fluctuations on the asymptotic dynamics obtained here.
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