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Most classical work on the hydrodynamics of low-Reynolds-number swimming
addresses deterministic locomotion in quiescent environments. Thermal fluctuations in
fluids are known to lead to a Brownian loss of the swimming direction, resulting in a
transition from short-time ballistic dynamics to effective long-time diffusion. As most
cells or synthetic swimmers are immersed in external flows, we consider theoretically
in this paper the stochastic dynamics of a model active particle (a self-propelled
sphere) in a steady general linear flow. The stochasticity arises both from translational
diffusion in physical space, and from a combination of rotary diffusion and so-called
run-and-tumble dynamics in orientation space. The latter process characterizes the
manner in which the orientation of many bacteria decorrelates during their swimming
motion. In contrast to rotary diffusion, the decorrelation occurs by means of large and
impulsive jumps in orientation (tumbles) governed by a Poisson process. We begin
by deriving a general formulation for all components of the long-time mean square
displacement tensor for a swimmer with a time-dependent swimming velocity and
whose orientation decorrelates due to rotary diffusion alone. This general framework
is applied to obtain the convectively enhanced mean-squared displacements of a
steadily swimming particle in three canonical linear flows (extension, simple shear
and solid-body rotation). We then show how to extend our results to the case where
the swimmer orientation also decorrelates on account of run-and-tumble dynamics.
Self-propulsion in general leads to the same long-time temporal scalings as for
passive particles in linear flows but with increased coefficients. In the particular
case of solid-body rotation, the effective long-time diffusion is the same as that in
a quiescent fluid, and we clarify the lack of flow dependence by briefly examining
the dynamics in elliptic linear flows. By comparing the new active terms with those
obtained for passive particles we see that swimming can lead to an enhancement of
the mean-square displacements by orders of magnitude, and could be relevant for
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biological organisms or synthetic swimming devices in fluctuating environmental or
biological flows.

Key words: biological fluid dynamics, shear flows, low-Reynolds number locomotion

1. Introduction
A complete physical understanding of many processes occurring at small scales

and involving active particles has proven both challenging and an exciting avenue for
biomechanics and bioengineering research. Important biological topics with ongoing
research include the dynamics of plankton in marine ecosystems (Guasto, Rusconi &
Stocker 2012), the collective behaviour of dense micro-organism suspensions (Koch
& Subramanian 2011) and their appendages (Lauga & Goldstein 2012), and the
interactions between swimming cells and complex environments (Lauga & Powers
2009). In the bioengineering world, the focus is on the design of effective, and
practical synthetic locomotion systems able to carry out future detection, diagnosis
and treatment of diseases (Paxton et al. 2006; Abbott et al. 2009; Mallouk & Sen
2009; Mirkovic et al. 2010).

Focusing on the dynamics of a single active particle or self-propelled cell, most
classical work considered the kinematics and energetics of deterministic locomotion
in a quiescent fluid. Owing to their small sizes, many swimming cells, in particular,
bacteria and small single-cell eukaryotes, as well as many synthetic swimmers, are
expected to have their swimming direction affected by thermal fluctuations (Lovely
& Dahlquist 1975; Pedley & Kessler 1992; Berg 1993; Ishikawa & Pedley 2007;
Howse et al. 2007; ten Hagen, van Teeffelen & Lowen 2009, 2011a; Lauga 2011).
Even for bacteria large enough to not be Brownian, there continue to be stochastic
fluctuations in orientation that are largely athermal in origin. For instance, for a
bacterium Escherichia coli during a swimming run, the observed rate of orientation
decorrelation is one order of magnitude faster than that predicted based on a rotary
Brownian diffusivity (Berg 1993), and is likely due to shape fluctuations of the
imperfect bundle of bacterial flagella (Locsei & Pedley 2009; Subramanian & Koch
2009; Koch & Subramanian 2011).

Furthermore, in most situations of biological or applied interest, self-propelled
organisms and synthetic swimmers are subject to external flows, for example plankton
transported by small-scale turbulence, bacteria in the initial stages of environmental
biofilm formation or swimming through human organs. Similarly, any future practical
implementation of artificial micron-scale swimmers will have to be able to navigate
through flowing bodily fluids, in particular the bloodstream (Abbott et al. 2009; Kosa
et al. 2012; Wang & Gao 2012).

