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We consider pressure-driven flows of electrolyte solutions in small channels or capillaries in which
tracer particles are used to probe velocity profiles. Under the assumption that the double layer is thin
compared to the channel dimensions, we show that the flow-induced streaming electric field can create
an apparent slip velocity for the motion of the particles, even if the flow velocity still satisfies the no-slip
boundary condition. In this case, tracking of the particles would lead to the wrong conclusion that the
no-slip boundary condition is violated. We evaluate the apparent slip length, compare it with experiments,
and discuss the implications of these results.

1. Introduction

The no-slip boundary condition of fluid mechanics states
that the velocity of a viscous flow vanishes near a
stationary solid surface.1 Although it has been a crucial
ingredient of our understanding of fluid mechanics for
more than a century, it has been much debated in the
past,2 and in the case of liquids, a complete physical picture
for its origin has yet to be given. The ongoing debate stems
from the fact that it is an assumption which cannot be
derived from first principles. It has been shown that, on
length scales much larger than the scale of surface
heterogeneities, the no-slip condition might be a macro-
scopic consequence of inevitable microscopic roughness,3,4

but the case of perfectly smooth surfaces has yet to be
explained. In particular, the physicochemical properties
of both the fluid and the solid surfaces certainly are
important.

Only a few experimental studies have addressed the
no-slip condition in the past,5,6 and it is only the recent
advances in the controlled fabrication of micro- and
nanodevices and in the corresponding measurement
techniques that have allowed the problem to be recon-
sidered. Over the past few years, a number of pressure-
driven flow,7-11 shear-flow,12 and squeeze-flow experi-
ments13-19 showing a response interpretable as some

degree of slip for partially wetting liquids have been
reported. Molecular dynamics simulations of Lennard-
Jones liquids have also shown that slip can occur,20,21 but
these simulations can only probe unrealistically high shear
rates.

Fluid slip is usually quantified by a slip length, λ. Let
us consider for simplicity a unidirectional flow past a solid
surface. Following Navier,22 the slip length linearly relates
the surface slip velocity to the shear rate of the fluid
evaluated at the surface

The slip length can also be interpreted as the fictitious
distance below the surface at which the velocity would be
equal to zero if extrapolated linearly: the no-slip boundary
condition is equivalent to λ ) 0, and the no-shear boundary
condition is equivalent to λ ) ∞.

Consider pressure-driven flow in a two-dimensional
channel of height 2h. If we assume that the boundary
condition on the channel walls (z ) (h) is given by eq 1,
the axial velocity profile in the channel is

which is a Poiseuille flow augmented by a finite plug
velocity, whose augmented flow rate, Qslip, is given in a
nondimensional form by

Experimentalists have usually addressed the issue of
fluid slip in two distinct ways. The first consists of
performing indirect measurements, such as pressure drop
versus flow rate or squeezing rate versus resistance, and
then using such measurements to infer a slip length. This
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Vinogradova, O. I. Phys. Rev. E 2003, 67, 056313.
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procedure is indirect in the sense that it assumes that the
flow resembles eq 2 and then eq 3, or an equivalent, is
used to determine λ.7,8,10,13-19

The second way consists of performing direct velocity
measurements in the fluid. Equation 2 shows that the
influence of the slip boundary condition (eq 1) leads to a
bulk effect (plug flow). Consequently, it is not necessary
to directly measure the flow near the boundary; instead,
one can use bulk measurements, verify that the flow is
parabolic, and extrapolate to the boundary to obtain the
correct slip condition.

We are only aware of three such previous works. Pit et
al.12 measured velocities in shear flow of hexadecane over
a smooth surface using a technique based on fluorescence
recovery after photobleaching (see also ref 23). The
measurements were performed down to 80 nm from the
solid surface and averaged over a few tens of micrometers.
Fluid slip was observed with λ ∼ 100 nm in the case of
lyophobic surfaces.

Tretheway and Meinhart9 used particle image veloci-
metry (PIV) techniques to measure the velocities of tracer
nanoparticles (radius, 150 nm) in the pressure-driven
channel flow of deionized water. Measurements were made
down to 450 nm from the solid surface and were cross-
correlated to increase the signal-to-noise ratios. Results
consistent with the no-slip condition were obtained in
completely wetting conditions, but slip with λ ∼ 1 µm was
obtained when the channel walls were treated to be
hydrophobic.

