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Cilia and flagella are hair-like appendages that protrude from the surface of a variety of eukaryotic cells
and deform in a wavelike fashion to transport fluids and propel cells. Motivated by the ubiquity of non-
Newtonian fluids in biology, we address mathematically the role of shear-dependent viscosities on both
the waving flagellar locomotion and ciliary transport by metachronal waves. Using a two-dimensional
waving sheet as model for the kinematics of a flagellum or an array of cilia, and allowing for both normal
and tangential deformation of the sheet, we calculate the flow field induced by a small-amplitude defor-
mation of the sheet in a generalized Newtonian Carreau fluid up to order four in the dimensionless waving
amplitude. The net flow induced far from the sheet can be interpreted either as a net pumping flow or, in
the frame moving with the sheet, as a swimming velocity. At leading order (square in the waving ampli-
tude), the net flow induced by the waving sheet and the rate of viscous dissipation is the same as the New-
tonian case, but is different at the next nontrivial order (four in the waving amplitude). If the sheet deforms
both in the directions perpendicular and parallel to the wave progression, the shear-dependence of the vis-
cosity leads to a nonzero flow induced in the far field while if the sheet is inextensible, the non-Newtonian
influence is exactly zero. Shear-thinning and shear-thickening fluids are seen to always induce opposite
effects. When the fluid is shear-thinning, the rate of working of the sheet against the fluid is always smaller
than in the Newtonian fluid, and the largest gain is obtained for antiplectic metachronal waves. Consider-
ing a variety of deformation kinematics for the sheet, we further show that in all cases transport by the
sheet is more efficiency in a shear-thinning fluid, and in most cases the transport speed in the fluid is also
increased. Comparing the order of magnitude of the shear-thinning contributions with past work on elas-
tic effects as well as the magnitude of the Newtonian contributions, our theoretical results, which beyond
the Carreau model are valid for a wide class of generalized Newtonian fluids, suggest that the impact of
shear-dependent viscosities on transport could play a major biological role.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

The editors of the recently-created journal Cilia called their
inaugural article ‘‘Cilia – the prodigal organelle’’ [1]. This is perhaps
an appropriate denotation for a biological appendage found on the
surface of a variety of eukaryotic cells, with a fascinating and still
not fully understood relationship between internal structure and
biological function [2]. Cilia not only have the capacity to transport
surrounding fluids by means of periodic movements but they also
play important sensory roles [1,3]. Remarkably, their basic mor-
phology and internal structure (the so-called axoneme), which is
the same as in all eukaryotic flagella, has been conserved through-
out evolution [4].
The active dynamics of cilia plays a crucial role in a major aspect
of biology, namely fluid transport [4–6]. The motion of biological
fluids induced by the collective beating of an array of cilia is the
third major form of mechanical fluid transport done by the inner
organs of superior animals, ranking only behind blood pumping
and peristaltic motion. In humans, the flow produced by the defor-
mation of cilia is involved in the transport of several biological flu-
ids, including the removal of tracheobronchial mucus in the
respiratory track [4–6], the transport of ovulatory mucus and the
ovum in the oviduct of the female reproductive track [4,7], and
the motion of epididymal fluid in the efferent ducts of the male
reproductive track [8]. Failure of the transport functionality of cilia
can lead to serious illness of the respiratory system [4]. In addition,
it is believed that cilia found in specialized brain cells (ependymal
cilia) are involved in the transport of cerebrospinal fluid at small
scales [9]. When cilia are anchored on a free-swimming cell, such
as in many protozoa including the oft-studied Paramecium, their
collective deformation and active transport of the surrounding
fluid leads to locomotion of the cell, typically at very low Reynolds
number [5,10].
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Table 1
Beating parameters for metachronal waves of tracheobronchial cilia: cilia length (L),
beating frequency (f), distance between cilia (d), and metachronal wavelength (k).
These numbers are found in the references indicated in the last column.

Parameter Reference

Cilium length (L) 6 lm [31]
Beating frequency (f = x/2p) 20 Hz [9]
Distance between cilia (d) 0.4 lm [6]
Metachronal wavelength (k = 2p/k) 30 lm [31]
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The study of fluid transport by cilia, and more generally by
eukaryotic flagella, requires an understanding of their beating pat-
terns as well as the physical properties of the surrounding fluid.
Many biological fluids in the examples above display strong non-
Newtonian characteristics, including nonzero relaxation times
and shear-dependent viscosities [11]. Past work has addressed the-
oretically [12–18] and experimentally [19–21] the effect of fluid
viscoelasticity on transport and locomotion, but the impact of
shear-dependance material functions on the performance of cilia
and flagella has yet to be fully quantified [22].

In the present paper we mathematically address the role of
shear-dependent viscosity on the propulsion performance of a
two-dimensional undulating surface whose boundary conditions
model the beating strokes of a cilia array or of a waving flagellum.
The calculation is an extension of the classical results by Taylor
[23,24] to the non-Newtonian case. In the next section we describe
the physics of the cilia beating patterns, distinguish individual vs.
collective motion, and introduce the mathematical models that
have been proposed to quantify cilia dynamics both in Newtonian
and non-Newtonian fluids.

2. Background

2.1. Kinematics of an individual cilium

A variety of beating patterns is displayed by cells employing ci-
lia or flagella, depending on the surrounding geometry, the pur-
pose of the beating (locomotion, ingestion, mixing, etc.) as well
as genetic factors and biochemical regulation [2,4,5,25,26]. A de-
tailed description of the stroke of cilia has been offered in the past
[5,6,23,27] and we summarize the main features here. In general,
the beating pattern of an individual cilium displays a two-stroke
effective-recovery motion, as illustrated in Fig. 1 (top). During
the effective stroke, the cilium extends into the fluid dragging
the maximum volume of fluid forward. In contrast, the recovery
(or backward) stroke is executed by bending the cilium towards it-
self and the nearest boundary, minimizing thereby the drag on the
surrounding fluid in the opposite direction. It is this asymmetry in
the beating pattern that induces a net fluid flow in the direction of
the effective stroke. In some cells, the cilium not only bends to-
wards the wall during the recovery stroke but also tilts with re-
spect to the vertical plane described by the effective stroke,
Fig. 1. Schematic representation of the stroke of an individual cilium and the envelope m
dashed) represents the stroke cycle as modeled by the envelope model; in this figure the
text). Bottom: representation of the envelope model covering the cilia layer and the pro
hence displaying a three-dimensional pattern [6,28]. Cilia in the
respiratory track seem, however, to remain two-dimensional [29].

2.2. Collective cilia motion and metachronal waves

If we now turn our attention to the collective motion of cilia ar-
ray, the cilia are observed to beat in an organized manner such that
an undulating surface will appear to form on top of the layer of ci-
lia, and to deform in a wave-like fashion. These waves, known as
metachronal waves, are due to a small phase lag between neigh-
boring cilia, and are akin to waves created in sports stadiums by
waving spectators. Many biological studies have been devoted to
this collective effect [26,30]. In Table 1 we reproduce some typical
values of the beating parameters measured experimentally for cilia
movement in the respiratory track (tracheobronchial cilia). The ci-
lia length and the distance between cilia at their base are denoted
by L and d, while f = x/2p is the beat frequency and k = 2p/k is the
metachronal wavelength.

Different types of metachronal waves can be classified accord-
ing to the relationship between their dynamics and that of the
effective stroke of the constituting cilia [5]. When the propagative
direction of the metachronal wave is the same as the direction of
the effective stroke, the beat coordination is called symplectic. If
instead both directions oppose each other then the coordination
is termed antiplectic [23]. Other types of metachronal waves that
requires certain three-dimensional coordination have also been
identified [6,27,28,32]. Although there is no yet agreed-upon
explanation for the origin of these different types of coordination,
it seems that patterns close to the antiplectic metachrony (includ-
ing tracheobronchial cilia) are more widely used than the symplec-
tic wave [33] possibly because the first one is characterized by the
separation of consecutive cilia during the effective stoke, allowing
odel. Top: effective (solid) and recovery (dashed) stroke of a cilium. The ellipse (thin
direction of the dynamics along the ellipse is clockwise, but it could be reversed (see
pagation of the metachronal wave.
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them to propel more fluid volume and thus increasing the stoke
efficiency [34].

