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Optimal propulsive flapping in Stokes flows
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Abstract
Swimming fish and flying insects use the flapping of fins and wings to generate thrust. In
contrast, microscopic organisms typically deform their appendages in a wavelike fashion.
Since a flapping motion with two degrees of freedom is able, in theory, to produce net forces
from a time-periodic actuation at all Reynolds numbers, we compute in this paper the optimal
flapping kinematics of a rigid spheroid in a Stokes flow. The hydrodynamics for the force
generation and energetics of the flapping motion is solved exactly. We then compute
analytically the gradient of a flapping efficiency in the space of all flapping gaits and employ it
to derive numerically the optimal flapping kinematics as a function of the shape of the flapper
and the amplitude of the motion. The kinematics of optimal flapping are observed to depend
weakly on the flapper shape and are very similar to the figure-eight motion observed in the
motion of insect wings. Our results suggest that flapping could be a exploited experimentally
as a propulsion mechanism valid across the whole range of Reynolds numbers.

(Some figures may appear in colour only in the online journal)

1. Introduction

Low Reynolds number (Re) locomotion is a area of fluid
mechanics where opportunities arise to pose optimization
problems primarily with two motivations [1]. Deriving
the shape and swimming gaits of optimal swimmers and
comparing them with experimental observations enables a
direct probe of the energetic and mechanical constraints
in cellular locomotion and transport [2, 3]. In addition,
as synthetic micro-swimming devices are developed for
therapeutic and diagnostic tasks, the potential use of optimal
swimmers would enable both cost-effective design and high-
efficiency performance [4, 5].

Theoretical work on optimal locomotion started with
investigations on singly flagellated eukaryotic cells. The
swimming gait minimizing the energy dissipation in the
fluid—usually framed in terms of a hydrodynamic efficiency,
see [6, 7]—was shown to take the form of a traveling wave
[8]. The shape of the hydrodynamically optimal wave was
derived by Lighthill [6], and improved upon by including
energetic costs associated with flagella bending [9, 10]. Further
work considered the parametric optimization of forms within
specific, elementary, wave families [8, 11, 12]. The optimal

morphologies of model eukaryotic cells employing one or
two planar flagella were derived and successfully compared
to experimental data [13, 14]. Similar work addressed the
optimal shapes of helical flagella, as relevant to the dynamics
of bacteria [2, 15], and of wall-anchored flexible filaments as
relevant to the dynamics of cilia [3, 16].

In the realm of synthetic locomotion, a lot of work has
addressed the optimal swimming problem from a theoretical
standpoint. Purcell’s three-link swimmer [17] was optimized
[18–20], and so was a simpler version of the swimmer using
three aligned spheres [21, 22]. Swimming in two dimensions,
which is amenable to a formulation using complex variables,
was formally optimized [23]. Numerical computations were
used to optimize the deformation of synthetic cilia [24].
The problem of hydrodynamically optimal locomotion and
feeding by surface distortion in three dimensions was recently
addressed using the squirmer model [25, 26].

As new small-scale synthetic swimmer designs become
experimental realities [27–35] there is both fundamental
and practical interest in exploring the parameter space of
the simplest designs possible. Because of Purcell’s scallop
theorem, any synthetic swimming device, or more generally,
any method used to generate propulsive forces and do work at
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Figure 1. Stokesian flapping: a rigid spheroid (either prolate or oblate) of length 2a and width 2b is periodically flapping along a prescribed
straight path of length 2L. The dynamics of the flapper angle, α(t), is determined as part of the optimization procedure. Left: illustration of
prolate and oblate flapping. Right: notation (see text).

low Re under a time-periodic forcing [36–40], needs to possess
at least two degrees of freedom and to actuate them in a non-
time-reversible manner [17]. This is exemplified by Purcell’s
three-link swimmer [17], which exploits exactly two degrees of
freedom in rotation, as well as the three-sphere unidirectional
swimmer, which uses two degrees of freedom in translation
[21]. A third type of force-generating device with two degrees
of freedom would have one degree of freedom in translation
and one in rotation—in other words, a solid body flapper. But
as a difference with the three-link and three-sphere swimmers
ubiquitous in the Stokesian literature, flapping is known to be
an effective method to generate propulsive forces at high-Re,
as exemplified by the wing and fin motion of flying insects
swimming fish.