Previous classical studies have addressed the effect of external flows on Brownian
motion of passive spherical colloids, most notably in simple shear (San-Miguel &
Sancho 1979; Subramanian & Brady 2004) and for the more general case of an
arbitrary incompressible linear flow (Foister & van de Ven 1980). For a passive
spherical Brownian particle in a linear flow, the long-time diagonal element of its
mean-square displacement dyadic along the flow direction is proportional to the
third power of time in the case of simple shear, grows at an exponential rate (along
the extensional axis) in the case of pure extensional flow, but continues to display
a diffusive scaling in the case of solid-body rotation. In the case of a shear flow,
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Clercx & Schram (1992) studied a similar problem based on the time-dependent
linearized Navier–Stokes equations, instead of the Stokes equations, in order to
address the non-trivial modifications in the short-time dynamics arising from the
inclusion of fluid inertial effects. The analogous situation in the absence of a flow is
classical work (Hinch 1975; Zwanzig & Bixon 1970; Hauge & Martin-Löf 1973), and
accounting for the finite time scale on which vorticity diffuses leads to an algebraic
(rather than exponential) decay in the relevant correlations. For non-spherical particles,
the dynamics cannot in general be obtained in closed form, since the translational
dispersion is intimately coupled to the orientation distribution, and the latter cannot
be determined analytically for arbitrary values of the rotary Péclet number (Frankel
& Brenner 1991, 1993). Asymptotic analysis is, however, possible both for small
values of the rotary Péclet number (Brenner 1974; Brenner & Condiff 1974) and in
the limit of weak Brownian motion (Leal & Hinch 1971).

The dynamics of active particles in shearing flows has been addressed in recent
studies. Jones, Baron & Pedley (1994) calculated, in the absence of noise, the
direction of swimming of bottom-heavy micro-organisms immersed in shear flows.
Bearon & Pedley (2000) modelled a spherical chemotactic bacterium and derived
an advection–diffusion equation for the cell density which included the influence of
shear. Locsei & Pedley (2009) addressed the run-and-tumble dynamics of bacteria
and the effect of a shear flow on the chemotaxis response of the cell. More recently,
ten Hagen, Wittkowski & Lowen (2011b) characterized, in two spatial dimensions,
the dynamics of a spherical self-propelled particle in a shear flow and subject to an
external torque, and obtained an enhancement of the ∼t3 mean-square dynamics. The
effect of an external linear flow on the rheology of, and the pattern formation by,
suspensions of active particles was considered by Rafai, Jibuti & Peyla (2010) and
Saintillan (2010a,b), Pahlavan & Saintillan (2011).

In this paper we quantify the interplay between fluctuations (thermal or otherwise)
and a prototypical external flow, namely a steady, incompressible linear flow, on the
dynamics of an active particle. The particle is assumed to be spherical, a geometry
relevant to many biological and bioengineering situations, including the dynamics of
self-catalytic colloidal spheres (Golestanian, Liverpool & Ajdari 2007; Howse et al.
2007; Jülicher & Prost 2009; Brady 2010), active droplets (Thutupalli, Seemann
& Herminghaus 2011; Schmitt & Stark 2013) and the alga Volvox (Drescher et al.
2009). The activity of the particle, which is free to move in three spatial dimensions,
is modelled as a prescribed swimming velocity in its body frame. We first develop the
analysis in the case where the particle is subject to both rotational and translational
Brownian motion, in addition to being convected by the ambient linear flow. We
then extend the results to include the biologically relevant reorientation mechanism
associated with the run-and-tumble dynamics exhibited by many bacteria (Berg 1993,
2004). We ignore other potentially relevant reorientation mechanisms, including phase
slips which occur between the pair of anterior flagella of the Chlamydomonas algae
(Polin et al. 2009), hydrodynamically mediated collisions that govern the dynamics
at high volume fraction (Ishikawa & Pedley 2007) and run-and-reverse dynamics
(Guasto et al. 2012).