2.3. Modeling cilia arrays

Two different approaches have been proposed to model the
periodic motion of cilia, namely the sub-layer and the envelope
models [23]. In sub-layer modeling, one keeps the basic ingredi-
ents of the cilia beating cycle by parametrizing each cilium shape
along its stroke period. This approach allows to compute the forces
and bending moments induced by each cilium to the surrounding
fluid and at the same time obtain the mean flow produced above
the cilia layer, although the hydrodynamic description can be te-
dious and usually has to be done numerically [10,34,35].

In contrast, the envelope modeling approach takes advantage of
the formation of metachronal waves above the cilia layer. The mo-
tion of the cilia array is simplified as an undulating surface that
covers the cilia layer (Fig. 1, bottom), ignoring the details of the
sub-layer dynamics. In this case, the metachronal waves are pre-
scribed by setting appropriate boundary conditions on the material
points of the envelope. In the case where the boundary conditions
are nearly inextensible, the dynamics of the flow produced by the
cilia array becomes similar to the undulating motion of a
two-dimensional flagellum [5]. The simplification allowed by the
envelope model has been useful in comparing, even quantitatively,
the swimming velocities obtained theoretically with those ob-
served in water for a number of microorganisms [27,36]. Further-
more, this model, which is originally due to Taylor [24], is
amenable to perturbation analysis and allows to incorporate cer-
tain non-Newtonian effects in a systematic fashion [12,15].

To address the limit of validity of the envelope model, Brennen
[27] derived the set of conditions to be satisfied in order for the
envelope model to be approximately valid, which are m/(xL2)� kd
and kd < 1, where m is the kinematic viscosity of the fluid. With the
numbers from Table 1, we see that the envelope model is valid for
the case of the cilia array in the respiratory track when the liquid
has a viscosity similar to that of water (and m will be actually high-
er if the fluid is a polymeric solution, hence the model is expected
to always be valid).

2.4. Cilia in complex fluids

Because of the importance of mucus in human health, numer-
ous theoretical papers have attempted to elucidate the mecha-
nisms of tracheobronchial mucus transport using both modeling
approaches outlined above [31,35,37,38]. Mucus is a typical exam-
ple of a non-Newtonian fluid, displaying both elastic behavior and
stress relaxation as well as a shear-dependent viscosity [11].

In order to incorporate a variation of the viscosity in the trans-
port problem, a two-fluid model has been proposed consisting of a
low-viscosity fluid located at the cilia layer (peri-ciliary fluid) with
a second high viscosity fluid laying above the first one [6,35,38,39].
This hypothesis of a two-fluid layer, supported by experimental
observations of tissue samples, allows to obtain values of the mu-
cus flow similar to those measured in experiments [6,28].

An alternative modeling approach proposed to use a fluid with a
viscosity whose value changes linearly with the distance from the
cell wall [37]. Such approximation, however, is not a formal
mechanical model that rigorously takes into account the rheologi-
cal properties of the fluid. Later work considered formally the elas-
tic properties of mucus by introducing the convective Maxwell
equation in the theoretical formulation [31]. The values of the
mean velocity of the fluid in this case were found to be much smal-
ler than the experimental ones, indicating that the shear-thinning
properties of mucus also need to be considered. Elastic effects were
the focus on a number of studies on flagellar locomotion, both the-
oretically [12–18] and experimentally [19–21], and the consensus
so far seems to be that for small-amplitude motion elastic effects
do always hinder locomotion whereas it can potentially be en-
hanced for large amplitude motion corresponding to order-one
Weissenberg, or Deborah, numbers.

For mucus transport by cilia, it is in fact believed that it is a com-
bination of shear-thinning, which can reduce the fluid flow resis-
tance at the cilia layer, and elastic effects, which maintain a semi-
rigid surface at the upper mucus layer, which allow for the optimal
transport of particles in the respiratory track [6,28,37,39,40]. A con-
stitutive equation that takes into account a shear-dependent viscos-
ity was formally used within the lubrication approximation in the
context of gastropod [41,42] and flagellar locomotion [43]. These
models consider the locomotion due to a tangential or normal (or
both) deformation of a sheet above a thin fluid layer with shear-
dependent viscosity. In the case of tangential deformation of the
sheet, the average locomotion speed is seen to go down for a
shear-thinning fluid whereas in the case where normal deformation
are also included the speed increases. This indicates that the impact
of shear-dependent material function on transport depends on the
particular beating pattern, something our model also shows. Recent
studies on the effect of shear-dependent viscosity on waving propul-
sion showed that locomotion is unaffected by shear-thinning for
nematodes (experiments, [19]), increases in a two-dimensional
model flagellum with an increase in flagellar amplitude for shear-
thinning fluids (computations, [22]), while decreases in the case of
a two-dimensional swimming-sheet-like swimmer model in
shear-thinning elastic fluids (experiments, [21]).

Other models focused on the presence of yield stresses and the
heterogeneity in the surrounding environment [42–44]. The pres-
ence of a yield stress in the limit of small amplitude oscillations
hinders the mean propulsion or transport velocity whereas the
inclusion of obstacles mimicking an heterogeneous polymeric
solution enhances propulsion.
2.5. Outline

In this paper we solve for the envelope model in a generalized
Newtonian fluid using a domain perturbation expansion. The fluid
is the Carreau model for generalized Newtonian fluids where the
viscosity is an instantaneous non-linear function of the local shear
rate. We solve for the flow velocity and rate of work in powers of
the amplitude of the sheet deformation. In particular, we compute
analytically the influence of non-Newtonian stresses on the fluid
velocity induced in the far field: that velocity can be interpreted
either as a transport velocity in the context of fluid pumping or
as a propulsive speed in the context of locomotion. In Section 3
we present the formulation of the envelope model and the dy-
namic equations that govern the fluid flow. Section 4 details the
asymptotic calculations followed by Section 5 which is devoted
to an analysis of our mathematical results and the illustration of
the importance of non-Newtonian effects. Finally in Section 6 we
discuss the impact of our results in the context of biological loco-
motion and transport and conclude the paper. In Appendix A the
applicability of our results to a wider class of generalized Newto-
nian fluid models is examined.
3. Formulation

3.1. The envelope model

In the envelope model approach, the cilia tips, attached to a sta-
tionary base, display a combination of normal and tangential peri-
odic motions. Depending on the phase shift / between these two
motions and their relative amplitude (�p 6 / 6 p), in general the
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cilia tips will describe an elliptic shape in the xy-plane over one
period of oscillation (Fig. 1). We assume that the cilia tips are con-
nected by a continuous waving sheet, and the variation of the dis-
tance between adjacent cilia is therefore idealized as a stretching
or compression of the surface. The positions of material points
(xm,ym) on the sheet are given by

xm ¼ xþ Aa cosðkx�xt � /Þ; ym ¼ Ab sinðkx�xtÞ; ð1Þ

where 2Aa and 2Ab are the maximum displacements of the material
points in the x and y directions respectively. The wave amplitude is
thus A (dimensions of length) while the relative values of the
dimensionless parameters a P 0 and b P 0 reflect the ratio of
the tangential and normal motions. The propagation of the metach-
ronal wave in Eq. (1) occurs in the positive x direction (Fig. 1) and
the material points of the sheet can describe a cyclic motion either
in a clockwise direction (symplectic), or a counterclockwise direc-
tion (antiplectic).

We nondimensionalize lengths by k�1 and times by x�1 to get
the nondimensionalized form of Eq. (1) as

xm ¼ xþ �a cosðx� t � /Þ; ym ¼ �b sinðx� tÞ; ð2Þ

where we have defined � = Ak = 2pA/k. Assuming that the cilia array
propagates metachronal waves with a single characteristic
amplitude much smaller than its wavelength, we can use a standard
domain perturbation method to solve for the pumping velocity in
the limit �� 1. In the remaining text we will use for convenience
z = x � t and n = x � t � /. Using the formula cos(z � /) = coszcos/
+ sinzsin/, we will also define b = acos/, c = asin/, and a2 = b2 + c2.
3.2. Governing equations of the fluid flow and boundary conditions

Neglecting any inertial effects in the fluid, mechanical equilib-
rium is simply given by r � r = 0 where r is the total stress tensor.
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Fig. 2. Shear-thinning viscosity of mucus reproduced from published data: Steady ( ) a
( ) of pig small intestine mucus [46]; steady measurements ( ) of human cervicovag
micro-rheological measurements ( ) of human cervical mucus [48]. When the data was
the steady values [49]. The continuous line denotes a power-law fitting, g ¼ 10:5 _c�0:8

go = 2187.5, kt = 2154.6, n = 0.08) and the cervical human mucus ( : go = 145.7, kt = 63
indicates the typical oscillation frequencies of cilia [5].
Denoting p the pressure and s the stress tensor component due to
fluid deformation (deviatoric) we have

rp ¼ r � s; ð3Þ

which is associated with the incompressibility condition, r � u = 0,
where u denotes the velocity field.