In this paper we thus enquire on the optimal way to
actuate a flapper to generate propulsive forces in the low
Re regime. Specifically, we compute the manner in which
a solid body spheroid constrained to periodically translate
along a fixed direction is able to generate the maximum
time-averaged propulsive force for a fixed amount of energy
dissipated in the fluid. This is equivalent to flapping with the
maximum hydrodynamic efficiency. After posing the problem
mathematically, we solve exactly for the hydrodynamics of
the motion, calculate analytically the gradient in the flapping
efficiency, and use it to compute numerically the optimal
flapping kinematics in the translation-rotation phase space.
The resulting optimal flapping motion turns out to depend
weakly on the flapper shape and to be similar to the optimal
beat kinematics of insect wings in the high-Re number regime,
suggesting flapping as a robust and Re-independent force-
generation strategy [41–44].

2. Setup

2.1. Geometry

The problem considered in the paper is illustrated in figure 1.
The extremity, A, of solid body spheroid is flapping along a
prescribed straight path. The lab-fixed frame is denoted R0

with center O and unit vectors (ex, ey, ez). The body-moving

frame attached to the center of the spheroid is denotedR1, with
center O′ and unit vectors (e′

x, e′
y, e′

z). For a prolate spheroid,
the axis of symmetry is along e′

y, and it is along e′
x for an

oblate spheroid, so that in both case a net force is expected to
be induced in the ey direction; in both cases the major (resp.
minor) axis has length 2a (resp. 2b). The edge of the flapper,
A, located at (0, a, 0)R1 , translates along the direction ex with
position f (t) and rotates around the (ex, ey) plane with angle
α(t). The functions f and α are time-periodic with period τ .
Time is chosen such that f (0) = f (τ ) = 0, and the translation
has an amplitude of 2L, i.e. max f (t) = − min f (t) = L. Any
point r on the solid body moves thus with the instantaneous
velocity

V(r, t) = ḟ (t) ex + α̇(t) ez × r, (1)

with dots denoting time-derivatives. Due to the two degrees of
motion of the flapper (translation and rotation), in general a net
propulsive force will be generated along the y direction (i.e. at
right angle with respect to the flapping direction). The optimal
flapping problem consists in determining the α ≡ α( f )
relationship in the translation-rotation phase space together
with the rate at which the flapping gait is being performed in
order to maximize the propulsion from flapping for a fixed
energetic cost (or equivalently, minimize the energetic cost of
flapping for a fixed propulsion).

2.2. Dimensionless numbers

Two dimensionless numbers characterize the optimal flapping
kinematics. The first one is the flapper aspect ratio, #, defined
as

# = Axis of symmetry length
Other axis length

, (2)

and # = a/b > 1 for prolate, # = b/a < 1 for oblate, 1 for a
sphere. The limit # → +∞ corresponds to an elongated rod,
while for # → 0 it is a flattened disk. The other dimensionless
number is the flapping amplitude, $, which we define as
$ = L/a.

2



Bioinspir. Biomim. 9 (2014) 016001 L Was and E Lauga

2.3. Dynamics

Let us denote by F and T the net force and the torque applied
by the fluid on the moving body; torques are evaluated at the
center O′ of the spheroid. If η denotes the shear viscosity of
the fluid, then in the Stokes flow regime (Re = 0) we have

(
F
T

)
= −η

(
A B
tB C

)
·
(

U
!