After setting up the problem in § 2, we derive in § 3, by means of an elementary
rotational transformation, the transition probability density for a particle whose
orientation evolves on account of a rotary diffusion process. We then use this
probability density to find all components of the swimming direction correlation
matrix. We exploit these results to calculate the general expression for the mean-
square displacement dyadic of the active particle in § 4 and evaluate each of its
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components analytically in the specific case of an active particle undergoing steady
swimming in § 5. In the absence of external flow, or for passive particles, our
analytical results recover the well-known classical limits. By focusing on three
prototypical flows (simple shear, extension and solid-body rotation) in § 6, we
demonstrate that the particle activity does not modify the long-term temporal scalings
for the mean-square displacements, but increases its coefficients in the case of shear
and extension while the results are unchanged in the case of solid-body rotation. In
§ 7, we extend the analysis to include an additional intrinsic orientation decorrelation
mechanism, namely that associated with correlated tumbles, the occurrence of which
is modelled as a Poisson process. We demonstrate that the effect of tumbles may be
simply incorporated as an additive contribution to the rate of orientation decorrelation,
and the results already obtained may therefore be readily extended to include
swimmers whose orientation evolves due to both rotary diffusion and run-and-tumble
dynamics. We close by offering a physical discussion of our results in § 8 using
scaling arguments. In particular, we explain the singular flow-independent nature of
solid-body rotation by considering the behaviour of the mean-squared displacement
in elliptic linear flows (i.e. two-dimensional linear flows with closed streamlines),
and examining its dependence on the ratio of the ambient vorticity to extension.
Comparing the coefficients in the active versus passive case, we see that swimming
can lead to enhancement of the mean-square dynamics by orders of magnitude, a
result which could be relevant for both biology and bioengineering.

2. A spherical active particle in an incompressible linear flow
We consider a spherical particle of radius a that self-propels (swims) in a three-

dimensional fluctuating environment and in the presence of a general linear external
flow. In the absence of noise and external flow, we assume that the particle swims
at the intrinsic velocity Us(t), prescribed in the body frame of the particle. We use
a Cartesian coordinate system with vectors {i, j, k} and corresponding coordinates
(x1, x2, x3). The external flow, U∞, is assumed to be any general two-dimensional
linear, incompressible flow of the form U∞ = (Gx2, αGx1, 0), with G > 0 denoting
the deformation rate. The particle orientation is described by the angles (θ, ϕ) in
a spherical coordinates system, where θ and ϕ are the polar and azimuthal angles,
respectively. The dimensionless parameter α allows us to tune the type of external
flow considered, from pure rotation (α = −1) to shear (α = 0) and extensional flow
(α = 1).

The over-damped balance of forces and torques on the particle leads to the
Brownian dynamics equations determining its instantaneous translational velocity,
U(t), and angular velocity, Ω(t), as solutions to

RU(U −Us −U∞)= f̃ , RΩ (Ω −Ω∞)= g̃, (2.1)

where Ω∞ = ωαk, with ωα = (G/2)(α − 1), is the angular velocity of the particle
induced by the general linear flow. In (2.1), RU =RU I and RΩ =RΩ I are the viscous
resistance coefficients (RU = 6πηa and RΩ = 8πηa3 in a Newtonian fluid of shear
viscosity η) and I is the unit tensor. The vectors f̃ and g̃ represent zero-mean
Brownian random forces and torques whose correlations in their components are
governed by the fluctuation–dissipation theorem as

〈̃fi(t)f̃j(t′)〉 = 2kBTRUδijδ(t− t′), 〈g̃i(t)g̃j(t′)〉 = 2kBTRΩδijδ(t− t′), (2.2)

with 〈·〉 representing ensemble averaging (Doi & Edwards 1999).
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Denoting the particle location as x (t)= (x1(t), x2(t), x3(t))T, the equation governing
x (t), from (2.1), can be formally written as

dx
dt
=Mx(t)+Us(t)e(t)+ f (t), M=




0 G 0
αG 0 0
0 0 0


 , (2.3)

where e(t) = (e1(t), e2(t), e3(t))T is a unit vector pointing in the instantaneous
swimming direction of the particle, Us(t) the magnitude of the instantaneous
swimming velocity along e(t) (in other words, Us(t) = Us(t)e(t)), and f ≡ R−1

U f̃ .
Similarly, the director vector, e, follows the dynamics (Coffey, Kalmikov & Valdron
1996)

de
dt
= [ωαk+ g(t)

]× e(t), (2.4)

where g≡ R−1
Ω g̃.

In the stochastic system of equations (2.3)–(2.4), the equation for the particle
orientation, (2.4), can be solved first and its solution can then be used in (2.3) to
obtain the particle position. In order to determine all components of the symmetric
mean-square displacement tensor, 〈x(t)x(t)T〉, we therefore first have to compute all
components of the orientation correlation matrix.