In our model, the fluid problem is two-dimensional, and we can
therefore reduce the number of scalars used in the formulation by
introducing a streamfunction, w(x,y, t). The incompressibility con-
dition is satisfied everywhere in the fluid provided we use

u ¼ @w
@y

; v ¼ � @w
@x

: ð4Þ

Using Eq. (4) and the time derivatives of the material position of
the undulating sheet, u = @xm/@t and v = @ym/@t, we can identify the
velocity components of the fluid on the sheet assuming the no-slip
boundary condition

rwjðxm ;ymÞ ¼ �b cosðx� tÞex þ �a sinðx� t � /Þey: ð5Þ

In the far field, y ?1, the flow moves at the unknown steady
speed, Uex, whose sign and value will depend on the particular
movement of the material points on the sheet and on the fluid rhe-
ology. The main goal of this paper is to derive analytically the non-
Newtonian contributions to U.

3.3. Constitutive equation the Carreau model

As discussed above, many biological fluids exhibit non-Newto-
nian rheology. In Fig. 2 we reproduce the data from several pub-
lished experiments on the shear-dependance of mucus viscosity
[45–48]. The plot shows the value of the shear viscosity, g, as a
function of the shear rate, _c. Measurements are either steady-state
or, for oscillatory data, their steady-state values are estimated
using the Cox–Merz rule [49]. Clearly, mucus is very strong
100 102

 (1/s)

nd oscillatory ( ) measurements of human sputum [45]; oscillatory measurements
inal mucus [47]; micro-rheological measurements ( ) of human lung mucus [48],
reported in terms of oscillatory moduli, the Cox–Merz rule was applied to estimate
. The dashed lines denote a fitting to the Carreau model for the lung mucus ( :
1.04, n = 0.27). The shear-rate range enclosed by the vertical lines, 5 K _cK 50 s�1,
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shear-thinning, the viscosity dropping by three orders of magni-
tude on the range of shear rates 10�3 K _cK 102.

The dependance of the viscosity with the shear-rate can be
modeled assuming a Carreau generalized Newtonian fluid whose
viscosity is given by [49]

g� g1
go � g1

¼ ½1þ ðkt j _cjÞ2�
n�1

2
; ð6Þ

where g1 is the infinite-shear-rate viscosity, go the zero-shear-rate
viscosity, n the dimensionless power-law index, and kt a time con-
stant associated with the inverse of the shear-rate at which the vis-
cosity acquires the zero-shear-rate value. In Eq. (6), the magnitude
of the shear-rate tensor, j _cj, is equal to (P/2)1/2, where the second
invariant of the shear rate tensor, P, is given by

P ¼
X2

i¼1

X2

j¼1

_cij _cji

¼ 4
@u
@x

� �2

þ 2
@u
@y

� �2

þ 4
@u
@y

@v
@x
þ 2

@v
@x

� �2

þ 4
@v
@y

� �2

: ð7Þ

Based on the data reproduced in Fig. 2 it is clear that go� g1,
and this is the limit we will consider here. If we nondimensionalize
stresses and shear-rates by gox and x, respectively, we obtain the
nondimensional form of the deviatoric stress,

s ¼ ½1þ ðCuj _cjÞ2�
N

_c; ð8Þ

where we have defined the non-Newtonian indexN � ðn� 1Þ=2 and
where Cu = xkt is the Carreau number. When n = 1 (equivalently,
N ¼ 0), the Newtonian limit is recovered in Eq. (8). Clearly, other
classical models used to describe inelastic fluids may be used to fit
the rheological data of mucus. We chose the Carreau model due to
its wide range of applicability; in Appendix A we discuss the class
of generalized Newtonian fluids for which our analysis remains va-
lid. We demonstrate in particular that the model we chose allows us
to formally derive the leading-order effects of shear-dependence on
the flow. Any other model, provided that it is well-defined in the
zero-shear-rate limit, would either give results mathematically
equivalent to ours, or would predict an impact on the flow generated
by the sheet arising at a higher-order in the sheet amplitude.

4. Asymptotic solution for small wave amplitudes

Having posed the mathematical problem, we proceed in this
section to compute its solution order by order in the dimensionless
wave amplitude, � [12,23,24]. Our goal is to calculate the leading-
order influence of the shear-dependence of the viscosity on the
flow field and, in particular, the flow induced at infinity, Uex. We
will also compute its influence on the rate of work done by the
sheet in order to deform and the resulting transport efficiency.

We therefore write a regular perturbation expansion of the
form

fu;w; s; p; _c; j _cjg ¼ �fuð1Þ;wð1Þ; sð1Þ;pð1Þ; _cð1Þ; j _cjð1Þg

þ �2fuð2Þ;wð2Þ; sð2Þ; pð2Þ; _cð2Þ; j _cjð2Þg þ . . . ð9Þ

Using the definition of the magnitude of the shear-rate tensor,
j _cj ¼

ffiffiffiffiffiffiffiffiffiffi
P=2

p
, the term j _cj2 in Eq. (8) can be expanded in terms of � as

j _cj2 ¼ �2 Pð1Þ

2
þ 2�3j _cð1Þjj _cð2Þj þ Oð�4Þ: ð10Þ

Writing the viscosity in Eq. (8) as

g ¼ 1þ �2 Cu2

2
Pð1Þ þ 2�3Cu2j _cð1Þjj _cð2Þj þ Oð�4Þ

" #N
; ð11Þ
and Taylor-expanding Eq. (11) up to Oð�2Þ, we finally obtain the
constitutive relationship as

�sð1Þ þ �2sð2Þ þ . . . ¼ 1þ �2NCu2

2
Pð1Þ

" #
� _cð1Þ þ �2 _cð2Þ þ . . .
� �

: ð12Þ

Note that, because of the �? � � symmetry, the fluid transport
at infinity, quantified by Uex, has to scale as an even power of �.
Since the perturbation in the viscosity, Eq. (11), is order �2, this
means that the flow up to order �2 is going to be the same as the
Newtonian one, and thus we expect the non-Newtonian effects
to come in only at order �4 in U (or higher, see Appendix A). As
we see below, this means that we have to compute the flow field
everywhere up to order �3.

4.1. Solution of the velocity field at Oð�Þ and Oð�2Þ

Is is straightforward to get from Eq. (12) that sð1;2Þ ¼ _cð1;2Þ and
thus the solutions at order one and two are the same as the
Newtonian ones. The general procedure to derive these solutions
consists in taking the divergence and then the curl of Eq. (3) to
eliminate the pressure, substituting the constitutive relation
for the stress, and using the definition of the streamfunction, Eq.
(4), together with the definition of the shear-rate, _c ¼ ruþruT ,
to obtain the biharmonic equation satisfied by the streamfunction

r4wðpÞ ¼ 0; p ¼ 1;2: ð13Þ

The general solution of Eq. (13) at order Oð�pÞ is already known
to be [23,50]

wðpÞ ¼ UðpÞy

þ
X1
j¼1

AðpÞj þ BðpÞj y
� �

sinðjzÞ þ CðpÞj þ DðpÞj y
� �

cosðjzÞ
h i

e�jy; ð14Þ

which already satisfies the boundary conditions in the far field,
u = @w/@yj(x,1) = U(p) and v = � @w/@xj(x,1) = 0. The values of the
coefficients in Eq. (14) are computed using the boundary conditions
on the sheet, Eq. (5), where rw is expanded in terms of � using a
Taylor approximation of the gradients around the mid plane,
xm = x and ym = 0. The streamfunctions at Oð�Þ and Oð�2Þ are then
[23]

wð1Þ ¼ ðbþ byþ byÞe�y sin z� cye�y cos z; ð15Þ

wð2Þ ¼ 1
2
ðb2 þ 2bb� a2Þyþ y

2
e�2yðc2 � b2 � 2bb� b2Þ cos 2z

� ye�2yðbcþ bcÞ sin 2z; ð16Þ

where the net contribution to the fluid velocity in the far field ap-
pears up to Oð�2Þ as

Uð2Þ ¼ 1
2
ðb2 þ 2ab cos /� a2Þ: ð17Þ
4.2. Solution of the velocity field at Oð�3Þ

