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We address the collective dynamics of non-Brownian particles cruising in a confined microfluidic

geometry and provide a comprehensive characterization of their spatiotemporal density fluctuations. We

show that density excitations freely propagate at all scales, and in all directions even though the particles

are neither affected by potential forces nor by inertia. We introduce a kinetic theory which quantitatively

accounts for our experimental findings, demonstrating that the fluctuation spectrum of this nonequilibrium

system is shaped by the combination of truly long-range hydrodynamic interactions and local collisions.

We also demonstrate that the free propagation of density waves is a generic phenomenon which should be

observed in a much broader range of hydrodynamic systems.
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Understanding the collective dynamics of non-Brownian
particles in viscous fluids is a long-standing challenge in
fluid mechanics. For example, many features of sedimen-
tation in a quiescent fluid are still poorly understood.
Rather than falling along straight lines, as an isolated
particle does, sedimenting particles experience swirling
motion correlated over large finite distance, the physical
origin of which has been under debate for more than
30 years [1,2]. The conceptual complexity of this collective
dynamics contrasts with the formal simplicity of the
(linear) Stokes equation that rules low-Reynolds-number
flows. Immersed bodies generically affect both the
momentum and the mass transfers of the fluid, even
when not driven by external fields. As a result, long-range
interactions arise between the particles due to the interplay
between the local velocity of the fluid and the motion of the
particles. They vanish only for uniform flows, for which
the particles would be all advected at the same speed as
the fluid, irrespective of their spatial distribution. Such a
condition is never achieved when the fluid is confined by
rigid walls or obstacles. Friction with the bounding walls
causes strong distortions of the flow field, inducing effec-
tive interactions between the particles [3–6]. As it turns
out, the transport of particle-laden fluid through rigidly
confined geometries is involved in a number of industrial
and natural processes, including filtration [7], colloid
deposition on solid surfaces [8,9], droplet-based micro-
fluidics [10,11], blood microflows [12], protein motion in
lipid membranes [3], and bacteria swarming [13,14].
Understanding the particle transport in confined films is a
necessary first step toward the description of particle traffic
in more complex geometries such as ordered, or random

porous networks. Recently, pioneering experiments probed
the propagation of density heterogeneities in bidimensional
emulsions and droplet streams [15,16]. Focusing on a semi-
local quantity, the droplet density averaged over the channel
width, Beatus et al. revealed the propagation of longitudinal
nonlinear density waves, Burgers shocks, resulting from the
linear variation of the droplet speed with the local density
[15]. However, this observation does not account for the
complexity of the structural [17], and spatiotemporal
fluctuations observed at all scales in rigidly confined
particle-laden fluids, regardless of their specific geometry,
composition, and driving mechanism [13,15,17–19].
Here, we combine advanced microfluidic experiments

and kinetic theory to shed light on the collective dynamics
of particles advected in shallow microchannels. We first
characterize their density fluctuations. We show that they
freely propagate, at all scales and in all directions, in a
dispersive manner. We then quantitatively demonstrate
how the interplay of hydrodynamic and steric interactions
shape the fluctuation spectrum of the linear density waves.
Finally, we close this Letter by stressing that the impact
of our results goes beyond microfluidic systems. We show
how to use bidimensional microfluidic emulsions as a
proxy to probe collective effects in a much broader range
of hydrodynamic systems including diffusiophoretic sus-
pensions, foams, or emulsions, cruising through porous
media, and confined sedimentation.
We developed a model microfluidic experiment which