Finally, Lumma et al.11 used spatial cross-correlation
of the fluorescence response from labeled tracer nano-
particles (radius, 20 nm) to estimate the slip length in the
pressure-driven flow of water. Although the surfaces used
were nearly completely wetted by the solutions (contact
angles close to zero), apparent slip lengths on the order
of λ ∼ 200 nm-1 µm were measured and were found to
decrease with increasing salt concentration.

In this paper, we wish to draw attention to some of the
possible consequences of particle-based measurements.9,11

We address theoretically a prototypical pressure-driven
flow experiment in small channels in the case where small
tracer particles are used to probe the fluid velocity. We
show that, if electrical effects for both the channel and the
particles are properly taken into account, it is possible for
the particles to behave as if they were advected by a flow
with a finite nonzero slip length, even if the velocity profile
in the fluid surrounding the particle does not violate the
no-slip condition.

In the following section, we summarize some important
background electrostatic and hydrodynamic results, derive
the formulas in the case of two-dimensional channels, and
introduce the electroviscous effect. In section 3, we present
a physical picture for the effect we report, derive the
expressions for the apparent slip lengths, and give the
conditions for the occurrence of such slip. Finally, in section
4, we discuss implications of these results along with
estimates of their order of magnitude under typical
experimental conditions and compare them with experi-
ments.

2. Flow of an Electrolyte Solution
The physical picture for the effect we wish to introduce

relies on the following known facts.
2.1. Surface Charge and Electrostatics. A solid

surface in contact with an electrolyte solution will in
general acquire a net charge, due, for example, to the
ionization of surface groups, ion adsorption, and/or dis-

solution. This surface charge is a thermodynamic property
of the solid-electrolyte pair, and the reader is referred to
refs 24 and 30 for detailed presentations of the phenom-
enon. The equilibrium surface potential is called the zeta
potential, ú.

Such surface charges are screened by a diffusive cloud
of counterions in the solution. At equilibrium, the elec-
trostatic potential, ψ, in the electrolyte satisfies the
Poisson-Boltzmann equation, which quantifies the bal-
ance between purely electrostatic interactions and dif-
fusion24

where we consider here for simplification only the case of
1:1 monovalent ions, for example, Na+ and Cl- or OH-

and H+.
A convenient approximation usually made to solve eq

4 is the Debye-Hückel approximation24,26,28,29 of small
field strength, |eψ| , kBT, in which case the equation
simplifies to the linearized Poisson-Boltzmann equation

where κ-1 is the Debye screening length: it is the typical
length scale in the solution over which counterions screen
the charged solid surface and beyond which the net charge
density is essentially zero.

However, eq 5 is restricted to low surface potentials,
typically <25 mV, which is a severe approximation. Let
us consider for simplicity the case of a two-dimensional
channel of height 2h in the z-direction, and let us instead
derive the solution to eq 4 for any value of the zeta potential
at the wall, úw, but in the limit where the channel
dimensions are much larger than the double layers, κh .
1. This limit is appropriate for channel sizes down to h ≈
5 µm in the case of pure water, or even h ≈ 50 nm in the
case of tap water.

Let us define the dimensionless potential φ ) eψ/kBT
and the dimensionless vertical coordinate zj ) z/h. In this
case, eq 4 becomes

with the boundary conditions φ(zj ) (1) ) φw ) eúw/kBT.
Since 1/κh , 1, the solution to eq 6 involves boundary

layers near z ) (1. The outer solution, φout, is found by
taking the limit 1/κh ) 0 in eq 6, and we find φout ) 0. The
inner solution, φin, is valid near the boundaries for κh(1
- |zj|) ) O(1), in which eq 6 reduces to the Poisson-
Boltzmann equation near an infinite plane, whose solution
is28
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Finally, since φout ) 0, the inner solution (eq 7) is also
equal to the composite solution, φ(zj), uniformly valid
throughout the channel as κh f ∞, at leading order in
1/κh. For convenience, eq 7 can be rewritten as

where we have defined tw ) tanh(eúw/4kBT).
2.2. Hydrodynamics and Electrokinetics. When a

pressure-driven flow occurs in the channel, the fluid
velocity is unidirectional U ) U(z)ex, where ex is the
streamwise direction. In the absence of electrical effects,
the fluid velocity is simply Poiseuille’s pressure-driven
formula,1 which we will denote UPD, and is given by