At order three, Eq. (12) leads to the non-Newtonian contribu-
tion from the constitutive equation as

sð3Þ ¼ NCu2

2
Pð1Þ _cð1Þ þ _cð3Þ: ð18Þ

The values of the tensor invariant, P(1), and the components of
the shear rate tensor, _cð1Þ, can be computed using the first order
solution, Eq. (15), recalling that _c ¼ ruþruT , and using Eq. (7)
we obtain
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uð1Þ ¼ e�yf½b� ðbþ bÞy� sin zþ cðy� 1Þ cos zg; ð19Þ

v ð1Þ ¼ �e�yf½bþ ðbþ bÞy� cos zþ cy sin zg; ð20Þ

and therefore

_cð1Þ11 ¼ 2e�yf½b� ðbþ bÞy� cos z� cðy� 1Þ sin zg; ð21Þ

_cð1Þ12 ¼ _cð1Þ21 ¼ 2e�yf½ðbþ bÞy� b� sin zþ cð1� yÞ cos zg; ð22Þ

_cð1Þ22 ¼ � _cð1Þ11 ; ð23Þ

which allows us to finally compute

Pð1Þ ¼ 8e�2y½b2y2 þ 2abðy2 � yÞ cos /þ a2ðy� 1Þ2�: ð24Þ

After taking the divergence and then the curl of Eq. (18) we ob-
tain inhomogeneous biharmonic equation for the streamfunction
at order three given by

r4wð3Þ ¼ 16NCu2e�3yf½cb2f ðyÞ þ 2bbcgðyÞ þ a2chðyÞ� cos z

þ ½b3iðyÞ � 3b2bf ðyÞ � bð3b2 þ c2ÞgðyÞ � a2bhðyÞ�
� sin zg; ð25Þ

where the y-dependent functions are

f ðyÞ ¼ 2y3 � 8y2 þ 7y� 1; ð26Þ

gðyÞ ¼ 2y3 � 10y2 þ 13y� 4; ð27Þ

hðyÞ ¼ 2y3 � 12y2 þ 21y� 11; ð28Þ

iðyÞ ¼ �2y3 þ 6y2 � 3y: ð29Þ

The homogeneous solution of this equation, wð3Þh , is given by the
general solution in Eq. (14). The particular solution, wð3Þp , can be
found using the method of variation of parameters, leading to

wð3Þp ¼ NCu2e�3y½fcb2FðyÞ þ 2bbcGðyÞ þ a2cHðyÞg cos z

þ fb3IðyÞ � 3b2bFðyÞ � bð3b2 þ c2ÞGðyÞ � a2bHðyÞg
� sin z�; ð30Þ

where the y-dependent functions are

FðyÞ ¼ 1
2

y3 þ 1
4

y2 þ 1
16

y; ð31Þ

GðyÞ ¼ 1
2

y3 � 1
4

y2 þ 1
16

yþ 1
16

; ð32Þ

HðyÞ ¼ 1
2

y3 � 3
4

y2 þ 9
16

y� 1
8
; ð33Þ

IðyÞ ¼ �1
2

y3 � 3
4

y2 � 9
16

y� 3
16

: ð34Þ

In order to determine the unknown constants in the homoge-
neous solution, we need to evaluate the boundary condition on
the sheet at Oð�3Þ. Using a Taylor expansion, we have

rwð3Þjðx;0Þ ¼ �a cos n
@

@x
rwð2Þjðx;0Þ � b sin z

@

@y
rwð2Þjðx;0Þ �

1
2

a2

� cos2 n
@2

@x2rwð1Þjðx;0Þ � ab cos n sin z

� @

@x
@

@y
rwð1Þjðx;0Þ �

1
2

b2 sin2 z
@2

@y2rwð1Þjðx;0Þ: ð35Þ

After substituting in Eq. (35) the solutions at order one and two
we obtain, after some tedious but straightforward algebra
@

@x
wð3Þjðx;0Þ ¼

1
8
ð�3b3 � 6b2bþ bb2 þ 3bc2Þ cos zþ 3

8
ðb3

þ 2b2bþ bb2 � bc2Þ cos 3z� 1
4
ðb2cþ bbcÞ sin z

þ 3
4
ðb2cþ bbcÞ sin 3z; ð36Þ

and

@

@y
wð3Þjðx;0Þ ¼

1
8
ð�15b2c� 8bbcþ 3a2cÞ cos zþ 1

8
ð15b2c

þ 24bbcþ 9b2c� 3c3Þ cos 3zþ 1
8
ð2b3 þ 5b2b

þ 4bb2 � 4bc2 � 3bc2 � 3b3Þ sin zþ 1
8
ð�6b3

� 15b2b� 12bb2 þ 12bc2 þ 9bc2 � 3b3Þ sin 3z: ð37Þ

Applying these boundary conditions to the general solution,
wð3Þ ¼ wð3Þh þ wð3Þp , we find the value of the only nonzero coefficients
in Eq. (14) which are given by

Að3Þ1 ¼
3
8

1
2
NCu2 � 1

� �
b3 þ 1

8
3
2
NCu2 þ 1

� �
bb2

þ 1
8

1
2
NCu2 þ 3

� �
bc3 � 1

8
ðNCu2a2 þ 6b2Þb; ð38Þ

Að3Þ3 ¼
1
8

b3 þ 1
4

b2bþ 1
8

bb2 � 1
8

bc2; ð39Þ

Bð3Þ1 ¼
1
8

3
2
NCu2 � 1

� �
b3 þ 1

8
3
2
NCu2 � 1

� �
b2b

þ 1
8

5� 3
2
NCu2

� �
bb2 � 1

8
1þ 1

2
NCu2

� �
bc2 � 3

8
bc2

þ 13
16
NCu2a2b� 3

8
b3; ð40Þ

Bð3Þ3 ¼ �
3
8

b3 � 9
8

b2b� 9
8

bb2 þ 9
8

bc2 � 3
8

b3 þ 9
8

bc2; ð41Þ

Cð3Þ1 ¼
1
4

1� 1
2
NCu2

� �
bbcþ 1

4
1
2
NCu2a2 þ b2

� �
c; ð42Þ

Cð3Þ3 ¼ �
1
4

b2cþ bbc
� �

; ð43Þ

Dð3Þ1 ¼ �
1
8

1
2
NCu2 þ 15

� �
b2cþ 1

4
1
2
NCu2 � 3

� �
bbc

þ 1
4

b2 þ 3
2

a2 � 13
4
NCu2a2

� �
c; ð44Þ

Dð3Þ3 ¼
9
8

b2c� 3
8
c3 þ 9

8
b2cþ 9

4
bbc; ð45Þ

and, as expected, the fluid velocity at infinity at this order is

Uð3Þ ¼ 0: ð46Þ

In order to illustrate quantitatively the difference between
the Newtonian flow induced by the traveling wave and the
new non-Newtonian terms, we show in Fig. 3 the instantaneous
streamlines (dotted lines) and contours (colors and numbers) of
iso-values of the vorticity at order Oð�3Þ for two different values
of the phase, /, and three different values of the non-Newtonian
term, NCu2, assuming a = b. Changing the phase / has the effect
of tilting the vortical streamlines formed in the flow. Increasing
the magnitude of NCu2 leads to a significant modification of the



Fig. 3. Instantaneous streamlines (dotted lines) and iso-vorticity contours (color levels and iso-value numbers) at order �3 obtained for the case a = b for two values of the
phase, / = 0 (top row) and p/4 (bottom row), and three values of the non-Newtonian term, NCu2 ¼ 0 (Newtonian fluid, left column), �10 (shear-thinning fluid, middle
column) and +10 (shear-thickening, right column). The solid lines denote the position of the traveling wave at t = 0. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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flow: large strong vortices are created above the waving
sheet whose sign changes with the sign of NCu2. The location
and strength of the regions of high vorticity near the sheet are
also modified. Note that even though the non-Newtonian
term is scaling linearly with N , the total flow, sum of the
Newtonian plus the non-Newtonian component, is not
anti-symmetric shear-thinning ðN < 0Þ vs. shear-thickening
ðN > 0Þ, that is, the magnitudes of the values change as well
as the signs.
4.3. Net far-field velocity at Oð�4Þ

To finish the calculation we have to compute the velocity in-
duced in the far field, U(4)ex, to quantify the role of non-Newtonian
stresses on fluid transport, either pumping or propulsion. This can
actually be determined without having to compute the entire flow
field. Indeed, just like for the previous order, the streamfunction,
w(4), will satisfy an inhomogeneous biharmonic equation. The
swimming speed, which contributes to a uniform U(4)y term to
the streamfunction, does not have to be computed in the far field
but can instead be evaluated using the boundary conditions. The
expansion of the x-velocity, u, at this order evaluated at (x,0) is ob-
tained by Taylor-expanding the boundary conditions on the sheet
as
@