)
, (3)

where A and C are symmetric resistance tensors [45, 46], ! the
rotation rate of the solid body, and U the translation velocity
of the spheroid center. Since spheroids have three orthogonal
planes of symmetry we have B = 0, and therefore F = −ηA·U
and T = −ηC ·!. In the body frame R1, A and C are diagonal
[45, 46], and we write A = λ⊥e′

xe′
x + λ‖e′

ye′
y + λz′e′

ze
′
z and

C = γ⊥e′
xe′

x + γ‖e′
ye′

y + γz′e′
ze

′
z where [λz′ , γz′ ] = [λ⊥, γ⊥]

for a prolate spheroid and [λz′ , γz′ ] = [λ‖, γ‖] for an oblate
spheroid. The values for the individual resistance coefficients,
λ’s, are known exactly [47] and we always have λ⊥ ! λ‖.

Given equation (1), it is straightforward to evaluate the
force, F f , and torque, T f , applied by the flapping motion on
the surrounding fluid, and we obtain in the laboratory frame

F f (t) =




η ḟ (t)[λ⊥ cos2 α(t) + λ‖ sin2 α(t)]
η(λ⊥ − λ‖) ḟ (t) cos α(t) sin α(t)

0





R0

(4)

and T f (t) = ηγz′ α̇(t) ez. We notice that drag anisotropy
(λ⊥ )= λ‖), which occurs for any non-spherical spheroid, leads
to a nonzero propulsive force being generated in the direction
perpendicular to the flapping direction (y).

The instantaneous rate of working, Ẇ ! 0, of the loads
applied by the flapper on the fluid is given by

Ẇ(t) = F f (t) · V(O′, t) + T f (t) · !(t), (5)

which is

Ẇ(t) = η[ ḟ 2(t)(λ⊥ cos2 α(t) + λ‖ sin2 α(t))

+ aλ⊥ ḟ (t)α̇(t) cos α(t) + γz′ α̇2(t)]. (6)

The total work done by flapper during a period is

Wtot =
∫ τ

0
Ẇ(t) dt. (7)

2.4. Time parametrization and minimum work

Over a single period, the net force,
∫

F f dt, and torque,
∫

T f dt,
applied on the fluid is not a function of the particular rate at
which the flapping motion is taking place. This arises because
of the time-independence of Stokes equations and can be
seen by observing that both F f (t) and T f (t) are exact time-
derivatives. As a difference, rates do affect the work done by
the flapper. It was shown by Becker et al [18] that, for any
particular time parametrization, the work done by the flapper
was always above a particular minimum value given by

Wtot ! Wmin = 1
τ

[∫ τ

0

√
Ẇ(t) dt

]2

, (8)

as a result of the Cauchy–Schwartz inequality. This statement
is actually very powerful, because the square root of the rate
of working appearing as an integrand in the right hand side
of equation (8) is an exact derivative, and thus the value of

Wmin does not depend on the particular rate at which flapping
is taking place. Flapping at the minimum rate of working,
Wtot = Wmin, is obtained for the particular rate of flapping
chosen such that Ẇ(t) remains constant during the flapping
period.

2.5. Flapping efficiency

In this paper we want to produce maximum flapping with
minimum energetic cost. Similarly to what is done in the
context of low Re swimming [1, 2, 6–8, 11, 12], we define
a flapping efficiency, ε, as the ratio between an effective
propulsive cost, Weff, to the total energetic cost of flapping,

ε = Weff

Wtot
, (9)

where Wtot is defined by equation (7). Different definitions
of Weff can be proposed. To render ε independent of the
flapping frequency, the effective propulsive work needs
to scale quadratically with the propulsive force. From a
dimensional standpoint, it should then follow the scaling
Weff ∼ τ 〈Fy〉2/ηλ‖. Physically, this scaling arises from
considering the typical velocity, U , at which a body would
move in response to a net propulsive force, 〈Fy〉, namely
U ∼ 〈Fy〉/ηλ, and equating the effective energy to the power
〈Fy〉U times the flapping period. We choose λ ≡ λ‖ because
the flapper is, on average, oriented parallel to the propulsive
direction, and finally get the efficiency

ε = τ 〈Fy〉2

ηλ‖Wtot
, (10)

where the integration of equation (4) leads to

〈Fy〉 = 1
τ

∫ τ

0
Fy(t) dt = η(λ⊥ − λ‖)

2τ

∫ τ

0
ḟ (t) sin 2α(t) dt.