Furthermore, if an external, or induced, electric field
ES ) ESex is also applied to the channel, the presence of
a net charge density near the solid surface moving in
response to the field leads to an additional velocity
component known as electroosmotic flow (EOF).24 It is
directed in the x-direction, is given by

and is valid for any value of úw.
2.3. Streaming Potential and Electroviscous Ef-

fect. As the electrolyte solution flows down a pressure
gradient, the cloud of counterions is advected by the flow
and a streaming current is established. If no short-circuit
is present between the two ends of the capillary (open
systems), accumulation of charge sets up a potential
difference along the channel, termed the “streaming
potential”. Such a potential, or, equivalently, an electric
field, opposes the mechanical transfer of charge by creating
a reverse conduction current through the bulk solution
such that the total net electric current is zero. This induced
axial electric fieldscales with theappliedpressuregradient
and leads to the creation of an induced electroosmotic
back-flow which effectively slows down the fluid motion
in the capillary: a smaller flow rate for a given pressure
drop is obtained compared to the case of the regular
Poiseuille flow rate, as if the liquid had a higher shear
viscosity thanexpected.Consequently, this effect isusually
referred to as the primary electroviscous effect.25-29

Let us consider the pressure-driven flow in a channel
of height 2h and width w . h of the electrolyte solution
with the electrostatic potential given by eq 7. We calculate
below the value of the steady-state streaming electric field,
ESex, induced by the flow.

Pressure-Driven Current. First, the pressure-driven
motion of the screening cloud of counterions near the
charged surface leads to an advection-of-charge electric
current, IS

PD, given by

where we have used the electrostatic equation to relate
the net charge density in the liquid to the electrostatic

potential, Fe ) -εε0∇2ψ, and where I1 is given by

with the same dimensionless notations as in section 2.1.
In the limit where κh . 1, plugging in the solution of eq
7 into eq 12 leads to

so that

Electroosmotic Current. If an electric field is induced by
the flow, the streaming current has a second component,
IS

EOF, given by the advection of counterions by the induced
electroosmotic flow

where I2 is given by

In the limit where κh . 1, the boundary layer solution of
eq 7 leads to the leading-order expression for I2 in powers
of 1/κh

so that

Conduction Current. Finally, in response to the electric
field, a conduction current, IC, is set up in the bulk of the
solution; if we denote by σ the ionic conductivity of the
electrolyte (assumed to be constant), the conduction
current is given by

Induced Electric Field. If we investigate the steady-
state motion of the electrolyte solution, we require that
there be no net electric current

which leads to the formula for the flow-induced streaming
electric field

As expected, the induced field, ES, is proportional to the
applied pressure gradient.

tanh(φin(zj)
4 ) ) tanh(φw

4 )e-κh(1-|zj|) (7)

φ(zj) ) 2 ln(1 + twe-κh(1-|zj|)
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2µ
dp
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µ
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The effect of the streaming electric field on the properties
of the flow (the “electroviscous” effect) can be understood
by evaluating the total flow rate from both eqs 9 and 10
and, with eq 21, rewriting it under the form of an effective
Poiseuille flow rate with a different effective shear
viscosity, µeff.28 We find that µ < µeff so that, from the
standpoint of flow rate versus pressure drop, the electrical
effect effectively increases thebulk viscosityof thesolution.

Note that, within the Debye-Hückel approximation (eq
5), the induced electric field can be calculated exactly for
all values of κh24,26,28,29 and we find

In the limits where e|úw|/kBT , 1 (i.e., tw , 1) and κh .
1, the expressions given by eqs 21 and 22 agree and are
given by

3. Velocity of a Suspended Particle and Apparent
Slip

3.1. Physical Picture. We now consider an experiment
in which the above electric effects are present. We elect
to use small tracer particles to probe the velocity profile,
including possible fluid slip, as illustrated in Figure 1.
For the same reason as for the capillary surfaces, these
particles will usually be charged in solution. As they are
advected by the fluid motion, they will also feel the
influence of the induced streaming electric field: conse-
quently, their velocity will not only reproduce that of the
fluid but will also include an induced electrophoretic
component,24 proportional to their zeta potential and the
streaming electric field. If the zeta potential of a particle
has a sign opposite to that of the capillary surface, the
particle will be slowed by the electric field. On the contrary,
if the particle possesses a potential of the same sign as the
capillary surface, its electrophoretic component will be in
the streamwise direction; furthermore, if its zeta potential
is large enough, the electrophoretic velocity of the particle
will be able to overcome the induced electroosmotic back-
flow.