@y
wð4Þjðx;0Þ ¼ �b sin z

@2

@y2 wð3Þjðx;0Þ � a cosn
@

@x
@

@y
wð3Þjðx;0Þ

� 1
2

a2 cos2 n
@2

@x2

@

@y
wð2Þjðx;0Þ

� ab cosn sin z
@

@x
@2

@y2 wð2Þjðx;0Þ �
1
2

b2 sin2 z
@3

@y3 wð2Þjðx;0Þ

� 1
6

a3 cos3 n
@3

@x3

@

@y
wð1Þjðx;0Þ �

1
2

a2b cos2 n sin z
@2

@x2

@2

@y2
wð1Þjðx;0Þ

� 1
2

ab2 cosn sin2 z
@

@x
@3

@y3 wð1Þjðx;0Þ �
1
6

b3 sin3 z
@4

@y4 wð1Þjðx;0Þ:

ð47Þ

The first term of the right-hand side of Eq. (47) is the only one
that provides a nonzero non-Newtonian term after evaluating the
derivatives at y = 0. Computing the mean velocity over one period
of oscillation, we obtain a Newtonian plus a non-Newtonian contri-
bution of the form

1
2p

Z 2p

0
�b sin z

@2

@y2 wð3Þjðx;0Þ dt ¼ 1
8
NCu2ð3b3b� 6b2b2

� 2b2c2 � 17a2bbÞ þ 1
16
ðb4

þ 4b3bþ 9b2b2 � 5b2c2

� 6a2bbÞ: ð48Þ
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The contribution to the mean velocity of the eight other terms
appearing in the right-hand side of Eq. (47) are the same as for
the Newtonian solution and the final result can be found in Blake
[32]. Adding all the terms and expressing the mean velocity at order
four in terms of the original parameters a, b, and /, we are finally
able to write the O(�4) velocity in the far field as the sum of a New-
tonian component, Uð4ÞN , and a new non-Newtonian term, Uð4ÞNN , as

Uð4Þ ¼ Uð4ÞN þ Uð4ÞNN; ð49Þ

with

Uð4ÞN ¼ �
1
2

b4 þ a2b2 � 1
4
ðab3 þ a3bÞ cos /; ð50Þ

Uð4ÞNN ¼
1
8
NCu2½�4a2b2 þ ð3ab3 � 17a3bÞ cos /� 2a2b2

� cos 2/�: ð51Þ

The Newtonian component, Eq. (50), is Blake’s solution [32]. The
new term, Eq. (51), which quantifies the leading-order effect of a
shear-dependent viscosity on the fluid transport, is the main result
of our paper.

Two interesting features can be noted at this point by a simple
inspection of Eq. (51). First we see that if the sheet does not display
normal deformation (b = 0) or no tangential deformation (a = 0)
then Uð4ÞNN ¼ 0; in order for the shear-dependent viscosity to affect
transport, it is this important that both modes of deformation be
present, a – 0, b – 0. The second interesting point is that the effect
scales linearly with N , and thus with the difference between the
power-law index, n, and 1. Consequently, when they have an influ-
ence on transport, shear-thinning and shear-thickening fluids al-
ways act in opposite direction and if one type of fluid hinders
transport the other fluid will facilitate it.

4.4. Rate of work

We now turn to the calculation of the rate of work, W, done by
the sheet to transport the fluid (per unit area of the sheet). Since W
scales quadratically with the shear rate, the leading order rate of
work appears at Oð�2Þ and is identical to the one for a Newtonian
fluid [23,32]. Using the nondimensionalization W 	 gox2/k we
have in dimensionless variables

hW ð2Þi ¼ �2ða2 þ b2Þ; ð52Þ

where we have used h. . .i to denote mean over a period of
oscillation.

In order to compute the rate of work at higher order we recall
that, in the absence of inertia and without the presence of external
forces, the rate of work W done by a waving surface S against a
fluid is equal to the value of the energy dissipation over the en-
closed volume V

W ¼
Z

S
u � r � n dS ¼

Z
V
r : ru dV : ð53Þ

Using that the stress tensor and velocity vector have been ex-
panded in powers of the wave amplitude �, the rate of work at
third and fourth order are

W ð3Þ ¼
Z

V
rð1Þ : ruð2Þ þ rð2Þ : ruð1Þ
	 


dV ; ð54Þ

W ð4Þ ¼
Z

V
ðrð1Þ : ruð3Þ þ rð2Þ : ruð2Þ þ rð3Þ : ruð1ÞÞ dV : ð55Þ

At first and second orders in �, the constitutive equations for the
stress tensor are the Newtonian ones, rð1;2Þ ¼ �pð1;2ÞI þ _cð1;2Þ. The
constitutive equation at third order is in contrast
rð3Þ ¼ �pð3ÞI þ NCu2

2 Pð1Þ _cð1Þ þ _cð3Þ. Substituting these into Eqs. (54)
and (55) we see that the pressure at any order multiplies the diver-
gence of the velocity which is zero by incompressibility. The mean
rates of work per unit area of the sheet at orderOð�3Þ andOð�4Þ are
thus given by

hW ð3Þi ¼ 1
2p

Z 2p

0

Z 1

0
_cð1Þ : _cð2Þ
	 


dydz; ð56Þ

hW ð4Þi ¼ 1
2p

Z 2p

0

Z 1

0
_cð1Þ : _cð3Þ þ 1

2
_cð2Þ : _cð2Þ þ NCu2

4
Pð1Þ _cð1Þ : _cð1Þ

 !
dydz:

ð57Þ

Substituting the values of the shear-rate tensor and its second
invariant at the respective orders in �, we obtain that hW(3)i = 0,
which could have been anticipated by symmetry �? � �. The
mean rate of work per unit area at Oð�4Þ is found to be the sum
of a Newtonian term plus a non-Newtonian contribution as

hW ð4Þi ¼ hW ð4ÞiN þ hW
ð4ÞiNN; ð58Þ

where

hW ð4ÞiN ¼ �
1
4
ða4 þ b4Þ þ 5a2b2 þ ðab3 þ 3a3bÞ cos /

� 1
2

a2b2 cos 2/; ð59Þ

hW ð4ÞiNN ¼
1
8
NCu2ð15a4 þ 3b4 þ 4a2b2 � 8a3b cos /þ 2a2b2

� cos 2/Þ: ð60Þ

Similarly to the non-Newtonian contribution to the velocity, Eq.
(51), the effect of the shear-dependent viscosity on W scales line-
arly with N , and thus shear-thinning and shear-tickening fluids al-
ways contribute in opposite sign to the rate of working of the
sheet. In contrast however with the fluid velocity, we see that
modes with pure normal (a = 0) or tangential (b = 0) motion do
contribute to the rate of work at this order.

4.5. Transport efficiency

We finally consider the efficiency of transport, E, measured as
the ratio between the useful work done in the fluid to create the
flow at infinity and the total dissipation, written E 	 U2=hWi in
dimensionless variables [10]. Given that we have U = �2U(2) + �4U(4)

and hWi = �2hW(2)i + �4 hW(4)i, it is clear what we will obtain
E ¼ �2Eð2Þ þ �4Eð4Þ with each term found by Taylor expansion as

Eð2Þ ¼ ðU
ð2ÞÞ2

hW ð2Þi
; Eð4Þ ¼ ðU

ð2ÞÞ2

hW ð2Þi
2

Uð4Þ

Uð2Þ
� hW

ð4Þi
hW ð2Þi

 !
: ð61Þ

The first term, Eð2Þ, is the same as the Newtonian one whereas the
second one, Eð4Þ, includes a non-Newtonian contribution, given by

Eð4ÞNN ¼
ðUð2ÞÞ2

hW ð2Þi
2

Uð4ÞNN

Uð2Þ
� hW

ð4ÞiNN

hW ð2Þi

 !
: ð62Þ

Non-Newtonian stresses will lead to an increase in the effi-
ciency of transport if the term on the right-hand side of Eq. (62)
is positive, which we will investigate below for the various kine-
matics considered.