3. Rotational probability distribution function and orientation correlations

The orientation correlation matrix, 〈e(t)e(0)T〉, can be evaluated if we know the
orientation transition probability distribution function (p.d.f.), P(e, t|e0, 0), with
e(0)≡ e0, governing the swimmer orientation, e(t). Since the angular velocity of the
spherical swimmer is along the k-axis, to determine P we apply to (2.4), a rotational
transformation around the k direction of the frame fixed at the particle centre, namely

e(t)=R(t)e′(t), R(t)=



cosωαt − sinωαt 0
sinωαt cosωαt 0

0 0 1


 , (3.1)

where e′(t) is the orientation vector in a coordinate system rotating with the flow
vorticity. This transformation reduces (2.4) to de′/ dt = g′(t)× e′(t), whose p.d.f. for
the director vector is classically given by an infinite sum over spherical harmonics
(Berne & Pecora 2000). The transformation between the fixed and rotating frames
of reference, in a spherical coordinate system with its polar axis along the ambient
vorticity, only involves the two azimuthal angles (ϕ′ = ϕ − ωαt, ϕ and ϕ′ are the
azimuthal angles for fixed and rotating frames of references, respectively). Substituting
this transformation, we find the required p.d.f. of the director, P, in a general linear
flow as

P(e, t|e0, 0)=
∞∑

l=0

l∑

m=−l

e−DΩ l(l+1)tYm∗
l (θ0, ϕ0) Ym

l (θ, ϕ) e−imωα t, (3.2)

where {Ym
l } are the spherical harmonics (Abramowitz & Stegun 1970), {Ym∗

l } their
complex conjugates, and θ0 and ϕ0 are the polar and azimuthal angles for e0. In
(3.2), DΩ is the rotary diffusivity for the particle. When it has a thermal origin, it
is determined in terms of the amplitude of the Brownian force correlation (see (2.2)),
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and is given by kBT/RΩ . The underlying random fluctuations in orientation may not
be Brownian, however, in which case DΩ may be directly inferred from the observed
rate of change of the mean square angular displacement (Berg 1993). With the explicit
expression for the p.d.f. known, the correlation matrix for the swimming orientation
may then be evaluated. The ijth component is given by

〈
ei(t)ej(0)

〉=
∫

d2e0

∫
d2e ei(t)ej(0)G(e, t; e0, 0), (3.3)

where i, j are in 1,2,3, and where G(e, t; e0, 0) is the joint p.d.f. for the director
vector with orientation e0 at time t= 0 and orientation e(t) at time t (Berne & Pecora
2000). For an assumed isotropic distribution of orientation at the initial instant, this
joint probability is given by the product of the uniform p.d.f. for e0 (1/4π) with
the transition p.d.f. (P) for the orientation vector e(t), given that we know that the
orientation was e0 at t= 0 and thus we have

G(e, t; e0, 0)= 1
4π

P(e, t|e0, 0). (3.4)

Using this formalism, all components of 〈e(t)e(0)T〉 may be systematically obtained.
For example, for i= 1 and j= 2, solving (3.3) directly leads to

〈e1(t)e2(0)〉 = 1
4π

∞∑

l=0

l∑

m=−l

e−DΩ l(l+1)te−imωα tDm
l , (3.5)

where

Dm
l = (−1)m

∫ ∫
h1 dθ0 dϕ0

∫ ∫
h2 dθ dϕ, (3.6)

h1 = sin2 θ0 sin ϕ0Y−m
l (θ0, ϕ0) , h2 = sin2 θ cos ϕYm

l (θ, ϕ). (3.7)

By orthogonality, we can show that Dm
l = 0 if l 6= 1, and by explicitly evaluating the

coefficients Dm
1 we get

〈e1(t)e2(0)〉 =− 1
3 e−2DΩ t sinωαt. (3.8)

All other components of the orientation correlation matrix, 〈e(t)e(0)T〉, can be obtained
similarly, leading to the final result

〈
e(t)e(0)T

〉= 1
3

e−2DΩ t




cosωαt − sinωαt 0
sinωαt cosωαt 0

0 0 1


 . (3.9)

In the plane of the linear flow, the components of the orientation correlation matrix
follow an exponential decay modulated by a harmonic function with frequency equal
to the linear flow-induced rotation rate. Note that upon setting ωα = 0 in (3.9), we
recover the classical exponential decay in orientation direction from Brownian motion
in the absence of flow, 〈ei(t)ei(0)〉 = e−2DΩ t (Doi & Edwards 1999).