(11)

Other choices for the value of λ can be made but they do not
change the optimal flapping kinematics obtained below. The
form of ε in equation (10) insures that it does not depend on
the flapping frequency nor the fluid viscosity, and therefore the
efficiency is only a function of three parameters: the flapping
amplitude $, the flapper aspect ratio #, and the particular
flapping gait. Our goal is therefore to derive the optimal
flapping gait maximizing ε for fixed values of both $ and #.

3. Steady flapping and optimal angle

A first result can be derived analytically. Let us consider the
situation where the flapping distance is large ($ - 1). Far
from the end points on the flapping path, we expect the solid
body to reach a steady configuration with a constant angle
and a steady translation velocity. In other words, both α and ḟ
should be constant. What is then the optimal steady flapping
angle, α, maximizing the efficiency ε? Intuitively, when α is
zero or π/2 the propulsion direction (y) is aligned with one of
the principal axis of the flapper, and therefore no propulsion
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occurs. An optimal angle must therefore exist. In the steady
limit, the efficiency is given by

ε = τ 〈Fy〉2

ηλ‖Wtot
= η2(λ⊥ − λ‖)

2U2 cos2 α sin2 α

η2λ‖U2(λ⊥ cos2 α + λ‖ sin2 α)

= (β − 1)2G(α), (12)

where β = λ⊥/λ‖ and

G(α) = cos2 α sin2 α

β cos2 α + sin2 α
· (13)

The maximum of the function G is obtained for a particular
angle, αopt, given by

αopt = arccos[(1 +
√

β)−1/2], (14)

with a corresponding flapping efficiency of

εmax(β) = (
√

β − 1)2. (15)

In the very slender limit of prolate spheroids, a - b, we have
β → 2, leading to an optimal angle αopt ≈ 50◦ and a flapping
efficiency εmax ≈ 17.2%. That angle is reminiscent of the
constant flagellar slope derived by Lighthill in the context of
optimal locomotion using flagellar waves [6]. Everything else
being equal, we see from equation (11) that the propulsive
force is maximum when sin 2α = 1 and thus α = π/4.
The actual optimal angle is larger than that value because,
from an energetic standpoint, angles above π/4 require less
work (per unit speed of translation) than those below π/4. In
the opposite oblate limit of thin disks, we have β → 3/2,
leading to αopt ≈ 48◦ and an efficiency εmax ≈ 5%. As will be
discussed below, when the flapping amplitude is large, optimal
flapping will be composed of such steady flapping periods near
the optimal angle followed by turning events.

4. Optimal unsteady flapping

4.1. Calculus of variations

We now consider the general case of unsteady flapping. We
wish to find the flapping gait leading to a maximum value of
the efficiency given in equation (10). In order to numerically
compute the optimal flapping gait, we first use calculus of
variations to analytically determine the small change in the
flapping efficiency, δε, resulting from a small change in the
gait. In order to do so, let us imagine that the translational
part of the flapping is a known periodic function of time, f (t).
We then consider a particular time-periodic orientation, α(t),
and assume it undergoes a small change α → α + δα. Given
equation (10), the resulting change in the flapping efficiency
is given by

δε = τ

ηλ‖

〈Fy〉
W 2

tot
· (2Wtotδ〈Fy〉 − 〈Fy〉δWtot), (16)

and have thus to compute the change to the force, δ〈Fy〉, and
the change to the work, δWtot. To calculate the first one, we use
equation (11) to obtain