made it possible to track the individual positions of
hundreds of thousands of identical droplets interacting
hydrodynamically in a shallow channel. Briefly, the system
consists of a monodisperse oil-in-water emulsion flowing
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in a shallow microchannel. The length and width of the
channel, L�W ¼ 5 cm� 5 mm, are much larger than its
height, h ¼ 27� 0:1 �m, which compares with the drop-
let diameter, see Fig. 1. The emulsion is, therefore, con-
fined in a quasi-2D geometry. The droplets are formed at a
conventional flow-focusing junction followed by a dilution
module. The fluid flow rates are imposed by high-precision
syringe pumps. Etched-glass microchips ensure that the
channel dimensions are unaffected by the flow conditions.
In addition, the geometry of the junction, and the range of
flow rates, are chosen so that the formation of the droplet is
unaffected by the dilution flow. Therefore, we accurately
controlled both the droplet radius, Rd, and the average area
fraction, �, occupied by the emulsion. Here, we report
results obtained for Rd ¼ 16:7� 0:3 �m (Rd=h ¼ 0:62),
and 0:21<�< 0:56. Varying the droplet sizes up to
Rd � 2h does not qualitatively change our measurements.
The droplets are visualized using fluorescence imaging.
For each experiment we tracked �105 particle trajectories
in a region close to the center of the main channel, Fig. 1(b).
For more details, see the Supplemental Material [20].

Without droplets, the fluid flow would be uniform along
the x direction in the observation region. This is evidenced
by the linear trajectories followed by isolated droplets

cruising along the channel. Conversely, even at the smallest
surface fraction, the droplets undergo large fluctuations in
their motion, as shown in the movie in the Supplemental
Material [21]. These fluctuations lead to the formation of
particle clusters at all scales. These clusters are clearly
seen to travel at a speed that is different from the mean
droplet velocity. Density bands transverse to the flow are
faster than the longitudinal ones. However, these clusters
are transient structures, they form and break apart in a
continuous fashion. Our purpose is to elucidate the
physical mechanisms responsible for this complex and
fluctuating dynamics. To quantify the spatiotemporal
fluctuations of the droplet density field �ðr; tÞ, where
r ¼ ðx; yÞ, we measure its power spectrum. Introducing

the Fourier transform of the local density, �q;!0¼ð1=2�Þ�R
�ðr;tÞeiðq�r�!0tÞdrdt, the power spectrum is defined as

j~�q;!0 j2, where ~�ðr; tÞ � �ðr; tÞ � h�ðr; tÞi. Practically, �
is computed from the particle positions as �ðr; tÞ �P

iGðr� riðtÞÞ, where riðtÞ is the position of the ith drop-
let, and where G is a Gaussian shape function.
In Fig. 2(a), we show a cut of a typical power spectrum

in the (!0, qx) plane. This example corresponds to � ¼
0:39, and to qyRd ¼ 0:2. Several important comments are

in order. (i) The power spectrum is localized in the Fourier
space, which is the hallmark of propagative dynamics for
the density fluctuations, as first noted in Ref. [15] for the
specific case of the y-averaged density mode (qy ¼ 0). We

stress that compression modes propagate even though the
droplets do not interact via potential forces, and even
though their inertia is negligible compared to the viscous
friction at this scale. These ‘‘sound’’ modes originate only
from the hydrodynamic coupling between the advected
particles. (ii) The curve on which the spectrum is peaked
corresponds to the dispersion curve of the density waves.
It deviates markedly from a straight line at moderate wave-
lengths. The hydrodynamic interactions do not merely

(a) (b)

FIG. 1 (color online). (a) Picture of the microfluidic setup.
During the experiments one of these two 5-cm-long channels
was continuously fed with monodisperse droplets. Scale bar:
5 cm. (b) Typical snapshot of an experimental movie. The black
arrows indicate the direction of the flow. Scale bar: 500 �m.

FIG. 2 (color online). (a) Gray-scale power spectrum of the density fluctuations plotted in the (qx, !
0) plane for qy ¼ 0:2=Rd,

� ¼ 0:39, and vF ¼ 1 mm=s. Solid line: theoretical prediction for the location of the dispersion curve. (b) Experimental dispersion
curve !ðqx; qyÞ, � ¼ 0:39. Recall that units are chosen so that Rd ¼ 1, and vF ¼ 1. Given the size of the observation window, the

smallest finite value for q is given by qW ¼ 11:6. The dotted line indicates the qy value corresponding to the power spectrum shown

in (a). (c) Renormalized dispersion relations in the moving frame, qy ¼ 0. Circles: experimental data. Solid line: theoretical prediction,