4. Mean-square displacement tensor
We now turn to determining the general formula for the mean-square displacement

dyadic, i.e. the symmetric tensor 〈x(t)x(t)T〉. An integration of (2.3) with initial
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condition x(0)= 0 leads to the formal solution

x(t)=
∫ t

0
Us(t′)eM(t−t′)e(t′) dt′ +

∫ t

0
eM(t−t′) f (t′) dt′. (4.1)

Using the definition of the exponential matrix, one can show that

eM(t−t′) =




cosh
[√
αG(t− t′)

] 1√
α

sinh
[√
αG(t− t′)

]
0

√
α sinh

[√
αG(t− t′)

]
cosh

[√
αG(t− t′)

]
0

0 0 1


≡




b11 b12 0
b21 b22 0
0 0 1


.

(4.2)

We start by computing the diagonal elements of 〈x(t)x(t)T〉. In order to do so we
remark that, if β denotes one component of the particle position, β = xi, then

d 〈β(t)β(t)〉
dt

= 2
〈
β

dβ
dt

〉
. (4.3)

With the initial condition β(0) = 0, equation (4.3) can be integrated once to obtain
exactly

〈β(t)β(t)〉 = 2
∫ t

0

〈
β

dβ
dt

〉
dt. (4.4)

We then proceed to perform the multiplications on the right-hand side of (4.3) applied
to each of the three components of x(t) given by (4.1) and (4.2). After using the
fluctuation–dissipation theorem stating that 〈fi(t)fj(t′)〉 = 2DBδ(t − t′), where DB is
the Brownian diffusion constant, DB = kBT/RU, and using that the random force and
swimming direction are not correlated we obtain

〈
x1(t)

dx1

dt
(t)
〉
= G

∫ t

0
Us(t′)b1k(t, t′)

∫ t

0
Us(t2)b2l(t, t2)

〈
ek(t′)el(t2)

〉
dt2 dt′

+G
∫ t

0
b1l(t, t′)

∫ t

0
b2k(t, t2)

〈
fl(t′)fk(t2)

〉
dt2 dt′

+Us(t)
∫ t

0
Us(t2)b1l(t, t2) 〈e1(t)el(t2)〉 dt2 +DB, (4.5)

〈
x2(t)

dx2

dt
(t)
〉
= αG

∫ t

0
Us(t′)b1k(t, t′)

∫ t

0
Us(t2)b2l(t, t2)

〈
ek(t′)el(t2)

〉
dt2 dt′

+αG
∫ t

0
b1l(t, t′)

∫ t

0
b2k(t, t2)

〈
fl(t′)fk(t2)

〉
dt2 dt′

+Us(t)
∫ t

0
Us(t2)b2l(t, t2) 〈e2(t)el(t2)〉 dt2 +DB, (4.6)

〈
x3(t)

dx3

dt
(t)
〉
= Us(t)

∫ t

0
Us(t′)

〈
e3(t)e3(t′)

〉
dt′ +DB, (4.7)

where k, l are in {1, 2} (Einstein summation notation).
In order to compute the off-diagonal elements of 〈x(t)x(t)T〉 we directly use the

integration in (4.1)–(4.2) which provides each component, (x1, x2, x3), of the particle
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trajectory. The ensemble average of the direct multiplication of these components
together with the fact that random force and swimming direction are not correlated
leads to the general results

〈x1(t)x2(t)〉 =
∫ t

0
Us(t′)b1k(t, t′)

∫ t

0
Us(t2)b2l(t, t2)

〈
ek(t′)el(t2)

〉
dt2 dt′

+
∫ t

0
b1l(t, t′)

∫ t

0
b2k(t, t2)

〈
fl(t′)fk(t2)

〉
dt2 dt′, (4.8)

〈x1(t)x3(t)〉 = 0, (4.9)
〈x2(t)x3(t)〉 = 0. (4.10)

Independently of its swimming kinematics, for an active particle immersed in a two-
dimensional linear flow, the correlations between the particle components in the plane
of the linear flow and perpendicular to it are zero.