δ〈Fy〉 = η(λ⊥ − λ‖)

τ

∫ τ

0
δα · ḟ (t) cos[2α(t)] dt. (17)

The change in the total work can be found using equations (7)
and (6), leading to

δWtot = η

∫ τ

0
[δα · h1( ḟ ,α, α̇) + δα̇ · H2( ḟ ,α, α̇)] dt, (18)

where

h1( ḟ ,α, α̇) = (λ‖ − λ⊥) ḟ 2 sin(2α) − aλ⊥ ḟ α̇ sin(α), (19)

H2( ḟ ,α, α̇) = aλ⊥ ḟ cos(α) + 2γz′ α̇. (20)

As f and α are both time-periodic function, we can use an
integration by part to obtain

δWtot = η

∫ τ

0
δα[h1( ḟ ,α, α̇) + h2( ḟ , f̈ ,α, α̇, α̈)] dt, (21)

where the function h2 is given by

h2( ḟ , f̈ ,α, α̇, α̈) = dH2( ḟ ,α, α̇)

dt
· (22)

Carrying out the algebra we obtain

δWtot = η

∫ τ

0
δα[(λ‖ − λ⊥) ḟ 2(t) sin[2α(t)]

−aλ⊥ f̈ (t) cos[α(t)] − 2γz′ α̈(t)] dt. (23)

Combining equations (17) and (23) into equation (16) we
finally get the gradient

δε = τ

λ‖

〈Fy〉
W 2

tot

∫ τ

0
δα · H( ḟ , f̈ ,α, α̇, α̈) dt, (24)

where the function H( ḟ , f̈ ,α, α̇, α̈) is given by

H = 2Wtot

τ
(λ⊥ − λ‖) ḟ cos 2α

−〈Fy〉[(λ‖ − λ⊥) ḟ 2 sin 2α − aλ⊥ f̈ cos α − 2γz′ α̈], (25)

and where Wtot and 〈Fy〉 depend on the instantaneous values of
α, ḟ , and α̇.

4.2. Numerical implementation

We discretize the time interval [0, τ ] in N points, and both f
and α are so discretized. Their first and second derivatives with
respect to time are defined using centered finite differences
extended to end points using time-periodicity of the functions.
The analytical gradient, H, derived in the previous section
(equation (25)) is then used numerically to derive the optimal
flapping motion. Two things need to be found in order to
converge to the optimal solution: the optimal relationship
α ≡ α( f ) and the optimal rate at which the flapping motion
leading to minimum work.

We first start by a uniform discretization, termed t0, of
the interval [0, τ ] with N points. We take as initial guess
the dimensionless flapping dynamics f0 = sin(2πt0), and
numerically solve for the discrete solution, α0, solving the
nonlinear equation H(α) = 0 in a discretized sense using
Matlab. With this solution for both f (t) and α(t), we find
the new time parametrization which leads to flapping with
minimum rate of working, first by calculating the value of Wmin
using equation (8), and then by finding the new distribution of
time intervals such that Ẇ(ti) = Wmin/τ for i = 1 . . . N. With
this new time parametrization we iterate. Convergence to the
optimal solution is usually obtained in less than ten steps and
systematically leads to a unique solution. The value N = 100
was found sufficient for our results to quickly converge and
larger values of N leave our results unchanged.

4



Bioinspir. Biomim. 9 (2014) 016001 L Was and E Lauga

Figure 2. Flapping strokes during one period of optimal flapping with $ = 1 for # = 3, 10, 30, and 102. The flapping efficiencies are
respectively 0.6%, 2.2%, 3.6%, and 4.8%. The light orange shapes display strokes during the right-moving portion of the flapper hinge while
the black correspond to a left-moving hinge.

Figure 3. Optimal flapping for prolate (# = 102, left) and oblate (# = 10−2, right) spheroids. The stroke is illustrated in the dimensionless
α versus x/L space for three values of the dimensionless flapping distance $ = 0.1 (dotted), 1 (solid), and 10 (dashed line).