It then follows that there is a significant potential
implication of the induced electric field: if one were to
conduct an experiment in such conditions without con-
sidering any important electrical effects, these particles
would go faster than the expected Poiseuille pressure-
driven profile, leading to the incorrect conclusion that the
velocity profile has a nonzero slip velocity at the wall.
Thus, even if the flow satisfies the no-slip condition,
measurements of particle velocities would lead to nonzero
apparent slip lengths. We shall quantify this mechanism
in the following.

3.2. Particle Velocity. We consider the presence of a
single solid spherical particle of radius a , h suspended
in a two-dimensional channel of height 2h where a
pressure-driven flow occurs, as illustrated in Figure 1;
the particle is located at a distance of d ) h - |z| from the
closest wall. We also assume for simplicity that the
presence of the particle does not modify the nature of the
ionic groups in solution (1:1 monovalent ions), so that the
screening lengths, κ-1 values, for the charged particle and
the charged channel surface are the same, as given by eq
5.

The particle velocity, Up(z), will in general be

which includes three contributions.
Hydrodynamic Contribution. The first component is the

hydrodynamic contribution

where UPD is the local pressure-driven fluid velocity. It is
modified by the presence of solid walls which slow the
motion of the suspended particle. Although the analysis
is in general difficult,31 walls lead to a leading-order
correction to the particle velocity of the order of the ratio
of the particle size to the distance to the walls, O(a/d); this
is true as long as the particle does not come too close to
the wall, in which case a different contribution arises from
lubrication forces. We will assume in this paper that the
particle is located sufficiently far from the walls (a , d
) h - |z|) so that the influence of the walls can be neglected.
Such a requirement would also have to be verified in an
experiment; otherwise the presence of the wall would
hinder some component of the measured slip velocity. Note
that, if walls were not present, a correction to the velocity
accounting for the finite size of the particle and the spatial
variations of the fluid velocity would also be present, but
only at second order in the ratio of the particle size to the
length scale over which flow variations occur.32

Electrical Contribution. In general, the particle will be
charged, with a zeta potential, úp, which we assume to be
uniform. Consequently, its velocity will include a contri-
bution from electrical forces, Uelec(z). This velocity has
two components

where UEPH is an electrophoretic velocity due to the
presence of an external electric field and Udrift(z) is a
vertical drift due to the electrostatic interactions between

(31) Happel, J. R.; Brenner, H. Low Reynolds Number Hydrodynam-
ics; Prentice Hall: Englewood Cliffs, NJ, 1965.

(32) Hinch, E. J. Hydrodynamics at low Reynolds numbers: a brief
and elementary introduction. In Disorder and mixing; Guyon, E., Nadal,
J.-P., Pomeau, Y., Eds.; Kluwer Academic: Dordrecht, The Netherlands,
1988; Vol. 152, pp 43-55.

Figure 1. Schematic representation of the flow between two
parallel plates with charged surfaces (zeta potential úw) and a
charged suspended particle (zeta potential úp). In the case
illustrated, úw < 0 and úp < 0. The channel height is 2h, the
particle radius is a, the smallest wall-particle distance is d,
and the screening length is κ-1.

ES )

dp
dx (tanh κh

κh
- 1)[ σµ

εε0úw
+

εε0úwκ

4h (sinh 2κh - 2κh
(cosh κh)2 )]-1

(22)

ES ) - dp
dx (εε0úw

σµ )[1 +
(εε0úw)2

κ

2σµh ]-1
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Uelec(z) ) UEPH + Udrift(z)ez (26)
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the charged particle and the charged walls. Such drift
will only be significant if the double layers around the
particle and along the channel walls overlap and will be
exponentially screened otherwise.24 We will assume that
such a requirement is met in practice, κd J O(1), so that
it can be neglected.