5. Application to steady swimming
In the previous section, the general formulae for each component of the mean-

square displacement dyadic, 〈x(t)x(t)T〉, were derived. The final results, although
analytically explicit, can be quite involved if Us(t) is a complicated function of time.
To get further insight into the impact of swimming on the effective particle dynamics,
we apply our framework to the case of an active particle swimming in a steady
fashion, i.e. Us(t)=U, where U is a constant speed.

To illustrate how this assumption can be exploited, we consider (4.8) for the
correlation in the cross terms of the active particle, 〈x1(t)x2(t)〉. When Us =U, using
the fact that

∫ t

0
b1l(t, t′)

∫ t

0
b2k(t, t2)

〈
fl(t′)fk(t2)

〉
dt2 dt′ = 2DB

∫ t

0
b1l(t, t′)b2l(t, t′) dt′, (5.1)

equation (4.8) becomes

〈x1(t)x2(t)〉 = U2
∫ t

0
b1k(t, t′)

∫ t

0
b2l(t, t2)

〈
ek(t′)el(t2)

〉
dt2 dt′

+ 2DB

∫ t

0
b1l(t, t′)b2l(t, t′) dt′. (5.2)

Using (4.2), one easily finds that

2DB

∫ t

0
b1l(t, t′)b2l(t, t′) dt′ =DB

sinh2 (√αGt
)

G
+DB

sinh2 (√αGt
)

αG
. (5.3)

Furthermore, an inspection of (5.2) shows that four integrals (denoted F1–F4) have to
be evaluated, namely

F1 =U2
∫ t

0
b11(t, t′)

∫ t

0
b21(t, t2)

〈
e1(t′)e1(t2)

〉
dt2 dt′, (5.4)

F2 =U2
∫ t

0
b11(t, t′)

∫ t

0
b22(t, t2)

〈
e1(t′)e2(t2)

〉
dt2 dt′, (5.5)
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F3 =U2
∫ t

0
b12(t, t′)

∫ t

0
b21(t, t2)

〈
e2(t′)e1(t2)

〉
dt2 dt′, (5.6)

F4 =U2
∫ t

0
b12(t, t′)

∫ t

0
b22(t, t2)

〈
e2(t′)e2(t2)

〉
dt2 dt′. (5.7)

In fact, one can see from the general equations (4.5)–(4.8) that the four integrals,
F1–F4, together with the equality in (5.1), are common to all of the non-zero
components of the tensor 〈x(t)x(t)T〉 (apart from 〈x3x3〉). Evaluating F1–F4 will
thus allow us to obtain explicit expressions for all components of the mean-square
displacement tensor.

In order to compute the first integral F1, one has to pay attention to the relative
magnitude of t2 and t′. Let us rewrite the first integral as

F1 = U2
∫ t

0
b11(t, t′)

[∫ t′

0
b21(t, t2)

〈
e1(t′)e1(t2)

〉
dt2

+
∫ t

t′
b21(t, t2)

〈
e1(t2)e1(t′)

〉
dt2

]
dt′, (5.8)

so that for the term in brackets we have t′> t2 in the first integral while t2 > t′ in the
second integral. Inserting from (4.2) the corresponding values of bkl, and substituting
the appropriate orientation correlations from (3.9) into (5.8), and after performing the
integrations we finally obtain

F1 ∼ U2√α
3

A1 + A2

kα
as t→∞, (5.9)

where

A1 =
(
a2
α − b2

α + d2
α − c2

α

)
cosh

(√
αGt

)
sinh

(√
αGt

)

kα
, (5.10)

A2 = −2bα
sinh2 (√αGt

)

2
√
αG

, (5.11)

with the constants aα, bα, cα, dα and kα defined as

aα =
√
αG
(−4D2

Ω +G2α +ω2
α

)
, (5.12)

bα = −8D3
Ω + 2DΩG2α − 2DΩω

2
α, (5.13)

cα = 4
√
αGDΩωα, (5.14)

dα = 4D2
Ωωα +G2αωα +ω3

α, (5.15)

kα = 16D4
Ω − 8D2

Ω

(
G2α −ω2

α

)+ (G2α +ω2
α

)2
. (5.16)

With an identical mathematical procedure, we can solve for the other three integral
terms namely (F2, F3 and F4). For F2 we find