Eq. (6), with no adjustable parameter. (d) Variations of the mean droplet velocity with �. Circles: experimental data. Solid line: best
linear fit. The error bars account for statistical fluctuations, and correspond to the standard deviation. (e) vgx plotted versus qy at

qx ¼ 0. Circles: experimental data for � ¼ 0:56. Solid line: theoretical prediction with no adjustable parameter deduced from Eq. (6).
The error bars correspond to a 95% confidence interval in the measurement of vgx from the slope of the dispersion curve.
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renormalize the mean advection speed but cause the
density fluctuations to propagate in a dispersive fashion.
(iii) The global shape of the spectrum is conserved for
every area fraction, and more surprisingly for every wave
vector qy provided that the wavelength remains larger than

the particle size (see below).
In all that follows, we discard the trivial nondispersive

contribution due to the advection at the mean droplet
velocity hvdi. We focus on the density fluctuations in the
frame moving at hvdi, and introduce the reduced pulsation
! � !0 � hvdiqx. Experiments done at different area frac-
tions, and thus at different continuous phase velocities due
to dilution, are compared by normalizing the wave vectors
by R�1

d , and the pulsations by vF=Rd, where vF is the

velocity of the continuous phase imposed by the syringe
pumps. Figure 2(b) shows a typical dispersion relation:
! ¼ !ðqx; qyÞ, obtained for � ¼ 0:39. The spectrum is

symmetric along the qy direction as expected from the

symmetry of the system. Furthermore, density fluctuations
propagate in all directions except in the one strictly trans-
verse to the flow (qx ¼ 0). In addition, the dispersion curve
displays an axial symmetry with respect to the qy axis. It is

worth noting that the sign of the associated phase velocity
changes as qx increases. The long wavelength excitations
propagate downstream, while the short wavelength excita-
tions propagate upstream.

In Fig. 2(c), we show that once renormalized by �, the
dispersion relations corresponding to 12 different area
fractions collapse on a single master curve. This noticeable
collapse is not specific to the purely longitudinal waves and
occurs for all the possible qy values. Our systematic rescal-

ing demonstrates that a unique set of physical mechanisms
dictates the collective motion of the droplets, at all scales,
regardless of the droplet density.

We now propose a theoretical model which quantita-
tively accounts for our experimental findings. The instan-
taneous configuration of the emulsion is fully determined
by the positions ofN identical axisymmetric particles: riðtÞ,
i ¼ 1 . . .N. The dynamics of an isolated particle has proven
to be correctly captured by a constant mobility coefficient,
�, defined as _riðtÞ � �vðri; tÞ where vðr; tÞ is the in-plane
fluid velocity field averaged over the channel height in the
absence of the particle i [15,16]. In our quasi-2D geometry,
the fluid flow is potential and derives from the local pres-
sure field, v ¼ �GrP, where G ¼ h2=12�, � being the
viscosity of the aqueous phase; vðr; tÞ is then fully deter-
mined when considering the incompressibility condition,
and the no-flux boundary conditions through the sidewalls
of the channel. In a particle-free channel, the velocity field
would be uniform, v ¼ vFx̂. The particles are not passive
tracers (�< 1); therefore, their relative motion with
respect to the fluid results in a dipolar disturbance of the
surrounding flow [3,4]. The potential dipolar perturbation,
vdipðr; riðtÞÞ, induced at the position r by a particle located
at riðtÞ is defined by the modified incompressibility relation

r � vdipðr; riðtÞÞ ¼ �@x�ðr� riðtÞÞ; (1)

where� is the dipole strength (�> 0). In order to establish
the equations of motion of the N particles, we now assume
the dipolar disturbances to be pairwise additive. This
yields _riðtÞ ¼ �vFx̂þ�

P
j�iv

dipðriðtÞ; rjðtÞÞ. We now

move from these N coupled equations to a hydrodynamic
description for the particle density field �ðr; tÞ. �ðr; tÞ obeys
the conservation equation