5. Do shear-thinning fluids facilitate locomotion and transport?

With our mathematical results we are now ready to address the
impact of non-Newtonian stresses on flow transport. We focus on
four aspects. We first show that, within our mathematical frame-
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work, shear-thinning always decrease the cost of flow transport.
We then demonstrate that the maximum energetic gain is always
obtained for antiplectic metachronal waves. When the sheet is
viewed as a model for flagellar locomotion in complex fluids, for
example spermatozoa, we then show that, at the order in which
we carried out the calculations, there is no influence of the
shear-dependent viscosity on the kinematics of swimming. We fi-
nally address the more general case of viewing the sheet as an
envelope for the deformation of cilia array, and address the impact
of non-Newtonian stresses on the magnitude of the flow induced in
the far field for a variety of sheet kinematics.

5.1. Shear-thinning fluids always decrease the cost of transport

We start by considering the non-Newtonian contribution to the
rate of working by the sheet, Eq. (60). We can write
hW ð4ÞiNN ¼ NCu2Fða; b;/Þ where the function F is

Fða; b;/Þ ¼ 1
8
ð15a4 þ 3b4 þ 4a2b2 � 8a3b cos /þ 2a2b2

� cos 2/Þ: ð63Þ

We are going to show that this function is always positive,
meaning that for shear-thinning fluids (N < 0), the sheet expends
less energy than in a Newtonian fluid with the same zero-shear
rate viscosity.

In order to show that F P 0 we calculate its minimum value and
show that it is positive. The derivative of F with respect to the
phase is given by

dF
d/
¼ a2b sin /ða� b cos /Þ; ð64Þ

while its second derivative is

d2F

d/2 ¼ a2bða cos /� b cos 2/Þ: ð65Þ

The local extrema of F are reached when dF/d/ = 0 which occurs
at three points: / = 0, p and, when a < b, cos/ = a/b. When a P b,
only the points / = 0, p are extrema, and plugging them into Eq.
(65) we see that the minimum of F is obtained at / = 0 (positive
second derivative). From Eq. (63) we get that this minimum value
is Fmin = [7a4 + 3b4 + 6a2b2 + 8a3(a � b)]/8 which is positive since
a P 0, b P 0, and a P b. In the case where a < b it is straightfor-
ward to show that the minimum of F occurs at the phase / satisfy-
ing cos/ = a/b. Plugging that value of the phase into Eq. (63), and
using that cos2/ = 2a2/b2 � 1 we obtain that Fmin = [11a4 + 3b4 +
2a2b2]/8 which is also always positive.

We therefore always have F P 0 and the non-Newtonian contri-
bution to the rate of working by the sheet, hW(4)iNN, always has the
same sign as N . For shear-thinning fluids N < 0 and therefore the
cost of fluid transport is always reduced – a result which remains
true even if the non-Newtonian contribution to the flow at infinity,
Uð4ÞNN , is equal to zero. As a consequence, the last term in Eq. (62),
hW(4)iNN/hW(2)i, will always be negative for shear-thinning fluids,
indicating a contribution to an increase in the efficiency. The oppo-
site is true for shear-thickening fluids which always add to the
energetic cost. This result is reminiscent of earlier work on the cost
of transport by gastropod showing that shear-thinning fluids are
advantageous, although for a completely different reason (mechan-
ical work vs. mucus production) [41].

As a final note, it is worth pointing out that, had the flow kine-
matics been unchanged at all orders compared to the Newtonian
ones, then this result of reduction in W would have in fact been
obvious. Indeed, if the shear is the same everywhere in the fluid,
and if the viscosity decreases, then the total dissipation should also
decrease. However, as detailed in Section 4.4, the dissipation rate
at order four in � depends on the third-order kinematics in the fluid
which are different from what they would have been in the ab-
sence of shear-dependence. The fact that our calculations show
that shear-thinning fluids always decrease the cost of transport is
therefore not obvious.

5.2. Antiplectic metachronal waves offer the largest non-Newtonian
energy saving

Another general result can be gained from a close inspection of
the function F in Eq. (63). For given values of both amplitudes a and
b, it is clear that F it is maximized when cos / = �1 and cos2/ = 1,
which occurs when / = p. This is thus the value of the phase be-
tween normal and tangential motion leading to the maximum
non-Newtonian decrease in the energy expanded by the sheet to
transport the fluid. For this particular value of the phase difference,
the kinematics of the material point at x = 0, is xm = ��acost, ym =
��bsint which means that material points follow elliptical trajecto-
ries of semi axes �a and �b in the anticlockwise direction. Viewing
the sheet as a model for the motion of cilia tips this is therefore a
wave for which the effective stroke is in the �x direction while the
recovery stroke occurs in the +x direction. Given that the metach-
ronal waves are assumes to propagate in the positive direction, this
means that antiplectic metachronal waves offer the largest non-
Newtonian energy saving in a shear-thinning fluid.

5.3. The sheet as a model for flagellar locomotion

We have seen in Section 4 that the presence of non-Newtonian
stresses affects the fluid transported by the waving sheet only if
both oscillatory motions, normal (b – 0) and tangential (a – 0),
are present. In the frame moving with the fluid at infinity, this in-
duced speed can be also interpreted as the swimming speed of a
free-moving sheet, which prompted Taylor’s original idea to pro-
pose it as the simplest model of flagellar locomotion [24]. The dif-
ference however between the waving kinematics of a flagellum
and the one we have studied in this paper is that a flagellum is
inextensible. Consequently, the flagellum has O(�) motion only in
the normal direction, while the tangential deformation is O(�2) as
a result from the requirement of inextensibility (material points
on a flagellum describe a typical figure-8 motion). Higher-order
kinematics can also be described similarly [23,24,51].

To address the impact of a shear-dependent viscosity on loco-
motion we have followed the same procedure as above and com-
puted the swimming velocity systematically up to Oð�4Þ using
the Carreau model and enforcing inextensibility condition. We ob-
tain formally that Uð4ÞNN ¼ 0: the shear-dependence of the viscosity
does not affect the locomotion speed of the sheet at this order.
Inextensible swimmers, such as those employing flagella, and
deforming in a constant, small-amplitude waving motion of the
type modeled here are thus expected to be hardly affected by the
shear-dependence of the fluid. Since the rate of working decreases
for shear-thinning fluids, swimmers are thus more efficient than in
Newtonian fluids (see Eq. (62)). Our theoretical result is consistent
with experiments by Shen and Arratia [19] which have shown that
the swimming velocity of a nematode (C. elegans) waving freely in
a shear-thinning fluid (xanthan gum solution) is the same as that
observed in a Newtonian fluid with similar viscosity.

5.4. The sheet as a model for fluid transport and pumping

Returning to the sheet as a model for fluid transport by the tips of
cilia arrays, we investigate here the effect of the shear-dependent
viscosity on the pumping performance as a function of the values
of a, b, and /. Recall that the magnitude of the non-Newtonian con-
tribution, Uð4ÞNN , scales with the absolute value ofNCu2 while its sign



Table 2
Effect of a shear-thinning viscosity on the mean transport velocity and efficiency for
three different wave kinematics: normal plus tangential deformation, motion
dominated by the normal mode, and motion dominated by the tangential mode.
Four different values of the phase between normal and tangential motion are
considered. The sign + (resp. �) indicates a situation where a shear-thinning fluid
improves on (resp. hinders) the velocity or efficiency; all signs would be reversed in a
shear-thickening fluid.

Normal + tangential
a = b

Normal mode
b� a

Tangential mode
a� b

/ = 0 Velocity: + Velocity: � Velocity: �
Efficiency: + Efficiency: + Efficiency: +

/ = �p/2, p/2 Velocity: + Velocity: + Velocity: �
Efficiency: + Efficiency: + Efficiency: +

/ = p Velocity: + Velocity: + Velocity: +
Efficiency: + Efficiency: + Efficiency: +
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is that of N , which is positive if the fluid is shear-thickening, and
negative is the fluid is shear-thinning. Among the many combina-
tions of a, b, and / that we may choose, we limit the study to three
relevant cases: a = b, b� a, and a� b, and in each case consider four
illustrative values of /, namely, / = 0, / = ±p/2, and / = p. In Fig. 4 we
display the three different kinematics of the sheets in the case where
the phase is / = p/4. Below we reproduce the results for the fourth-
order swimming speed, U(4), and discuss its relation to the leading-
order Newtonian contribution at order �2. We also compute the
mean rate of working, hW(4)i. The main results are summarized in
Table 2 in the discussion section of the paper.