When the electric field ES ) ESex is aligned with the
channel direction, the electrophoretic velocity UEPH )
UEPHex is given by

This velocity first includes the “pure” electrophoretic
mobility of the particle,24,28,33 characterized by the function
f(x), which satisfies f(0) ) 2/3 (Hückel’s result for a thick
screening length), and f(∞) ) 1 (Smoluchowski’s result for
a thin screening length). Note that we can use these
classical electrophoretic formulas because, since κh . 1,
the perturbation of the ion distribution in the double layer
around the particle is not modified by the local shear flow.
The velocity (eq 27) also includes the electroosmotic back-
flow resulting from the motion of excess charges near the
channel walls and proportional to the wall zeta potential,
úw. Furthermore, the presence of a wall always influences
the electrophoretic mobility at cubic order in the ratio of
the particle size to the distance to the wall, as long as
double layers do not overlap;35,36 since we already assumed
the particle to be located far from the wall, we will neglect
the wall influence here as well.

Thermal Contribution. Finally, the particle velocity has
a random contribution, UkBT, due to thermal motion, which
can be significant. A solid spherical particle of radius a,
located far from boundaries, has a diffusivity, D, given by
the Stokes-Einstein relation24 D ) kBT/6πµa, corre-
sponding to a root-mean-square velocity on the order of
UkBT ∼ D/a ∼ kBT/6πµa2. At 25 °C in water, a ) 10 nm
leads to UkBT ∼ 1 mm/s; this value is of the same order as
the fluid velocity in a circular capillary of radius R ∼ 100
µm and flow rate Q ∼ 1 µL/min, typical values for
microfluidic devices. Consequently, we cannot assume that
the Peclet number, Pe ) U/UkBT ) Ua/D, is necessarily
large and thermal motion cannot in general be neglected.
However, in the experiments reported to date, velocity
measurementsarecross-correlated9,11 oraveraged12 so that
the random thermal motion disappears, and we will
therefore not consider it in this paper.

Summary. Under the previous assumptions, we can
write the velocity for the particle as

where the velocity should be understood as an ensemble
average over different experimental realizations.

3.3. Apparent Slip Length. We now calculate the
apparent slip length, λ, that would be inferred by tracking
particle motion in a pressure-driven flow. In the limit κh
. 1, the streaming electric field is given by eq 21 so that
the particle velocity (eq 28) becomes, at leading order in
a/d and 1/κh,

Comparing eq 29 with the formula for the velocity in a
flow satisfying the partial slip boundary condition (eq 2),
we see that the particle behaves as if it was passively
advected by a pressure-driven flow with a finite slip length,
λ, given by

The condition for a positive apparent slip, λ > 0, is therefore

This result can also be understood in the following way:
(1) the particle and the wall must have the same charge
sign, úwúp > 0; this is usually the case in water where
surfaces typically acquire negative charge, for example,
due to the ionization of sulfate or carboxylic surface groups;
(2) the particle zeta potential must be sufficiently large,
|úp| > |úw|/f(κa) (or, equivalently, the wall zeta potential
must be sufficiently small). If condition 31 is not met, the
slip length is in fact a “stick” length (λ < 0) and the particle
goes slower than the liquid. Finally, note that, within the
Debye-Hückel limit tw , 1, the slip length (eq 30) becomes

4. Discussion
The results presented in the previous section allow one

to calculate, for a given set of experimentally determined
material and fluid parameters, the amount of apparent
slip in the particle velocity which is due to the streaming
potential. We present in this section some general
observations on eq 30 as well as an estimate for the order
of magnitude of the effect in water and a comparison with
available experimental slip measurements.

4.1. Variations of the Slip Length. All the variables
in eq 30 can be made to vary independently except for the
screening length, κ-1, and the bulk conductivity, σ, which
both depend on the ionic strength of the solution. A simple
estimate for the bulk conductivity of a 1:1 solution is σ )
2bn0e2 (see, e.g., ref 29), where n0 is the bulk ion
concentration and b is the ion mobility, which we ap-
proximate by the mobility of a spherical particle, b-1 ≈
6πµl, where l is the effective ion size. Using eq 5, we see
that the conductivity and the screening length are related
by

Furthermore, since the conductivity, σ, and the viscosity,
µ, only appear in eq 30 as their product, the estimate (eq
33) shows that the apparent slip length (eq 30) is in fact
independent of the fluid viscosity. Moreover, since κ ∼ n0

1/2

and σ ∼ n0 and since f(κa) varies only weakly with κ, we
see from eq 30 that λ is a decreasing function of the ionic

(33) Saville, D. A. Annu. Rev. Mech. 1977, 9, 321.
(34) Keh, H. J.; Anderson, J. L. J. Fluid Mech. 1985, 153, 417.
(35) Ennis, J.; Anderson, J. L. J. Colloid Interface Sci. 1997, 185,

497.
(36) Yariv, E.; Brenner, H. J. Fluid Mech. 2003, 484, 85.
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strength, similarly to what was observed by Lumma et
al.11 Also, it is clear from eq 30 that the slip length is a
decreasing function of the channel size.