4.3. Optimization results

The flapping stokes resulting from the optimization procedure
are shown in figure 2 in the prolate case for four slenderness
ratios (# = 3, 10, 30, and 102) at equally-spaced instants of
time. The kinematics displayed in figure 2, which show both
translation and rotation of the flapper and appear to depend
very weakly on the actual flapper shape, are the main results
of this paper. The free-end of the flapper describes a figure-
eight motion, a type of kinematics surprisingly reminiscent of
the path followed by insect wings at very high-Re [41–44].
Specifically, the angle describing the orientation seem to be
ahead, from a phase standpoint, from the translation, such
that when the flapper reaches its maximum flapping amplitude
and starts moving in the opposite direction, its orientation has

already changed so as to produce a propulsive force in the
correct direction (here, ey).

This phase difference can be understood with simple
scaling arguments. Examining equation (4) for the value of the
propulsive force, we see that from a scaling standpoint the force
induced on the fluid is Fy(t) ∼ ḟ (t) cos α(t) sin α(t) and in the
small angle limit it becomes Fy(t) ∼ ḟα. With a sinusoidally-
varying flapping position, f ∼ sin t, and postulating α ∼
sin(t + φ) then we see that the induced time-averaged force
is given by 〈Fy〉 ∼ sin φ. Given that Fy is the force acting
from the flapper on the fluid we want it to be negative and
of maximum magnitude (in order to induce propulsion and
locomotion in the positive y direction), which occurs for a
flapping angle ahead of the flapper position with φ = −π/2
and thus α ∼ − cos t.
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Figure 4. Optimal turning for a prolate slender flapper (# = 102) as
the end solution of optimal flapping with $ = 10. The gray shape
on the left shows the optimal flapping angle in the case of steady
flapping. During the flapping stroke, right-moving shapes are shown
in light orange and left-moving shapes in black; the red shape (thick
line) corresponds to the instant where the translational velocity of
the flapper is zero.

In contrast with the shape change which has very little
impact on the optimal kinematics, varying the amplitude of
the flapping motion greatly influences the optimal flapping
motion. This is shown in figure 3 where we display the
optimal flapping strokes in the dimensionless α versus x/L
plane for three flapping amplitudes ($ = 0.1, 1 and 10)
and both a prolate spheroid (left, # = 102) and an oblate
one (right, # = 10−2). As can be seen by comparing the
right and left sides of figure 3, the optimal flapping path is
very similar for prolate and oblate shapes, suggesting that
it might be used as a robust force-generation mechanism at
low Re. Along the paths shown in figure 3, the kinematics
occurs in the counter-clockwise direction, leading to a force
induced on the fluid in the −y direction, and thus a force on
the flapper (and subsequent locomotion) in the +y direction.
Given that the Stokes equations are time-reversible, an equally
optimal solution would rotate along the same paths but in the
clockwise direction, producing a propulsive force of identical
magnitude but opposite sign. In other words, if a particular

flapping kinematics is optimal with time going forward, the
one obtained by going backwards in time will also be optimal.
Note that the small-angle limit α 0 1 introduced above in
order to understand the phase difference between flapping and
pitching would predict an ellipsoidal path in parameter space.

For large flapping amplitude ($ = 10) we see that most
of the path occurs at a constant flapping angle, close to the one
derived in section 3, with quick turning events. As a difference,
when $ is of order one or less, the flapping distance is not
sufficiently long to allow the optimal angle to be reached. A
turning event in the limit of large flapping amplitude is further
illustrated in figure 4, where it is compared with the theoretical
optimal flapping angle in the steady limit (gray). In addition
to right- and left-moving shapes, we display in red (thick line)
the particular shape at which the moving hinge of the flapper
changes direction.