5.4.1. Fluid transport with both normal and tangential motion
In the case where the normal and tangential amplitudes are

similar, a = b � c, we obtain

ðiÞ Uð4Þ ¼ �10c4

4
NCu2; for / ¼ 0; the Oð�2Þ

velocity is Uð2Þ ¼ c2; ð66Þ

ðiiÞ Uð4Þ ¼ c4

2
1� 1

2
NCu2

� �
; for / ¼ 
p=2; Uð2Þ ¼ 0; ð67Þ

ðiiiÞ Uð4Þ ¼ c4ð1þNCu2Þ; for / ¼ p; Uð2Þ ¼ �c2: ð68Þ

We see that for all the values of the phase /, the fluid transport
is increased, i.e. the second order velocity and the non-Newtonian
contribution have the same sign, if the fluid is shear-thinning,
N < 0. This results remains true for / = ±p/2 when the mean veloc-
ity at Oð�2Þ is zero as in this case the non-Newtonian contribution
has the same sign as the Newtonian term at order four when
N < 0.

On the other hand, the mean rate of work per unit length
becomes
Fig. 4. Representation of the sheet kinematics for the three different types of motion cons
(2) motion dominated by the normal mode, b� a; (3) motion dominated by the tangenti
indicate the position of a material point during a stroke cycle. In (1) and (2) the position
positions of the material points are shown at t = 0, p/2, p, and 3p/2.
ðiÞ hW ð4Þi ¼ c4 8þ 2NCu2
� �

; for / ¼ 0; ð69Þ

ðiiÞ hW ð4Þi ¼ c4 5þ 5
2
NCu2

� �
; for / ¼ 
p=2; ð70Þ

ðiiiÞ hW ð4Þi ¼ 4c4NCu2; for / ¼ p; ð71Þ

and the maximum reduction of the rate of work is given when / = p,
as anticipated above. In all cases, the transport efficiency in Eq. (62)
is increased for two reasons: more fluid is being transported, and
transport occurs at a lower cost.

5.4.2. Motion dominated by the normal mode
In the case where the sheet kinematics is dominated by the nor-

mal deformation, b� a, we have U(2) � b2/2. Keeping all terms in a/
idered in this work: (1) normal plus tangential motion of the same magnitude, a = b;
al mode, a� b. In all cases displayed a value of / = p/4 was chosen and the red dots

of the wave is shown at time t = 0 (solid line) and p (dashed solid line). In (3) the



Fig. 5. In the wave configuration space a/b vs. / we use colors to indicate the regions in which the magnitude of the net non-Newtonian flow dominates that of the Newtonian
component at order Oð�4Þ, i.e. jUð4ÞNN j > jU

ð4Þ
N j (from Eqs. (50) and (51)) for three illustrative values of the non-Newtonian coefficient, NCu2 (0.1, 1 and 10). The cut-off value of

jUð4ÞNN j=jU
ð4Þ
N j ¼ 20 is chosen to account for the zeros of Uð4ÞN . The color scheme, shown on the right, gives the iso-values of jUð4ÞNN j=jU

ð4Þ
N j. (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)
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b up to the leading-order non-Newtonian contribution, we obtain
that the velocity at Oð�4Þ is given by

ðiÞ Uð4Þ � � b4

2
þ 1

4
ab3 3

2
NCu2 � 1

� �
; for / ¼ 0; ð72Þ

ðiiÞ Uð4Þ � �b4

2
þ a2b2 1� 1

4
NCu2

� �
; for / ¼ 
p=2; ð73Þ

ðiiiÞ Uð4Þ � � b4

2
þ 1

4
ab3 1� 3

2
NCu2

� �
; for / ¼ p; ð74Þ

while at leading-order in a/b we have

hW ð4Þi � b4

4
3
2
NCu2 � 1

� �
; ð75Þ

for all values of the phase. In the cases where / = ±p/2, and p, the
velocity induced by the motion of the sheet is increased if the fluid
is shear-thinning. In contrast, for in-phase motion, / = 0, the non-
Newtonian term acts in the direction opposite to the leading-order
Newtonian term, U(2). However, the non-Newtonian contribution to
the velocity, Eq. (72), scales as 	 N ab3 while the contribution to the
energetics, Eq. (75), scales as N b4, and thus in the limit b� a con-
sidered here, Eq. (62) leads to a positive value for Eð4ÞNN: the motion is
still more efficient in a shear-thinning fluid.

5.4.3. Motion dominated by the tangential mode
The last case we consider is the one where a� b and the kine-

matics is dominated by the tangential deformation. In this case, the
second order velocity is U(2) � �a2/2. Keeping all terms in b/a up to
the leading-order non-Newtonian contribution in U(4) we obtain

ðiÞ Uð4Þ � �1
4

ba3 1þ 17
2
NCu2

� �
; for / ¼ 0; ð76Þ

ðiiÞ Uð4Þ � a2b2 1� 1
4
NCu2

� �
; for / ¼ 
p=2; ð77Þ

ðiiiÞ Uð4Þ � 1
4

ba3 1þ 17
2
NCu2

� �
; for / ¼ p; ð78Þ

while the rate of work is given by
hW ð4Þi � a4

4
15
2
NCu2 � 1

� �
: ð79Þ

This time, for a shear-thinning fluid, the non-Newtonian contribu-
tion acts in the direction of the leading-order Newtonian flow only
for / = p while a flow in the opposite direction is created for / = 0
and ±p/2. However, similarly to the discussion in the previous sec-
tion, since the non-Newtonian effect on the rate of working is
	 N a4 (Eq. (79)) while the impact on the flow speed is 	 N ba3

(Eq. (76)) and 	 N a2b2 (Eq. (77)), the transport efficiency, Eq.
(62), is systematically decreased in the shear-thinning case.

5.4.4. Numerical approach
With the solution for both the net Newtonian flow speed, Uð4ÞN

(Eq. (50)), and the non-Newtonian one, Uð4ÞNN (Eq. (51)), it is straight-
forward to numerically compare their values. In Fig. 5 we plot the
regions in which the ratio in magnitude between both terms,
jUð4ÞNN=Uð4ÞN j, is above 1 in the wave configuration space a/b vs. /,
for three values of the non-Newtonian term NCu2 (0.1, 1, and
10). The figure indicates therefore the regions where the non-New-
tonian contribution dominates the Newtonian one. The color
scheme for the iso-values of the velocity ratio is indicated on the
right of the figure, and the cut-off of the ratio to account for the
zeros of Uð4ÞN is chosen to be 20. When the flow is almost Newtonian
ðNCu2 ¼ 0:1Þ the non-Newtonian contribution can almost every-
where be neglected, except near the region where the Newtonian
term exactly cancels out. As NCu2 increases, the non-Newtonian
contribution to the net flow becomes predominant over almost
all configuration space; the only region remaining white (indicat-
ing a ratio of less than 1) is at the bottom of each panel indicating
the prevalence of the Newtonian term for waves dominates by nor-
mal modes (a/b� 1).

6. Discussion

In this paper we propose a mathematical modeling approach to
address the role of shear-dependent viscosity on flagellar locomo-
tion and transport of mucus by cilia array. We employ the envelope
model originated by Taylor [23,24] and allow for both normal and
tangential deformation of a two-dimensional waving sheet. We
compute the flow field induced by a small-amplitude deformation
of the envelope in a generalized Newtonian Carreau fluid with



2 We emphasize again that the calculations presented in this paper are only valid in
the mathematical limit e ? 0. The order-of-magnitude estimates presented above are
only formally true when e is small and are used to point out how easy it is for the
shear-dependent terms to become predominant.

48 J.R. Vélez-Cordero, E. Lauga / Journal of Non-Newtonian Fluid Mechanics 199 (2013) 37–50
power index n up to order 4 in the dimensionless waving ampli-
tude, �. The net flow induced at infinity can be interpreted either
as a net pumping flow or, in the frame moving with the sheet, as
a swimming velocity.

At leading order, i.e. at order �2, the flow induced by the sheet,
and the rate of working by the sheet to induce this flow, is the
same as the Newtonian solution. The non-Newtonian contributions
in both the induced net flow and the rate of working appear at the
next order, i.e. O(�4). In both cases, the effect is linear in n � 1
meaning that shear-thinning fluids (n < 1) and shear-thickening
fluids (n > 1) always induce opposite effects. The leading-order
non-Newtonian contribution to the flow created at infinity is non-
zero only if the sheet deforms both in the direction normal and
tangential to the wave direction. The non-Newtonian contribution
to the rate of working is found to always be negative in the case of
shear-thinning fluids, which are thus seen to systematically de-
crease the cost of transport independently of the details of the
wave kinematics. The maximum gain in dissipated energy is ob-
tained for antiplectic waves where the direction of the propagating
wave and that of the effective cilia stroke are opposite.