@t�ðr; tÞ þ r � jðr; tÞ ¼ 0: (2)

In order to relate the local particle current jðr; tÞ to the local
structure of the suspension, we used a conventional kinetic
theory framework [22,23]

j ðr; tÞ ¼ ��ðr; tÞvF þ�
Z

dr0vdipðr; r0Þ�ð2Þðr; r0; tÞ; (3)

where �ð2Þðr; r0; tÞ is the two-point distribution function.We
now assume that the particle positions decorrelate over a
distance as small as one particle diameter. In addition to this
mean-field approximation, we also explicitly account for
the steric repulsion between the particles via the following
closure relation for Eq. (3)

�ð2Þðr; r0Þ ¼
���������

0 if jr� r0j< 2Rd;

�ðrÞ�ðr0Þ if jr� r0j � 2Rd;
(4)

where Rd is the radius of a particle. Equations (3) and (4)
define the equations of motion for the particle-density field.
In principle, the effective extent of the excluded volume
could be larger than the particle radius due to short-range
intermolecular repulsions and lubrication forces. However,
nomeasurable differencewith the actual droplet radius could
be observed in our experiments. We now focus on the
dynamics of small density fluctuations, ~�ðr; tÞ, around a
homogeneous state: ~�ðr; tÞ � �ðr; tÞ � �0, where �0 ¼
h�ðr; tÞi ¼ �=ð�R2

dÞ. As in our experiments, we work in

the frame moving at the mean droplet velocity hvdi ¼
�vFx̂þ��0

R
jr�r0j�2Rd

vdipðr; r0Þdr0. At leading order in

~�, and combining Eq. (3) and (4) ansatz, the current func-
tional that captures both the hydrodynamic interactions (long
range) and the contact interactions (short range) remains

nonlocal: ~jðr; tÞ � ��0

R
jr�r0j�2Rd

vdipðr; r0Þ~�ðr0; tÞdr0.
However, using Eq. (1) and focusing on particles far from

the sidewalls, then r � ~j takes a simple local form

r � ~jðr; tÞ ¼ ���0�

4�Rd

Z 2�

0
~�ðr� 2Rdr̂

0Þ cos�0d�0; (5)

where, since Rd � W, we have used the expression of the
dipolar perturbation corresponding to an unbounded domain
[4], vdipðr; rþ 2Rdr̂

0Þ � r̂0 ¼ �ð� cos�0Þ=8�R2
d, with r̂0 �

cos�0x̂þ sin�0ŷ. We now look for plane wave solutions
~�ðr; tÞ ¼ P

q ~�q expði!t� iq � rÞ of Eq. (2). After some
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elementary algebra, we infer their dispersion relation, which
is our main theoretical result

! ¼ ð���0Þqx J1ð2qRdÞ
2qRd

; (6)

where J1 is the first Bessel function.As! is real, this relation
implies that density waves freely propagate in the channel
in qualitative agreement with our experimental observations.

It is worth noting that sincer � ~j is a local quantity, the form
of the dispersion relation is generic, and does not depend on
the channel size and geometry. In addition, the linear varia-
tions of ! with �0 explain the collapse of the normalized
dispersion relations on a single master curve over the entire
range of wave vectors [Fig. 2(c)].

We now move to a quantitative comparison between our
theoretical predictions and our experimental measure-
ments. Equation (6) is fully determined by two physical
parameters: the droplet radius Rd, and ���0 that quanti-
fies the strength of the hydrodynamic couplings. In order to
determine this latter parameter, we exploit another specific
feature of the hydrodynamic interactions. Due to their
symmetry, the sum of all the dipolar perturbations would
leave the mean droplet velocity unchanged in an isotropic
and homogeneous system. However, in anisotropic-
channel geometries, hvdi increases linearly with the mean
density irrespective of the channel size [11]. At 0th order
in ~�, hvdi ¼ �vFx̂þ ð1=2Þð���0Þx̂. Importantly, this
relation provides a direct means to measure independently
the last unknown parameter of our theory. The linear
increase of the measured value of hvdi with �0 appears
clearly in Fig. 2(d). The strength of the hydrodynamic
coupling (���0) can, thus, be inferred from a linear fit
[see Fig. 2(d)].We superimposed our theoretical predictions
for the dispersion relation, Eq. (6), both in the laboratory
frame and in the frame moving at hvdi in Figs. 2(a) and 2(c).
We find that the agreement between the theory and the
experiments is excellent over a wide range of wave vectors
and area fractions. Without any free fitting parameters,
our model quantitatively captures the dispersive nature of
the density fluctuations observed in the flowing emulsions.