Although the difference in shape (prolate versus oblate)
does not lead to noticeable changes in the optimal kinematics,
one aspect in which both shapes differ is in their flapping
efficiency. In figure 5 (left), we display the dependence of
the flapping efficiency on the flapping amplitude for various
prolate (solid lines) and oblate (dashed lines) shapes. For a
given shape, #, the efficiency increases monotonically with
the flapping amplitude until asymptotically reaching the steady
limit of section 3. In figure 5 (right), we show the iso-values
of the flapping efficiency as a function of the dimensionless
flapping amplitude, $, and the flapper shape #, with prolate
spheroids shown in the upper half (green) and oblate in
the bottom half (blue). Note that spheres do not generate
propulsive forces and have thus zero efficiency. Flapping using
prolate shapes systematically outperforms oblate shapes of
similar aspect ratio. A flapping efficiency of ∼ 17%3 is the
maximum possible efficiency, and it is obtained in the limit

3 The values of ε in figure 5 should not be directly compared with the typically
small efficiencies of biological microswimmers [7]. This is because we do not
consider free-swimming motion in our paper, but only the optimal generation
of a propulsive force.

Figure 5. Left: Dependence of the flapping efficiency, ε, on the flapping distance, $, for prolate (solid lines) and oblate shape (dashed) of
various aspect ratios. Right: Iso-values of the flapping efficiency, ε, as a function of flapper aspect ratio (#) and flapping distance ($); Top:
prolate spheroid, each line displaying increments of 1% in efficiency; Bottom: oblate, each line shows increments of 0.5% in efficiency.
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of large slenderness and flapping amplitude. In contrast, the
maximum efficiency which can be reached in the limit of
infinitely-thin plates is only on the order of 5% (both are the
asymptotic steady limits from section 3). Flappers of a fixed
motion amplitude, $, are increasingly more efficiency as they
become more slender (prolate) or thin (oblate).

5. Discussion

In this paper we derived the optimal flapping strokes of
prolate and oblate spheroids. The focus on simple geometrical
shapes allowed us to describe the hydrodynamics for the
force generation and its energetics exactly. It also allowed
us to derive analytically the gradient of the efficiency in the
flapping stroke, leading to a straightforward computational
implementation. The results we obtained are significant both
in a biological context and for biomimetic applications.
Biologically, it is quite remarkable that the optimal kinematics
for force generation at low Reynolds are so similar to
the ones observed in the beat kinematic of insect wings
[41–44], although for completely different physical reasons.
The physics relevant to force generation in the flying and
hovering of insects and the swimming of fish is governed
by the principles of unsteady aerodynamics and involves
vorticity dynamics in the wake and flow separation, and
their relationship to the wing/fin angle of attack [43]. In our
case, obviously, the physics is completely different. Instead of
reactive dynamics, all the hydrodynamics forces generated at
low Re are resistive in nature, including the one inducing
the net propulsion. Furthermore, the most efficient shapes
in the Stokesian limit are not wings (oblate) but filaments
(prolate), and the hydrodynamic efficiency of flapping in our
low-Re study is significantly smaller than the typically large
efficiency of high-Re flapping flight. Despite these differences,
the typical figure-eight motion shown in the wing/filament
kinematics, and the phase delay between flapping and pitching,
are sufficiently similar to be noted. Whereas a lot has been
written about the fundamental differences between locomotion
in the low versus high-Re number world, the similarities
noted in our paper appear to be unique. From an applied
standpoint for biomimetic applications, our results suggest
that flapping could be exploited as a unique Re-independent
propulsion mechanism. Clearly experimental challenges exist
in an implementation of a mechanism with moving parts
on small length scales such as the one considered here.
Furthermore, the optimal flapping kinematics would have to be
re-derived for any specific free-swimming implementation of
the idea, taking account the force and moment distribution on
the whole, free-swimming, device. We hope that the existence
of the optimal, Re-independent, motion derived in our work
will stimulate further experimental work.
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