Finally,wenote theapparentslip length (eq30)vanishes
for two values of the wall zeta potential: úw ) 0 and úw
) úp/f(κa). Consequently, between these two values, the
slip length reaches a maximum value, λ*, when the wall
zeta potential is equal to úw ) úm

/ , that is, dλ/dúw(úm
/ ) ) 0.

This is illustrated in Figure 2 (left).
4.2. Order of Magnitude for Water. Let us address

here the case of water at room temperature (T ) 300 °C,
ε ) 80, l ≈ 2 Å). We have calculated numerically the
maximum apparent slip lengths which could be obtained
in an experiment, λ* values, as a function of the particle
zeta potential, úp. The results are displayed in Figure 2
(right). We first note that λ* increases with |úp|. Further-
more, the maximum slip length can take values as low as
molecular sizes or below and, in the case of pure water,
can be as high as hundreds of nanometers.

The data for the low values of |úp| display a power-law
behavior, which we can analyze as follows. Let us consider
eq 30. The two terms in the denominator will be of the
same order of magnitude if tw is larger than the critical
value t̃w which is given by

where we have used eq 33 to relate the conductivity to the
screening length. The smallest value of eq 34 will be
obtained, say, for κh ≈ 10, in which case we get t̃w ≈ 0.86
which corresponds to a critical wall zeta potential ú̃w ≈
135 mV. Consequently, when úw j ú̃w, eq 30 can be
simplified to

for which it is easy to get

The exponent 2 given by eq 36 agrees well with the power-
law data presented in Figure 2 (right).

4.3. Comparison with Experiments. Order of Mag-
nitude. Two comparisons with experimental results can
now be given. First, we wish to comment on the general
order of magnitude of the slip lengths obtained. For a
review of the pressure-driven flow experiments in capil-
laries which report some degree of slip, as summarized in
the Introduction, the reader is referred to ref 37.

The order of magnitude for the maximum slip lengths
given by our mechanism (up to hundreds of nanometers)
is consistent with the slip lengths measured in indirect
pressure-driven slip experiments.6,8,10 Of course, the effect
we report here does not directly apply to their pressure
drop versus flow rate measurements, but the comparison
shows that both effects are comparable in magnitude and
therefore the apparent slip mechanism could have im-
portant consequences on experimental probing of the no-
slip boundary condition.

Comparison with the Experiments of Tretheway and
Meinhart (2002).9 The channels used in this experiment
have a height of 2h ) 30 µm and a width of 2w ) 300 µm;
the separation of scale w . h allows us to approximate
the flow by that between two parallel plates with h ) 15
µm. Details of the electrical characteristics of the water
used in the experiment were not reported, but the water
was deionized; we will therefore assume that the ion
concentration was small and will take it to be that of pure
water, n0 ≈ 10-6 mol L-1, for which κ-1 ≈ 300 nm, so that
κh ≈ 50. Particles with a radius of a ) 150 nm were used
in the PIV system, so that κa ≈ 1/2, for which we will
approximate f(κa) ≈ 2/3. If we assume |úp| ) 10 mV, we
obtain that λ* is essentially zero. If however |úp| ) 50 mV,
we get λ* ≈ 1 nm, and |úp| ) 200 mV leads to λ* ≈ 18 nm.
Although beyond molecular size, these values are much
too small to explain the experimental data where λ ≈ 1
µm.9 Alternative mechanisms would have to be invoked
to explain the data, such as the presence of surface
attached bubbles.37

Comparison with the Experiments of Lumma et al.
(2003).11 We first note that Lumma et al. (2003)11 measured
slip lengths which decrease with increasing ionic strength,

(37) Lauga, E.; Stone, H. A. J. Fluid Mech. 2003, 489, 55.