To gain additional physical insight into the propa-
gation of the density waves, it is worth looking at the
small-q expansion of Eq. (6): ! ¼ ð1=2Þ���0qx�
½1� ð1=2ÞðqRdÞ2	 þO½ðqRdÞ4	. At leading order, this
relation is nondispersive (linear) for the wave component
parallel to the mean flow. The phase velocity scales linearly
with the magnitude of the dipolar coupling �. In addition,
it does not depend explicitly on Rd, which implies that
the small-q excitations propagate only due to the long-
range hydrodynamic interactions between the particles.
Conversely, the dispersive term in !ðqÞ explicitly depends
on the particle radius. At high q, the propagation of the
density waves is set by the combination of the excluded
volume interactions and the angular symmetry of the
hydrodynamic couplings. To introduce our last quantitative
results, we recall that one of the most striking features

observed in the flowing emulsions is the propagation of
vertical density bands which propagate at a significantly
faster speed than the mean droplet flow, see movie in the
Supplemental Material [21]. A homogeneous vertical band
spanning the entire width of the channel corresponds to the
linear superposition of plane waves associated with qy¼0,

and with qx’s distributed around qx ¼ 0. In the frame
moving at hvdi, their speed is given by the x component
of the group velocity vgxðqx; qyÞ ¼ @!=@qx evaluated at

q ¼ 0. In Fig. 2(e), we plot the experimental values of
vgxð0; qyÞ, which we measured from the slope at the origin

of the dispersion curves [as the ones shown in Fig. 2(c)].
Again the agreement with the theoretical curve deduced
from Eq. (6) is excellent. This plot reveals that the density
bands extended across the entire channel width are the
fastest and propagate at velocities 1.5 higher that the
mean droplet flow, thereby making them highly visible
on the experimental movies.
To close this Letter, we further stress the relevance of

our results to a much broader range of physical systems.
Two ingredients dictate the collective behavior of the
confined emulsions: (i) the hydrodynamic interactions
between the particles result from dipolar perturbations to
the mean flow, (ii) the particles have a finite size. As it turns
out these two features are shared by a number of very
distinct hydrodynamic systems. A first class of example
concerns the transport of particles in porous media.
Regardless of the spatial dimension (2D or 3D), the fluid
flow in a porous network is a potential flow at scales larger
than the typical pore size. In addition, it has been recently
shown that when particles locally obstruct the porous
network they induce a dipolar perturbation to the velocity
field [18]. Therefore, the dispersive propagation of density
excitations is expected to be found in particle filters, blood
microvessels, soils, etc. It is also worth noting that the
dipolar perturbations to the flow found in Hele-Shaw and
in network geometries are not restricted to particles
advected by the surrounding fluid. Sedimenting particles,
rising bubbles, and even self-propelled particles would
move faster than the (confined) host fluid, thereby inducing
dipolar perturbations in the far field as well. The same
collective phenomenology would be found except that the
speed of the density waves should have the opposite signs,
and that the mean particle velocity should decay with the
volume fraction. As a last example, we point out that
particles diffusiophoretically transported by a homogene-
ous solute gradient [24] should also display a very similar
propagative dynamics, as they also induce a weak far field
disturbance that has a dipolar symmetry [25]. This last
example makes it clear that confinement is not a require-
ment to observe the propagation of dispersive waves. The
model microfluidic experiment that we characterized and
described in a quantitative fashion should be seen as a
proxy to probe generic collective effects in particle-laden
fluids driven out of equilibrium.
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