The sheet kinematics can be interpreted as a model for the loco-
motion of a flagellated microorganism. In this case, and making the
biologically-realistic assumption that the flagellum is inextensible,
we find that the swimmer is more efficient in a shear-thinning
fluid but that the non-Newtonian contribution to the swimming
speed of the sheet is exactly equal to zero. This result is consistent
with recent experiments [19] showing that the swimming speed of
a nematode waving freely in a shear-thinning fluid is same as that
observed in a Newtonian fluid. In contrast, computations with
swimmers deforming their flagella with increasing amplitude
showed that the locomotion speed was enhanced by shear thin-
ning. The effect was attributed to a viscosity gradient induced by
the increased beating flagellar amplitude, a result which could
potentially be tackled theoretically with an approach similar to
ours adapted to their kinematics [22]. In contrast, recent experi-
ments with a two-dimensional swimmer model showed a decrease
of the swimming speed in a shear-thinning elastic fluid [21], a re-
sult not explained by our theoretical approach but perhaps due to
the importance of higher-order terms for large-amplitude swim-
ming or due to non-negligible elastic effects.

Viewing the sheet as a model for the transport of non-Newto-
nian fluids by cilia arrays, we address three different types of kine-
matics to understand the impact of shear-thinning fluids on the
flow transport: kinematics dominated by normal deformation,
those dominated by tangential motion, and kinematics where nor-
mal and tangential beating were of the same order of magnitude. In
all three cases we consider four different values of the phase be-
tween the normal and tangential waving motion, and the results
are summarized in Table 2 where we used ‘‘+’’ to denote instances
when the shear-thinning fluid improves on the performance (flow
velocity or transport efficiency) and ‘‘�’’ otherwise. In all cases, a
shear-thinning fluid renders the flow transport more efficient,
and in eight out of the twelve cases it also increases the transport
speed – in particular for the biologically relevant case where the
magnitudes of the normal and tangential deformation are of the
same order. A further numerical investigation in Section 5.4.4 also
identifies the regions in which the non-Newtonian term is stronger
than the Newtonian one.

In this paper we have assumed that the fluid has no memory
but instead its viscosity is an instantaneous function of the shear
rate – a class of models known as generalized Newtonian fluids.
Under that limit, we saw that the shear-thinning property of mu-
cus does facilitate its transport by cilia arrays. The constitutive
model we used in this work then serves as an alternative model
to the previously-studied two-fluid model and allows us to treat
the mucus layer as a continuous fluid. We still need, however, to
estimate the contribution of the shear-thinning effects. Indeed,
they do not play any role at leading order but only contribute at
Oð�4Þ. Elastic stresses, in contrast, do contribute at order Oð�2Þ
and hinder the fluid transport by the prefactor [12,19]:

1þ De2gs=g
1þ De2 ; ð80Þ

where the Deborah number, De, is defined as De = krx, with kr being
the relaxation time of the fluid, and gs/g is the ratio of the solvent
viscosity with the viscosity of the polymeric solution (typically gs/
g� 1). For mucus we have kr � 30 s [52], and thus, using the typical
frequency in Table 1 for tracheobronchial cilia, we have
De � 4 � 103� 1. For a solvent with the same viscosity as water,
we have gs/g � 10�5 at zero shear rate (see Fig. 2) and thus De2gs/
g� 1. Elastic effects lead therefore to a decrease of the transport
speed by a factor of gs/g.

To compare simply the elastic and shear-thinning contributions,
consider a viscoelastic fluid being deformed by a low-amplitude
undulating surface with normal and tangential motion of the same
order of magnitude. The magnitude of the shear-dependent contri-
bution to the transport velocity scales as 	 �4jN jCu2 while the
elastic contribution scales as 	 �2gs/g. With jN j � 0:4, kt � 2000 s
(Fig. 2), and x = 2p � 20 Hz (Table 1), the ratio of shear-dependent
to elastic effects varies as 	 �2jN jCu2=ðgs=gÞ 	 1015 �2. Despite the
different scaling with the motion amplitude �, and although our re-
sults are only strictly valid in the mathematical limit �? 0, we ex-
pect that the shear-dependent viscosity will play the most
important role on the ability of cilia to transport mucus-like fluids.
In addition, a similar scaling ratio can be computed to compare the
non-Newtonian contribution derived in our paper, Uð4ÞNN , to the
Newtonian speed at leading order, U(2), and we find
Uð4ÞNN=Uð2Þ 	 �4jN jCu2=�2 	 1010 �2, another potentially very large
ratio.2 It is therefore clear that the rheological properties of the sur-
rounding fluid will play important roles in the fluid flow produced by
cilia arrays [6,28,40].

Beyond the assumption on the fluid rheology, the model pro-
posed in this paper has been carried out under a number of math-
ematical assumptions. The calculation was two-dimensional and
as such does not address the flow in the direction perpendicular
to the plane of the wave propagation. For the sheet as a model
for flagellar locomotion, the finite-length of the flagellum is ex-
pected to play an important role in non-linear fluids. And for cilia,
the discrete nature of the cilia in a dense array will also lead to
nontrivial flow in the sublayer with contributions to both transport
and energetics still unquantified. It is hoped that these limitations
do not prevent the current results to still be relevant to both
locomotion and transport studies, for example mucus transport
in the respiratory track, but instead suggest potentially interesting
directions with future work.
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Appendix A. Application to other generalized Newtonian fluids

In this paper we have used a specific empirical model (Carreau
fluid) to mathematically describe the relationship between viscos-
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ity and shear rate. How applicable are our results to fluids de-
scribed by other rheological laws, gð _cÞ? In the asymptotic limit as-
sumed this work, we need a fluid model able to describe the
behavior of flows in the limit of low shear rates. We first require
the viscosity, g, to be a smooth function of the shear rate, _c, leading
a nonzero value of g in the limit _c! 0, denoted g(0). This require-
ment rules out the use of the power-law model, valid only in the
limit of high shear rates [49]. Due to the �? � � symmetry, the
shear-dependent viscosity needs to be an even function of the
shear rate. The only even function at order one in � is the absolute
value function, which is not smooth (differentiable) at _c ¼ 0.
Hence, the viscosity necessarily has to be a function of the shear
rate square. As described in the text, we have

j _cj2 ¼ �2 Pð1Þ

2
þOð�3Þ: ðA:1Þ

In the limit of small wave amplitudes, the viscosity then takes the
general form

gðj _cj2Þ ¼ g �2 Pð1Þ

2
þOð�3Þ

" #
¼ gð0Þ þ �2 Pð1Þ

2
dg
d _c2 j0; ðA:2Þ

using a Taylor expansion near zero. The shear-dependent viscosity
will thus give an effect at order Oð�2Þ at best, and thus at Oð�3Þ in
the flow field. If the derivative in Eq. (A.2) is zero then the effect will
be at higher order. If instead the derivative is not defined, then the
model is not appropriate to describe flow behavior at small shear
rates. In the case of the Carreau model considered above, the deriv-
ative dg=d _c2j0 takes a finite value, so we indeed obtain a nonzero ef-
fect at second order. There are other models that could potentially
be used as well to fit rheological data. One of such model is that
of a Cross fluid, given in a dimensionless form by

g�1 ¼ 1þ ½ðCuj _cjÞ2�
�N
: ðA:3Þ

In that case, it is first straightforward to show that only N 6 0
(shear-thinning fluid) leads to a finite value of the viscosity at zero
shear rate. Computing the derivative in Eq. (A.3) to perform the
Taylor expansion it is then easy to show that only the specific case
N ¼ �1 leads to a finite value for dg=d _c2j0. When N ¼ �1 the re-
sults obtained for a Cross fluid would thus be similar to the results
described in the paper; whenN > �1 the Cross fluid is not well de-
fined near the zero-shear-rate limit while when N < �1 the deriv-
ative of the viscosity is zero, and therefore non-Newtonian effects
on the fluid flow would appear at a higher order. A similar analysis
can be carried out for the Ellis fluid, given by

g�1 ¼ 1þ jsj2=s2
ð1=2Þ

h iN
; ðA:4Þ

with similar results (jsj is the magnitude of the stress tensor and s(1/

2) is the shear at which g = 1/2). Consequently, for any generalized
Newtonian fluid with a well-defined behavior in the zero-shear-rate
limit, the asymptotic results are either exactly the same as the ones
in our paper, or they predict a non-Newtonian impact only
occurring at higher-order in the wave amplitude (and are thus iden-
tical to the Newtonian results up to order �4 at least).
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