Figure 2. Left: variation of the apparent slip length λ (eq 30) for pure water as a function of the wall zeta potential, úw, for úp

) 50 mV, n0 ) 10-6 mol L-1, κh ) 10, and κa , 1. The slip length reaches a maximum λ* value for úw ) úw
/ . Right: maximum value

of the apparent slip length λ* as a function of the particle zeta potential, úp, for κh ) 10, κa , 1, and three values of the ionic strength:
n0 ) 10-6 mol L-1 (pure water, κ-1 ≈ 300 nm, solid line), n0 ) 10-4 mol L-1 (κ-1 ≈ 30 nm, dashed line), n0 ) 10-2 mol L-1 (tap water,
κ-1 ≈ 3 nm, dotted line).
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a feature which is predicted by our model (eq 30). The
channels used in the experiments have a height of 2h )
110 µm and a width of 2w > 1 mm, so here also we can
apply our two-dimensional model with h ) 55 µm.
Experiments were conducted with NaCl aqueous solutions
and deionized water.

In the case of NaCl aqueous solutions, the measure-
ments were reported for concentrations up to 1 mM (n0
) 10-3 mol L-1 or κ-1 ∼ 10 nm) for which the measured
slip lengths are λ ∼ 250 nm. For this salt concentration,
our model always predicts slip lengths which are sub-
molecular.

In the case of deionized water, slip lengths in the range
from 500 nm to 1 µm were obtained experimentally. The
water conductivity was low, σ < 0.1 µS/m, corresponding
theoretically to n0 < 1.2 × 10-8 mol L-1 or κ-1 > 2.5 µm.
Since a ) 20 nm , κ-1, we get f(κa) ) 2/3. Assuming |úp|
) 10 mV, our model leads to λ* ∼ 1 nm, but |úp| ) 100 mV
leads to λ* ∼ 100 nm and |úp| ) 300 mV gives λ* ∼ 775
nm. If the tracer nanoparticles are highly charged, our
model leads therefore to apparent slip lengths which are
in quantitative agreement with the experimental results
of Lumma et al.11 for deionized water.

5. Conclusion

We have reported in this paper the following new
mechanism. When small charged colloidal particles are
used in a pressure-driven flow experiment to probe the
profile of the velocity field of an electrolyte solution (e.g.,
PIV in water), their velocities may include an “apparent
slip” component even though the velocity field in the fluid
does not violate the no-slip boundary condition. This
apparent slip is in fact an electrophoretic velocity for the
particles which are subject to the streaming potential,
that is, the flow-induced potential difference that builds
up along the channel due to the advection of free screening
charges by the flow. A similar effect is expected to occur
in shear-driven flows.

The expected maximum orders of magnitude for the
apparent slip lengths were given under normal conditions
in water. We found that the model can lead to apparent
slip lengths of up to hundreds of nanometers. Although
the effect was found to be too small to explain some
experimental evidence of apparent slip for the flow of
deionized water9 and NaCl solutions,11 its magnitude is
consistent with other indirect investigations of fluid slip
in pressure-driven flow experiments as well as with other
direct measurements of large apparent slip lengths in the
flow of deionized water.11 As a consequence, the analysis
presented here is relevant to experimental situations.

The idea that free passive particles could go faster than
the surrounding flowing liquid, although counterintuitive
at first, is in fact not unnatural: a similar phenomenon
occurs in electrophoresis where, beyond the double layer,
the ambient liquid is at rest. We also note from eq 30 and
the scalings presented above that the effect increases when
the ionic strength of the solution, and therefore its
conductivity, decreases; this is because the flow of an
electrolyte with a low ion concentration will necessarily
lead to the induction of a large streaming electric field to
counteract the advection-of-charge electric current.

The model chosen for the calculations used several
simplifying assumptions. Our calculations were two-
dimensional, and we neglected in the model the effect of
surface conductance as well as interactions between
particles. We also assumed that the streaming electric
field was uniform on the length scale of the particle and
its double layer. We do not expect that relaxing these
assumptions would change qualitatively the physical
picture introduced in this paper.

Acknowledgment. We thank Shelley Anna, Lydéric
Bocquet, Michael Brenner, Henry Chen, Todd Squires,
Howard Stone, and Abraham Stroock for useful sugges-
tions and stimulating discussions. Funding by the Harvard
MRSEC is acknowledged.

LA049464R

8930 Langmuir, Vol. 20, No. 20, 2004 Lauga