F2 ∼ U2

3
B1 + B2 + B3

kα
as t→∞, (5.17)
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where

B1 = 2aαcα sinh2 (√αGt
)− 2bαdα cosh2 (√αGt

)

kα
, (5.18)

B2 = −4DΩωα sinh2 (√αGt
)
, B3 = 2dαbα

kα
. (5.19)

For F3, we get

F3 ∼
√
αU2

3
C1 +C2 +C3

kα
as t→∞, (5.20)

where

C1 = 4DΩωα√
α

sinh2 (√αGt
)
, C2 = 1√

α

2aαcα
kα

, (5.21)

C3 = 1√
α

2bαdα sinh2 (√αGt
)− 2aαcα cosh2 (√αGt

)

kα
, (5.22)

and finally for F4 we obtain

F4 ∼ U2

3
D1 +D2

kα
as t→∞, (5.23)

where

D1 = −2bα√
α

sinh2 (√αGt
)

2
√
αG

, (5.24)

D2 = 1√
α

(
a2
α − b2

α + d2
α − c2

α

)
sinh

(√
αGt

)
cosh

(√
αGt

)

kα
. (5.25)

In order to compute the diagonal terms in 〈x(t)x(t)T〉, we have five remaining
integrals to calculate in (4.5)–(4.7), which are constants and we have

lim
t→∞

U2
∫ t

0
b11(t, t2) 〈e1(t)e1(t2)〉 dt2 = −U2

3
bα
kα
, (5.26)

lim
t→∞

U2
∫ t

0
b12(t, t2) 〈e1(t)e2(t2)〉 dt2 = − U2

3
√
α

cα
kα
, (5.27)

lim
t→∞

U2
∫ t

0
b21(t, t2) 〈e2(t)e1(t2)〉 dt2 = U2

3

√
αcα
kα

, (5.28)

lim
t→∞

U2
∫ t

0
b21(t, t2)

〈
e2(t)e2(t′)

〉
dt2 = −U2

3
bα
kα
, (5.29)

lim
t→∞

U2
∫ t

0

〈
e3(t)e3(t′)

〉
dt′ = U2

6DΩ

. (5.30)

Note that when α < 0, we have neglected all exponentially decaying terms in the
equations above. In contrast, for α > 0, we have neglected (and therefore omitted)
terms of the form e

√
αGte−2DΩGt compared with those scaling as e2

√
αGt in the A − D

constants, and as a result, terms such as B3 or C2, or all constants in (5.26)–(5.29),
can also be neglected for α > 0.
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6. Steady swimming in three different linear flows
We computed so far the long-time components of the mean-square displacement

tensor, 〈x(t)x(t)T〉, for a particle performing steady swimming in a general two-
dimensional linear flow (arbitrary value of α). In this section we apply our general
results to the canonical cases of a solid-body rotation (α =−1), a simple shear flow
(α = 0) and a pure extension (α = 1). An important dimensionless number which
will appear compares two relevant time scales. One time scale is D−1

Ω , corresponding
to the reorientation of the swimmer due to rotary diffusion (thermal or otherwise),
and the other time scale is G−1, a characteristic time scale for the linear flow. The
ratio between the two is a rotary Péclet number, Pe, defined as Pe ≡ G/(4DΩ)
(the coefficient 4 is for mathematical convenience). Swimmers with Pe � 1 will
primarily be affected by the non-hydrodynamic fluctuating forces (responsible for
rotary diffusion), whereas when Pe � 1 we expect the external flow to play an
important role.

6.1. Solid-body rotation
In this section we assume that the external flow is a solid-body rotation. We then
substitute (5.1)–(5.30) into (4.5)–(4.8), and evaluate these components at α = −1.
After elementary simplifications and by integrating (4.4), we obtain the analytical
expressions for the long-time components of the mean-square displacement tensor as

〈x1(t)x1(t)〉 =
(

U2

3DΩ

+ 2DB

)
t, (6.1)

〈x3(t)x3(t)〉 = 〈x2(t)x2(t)〉 = 〈x1(t)x1(t)〉 , (6.2)
〈x1(t)x2(t)〉 = 0. (6.3)

This result is, surprisingly, the same as the classical result for swimming-induced
enhanced effective diffusion (Lovely & Dahlquist 1975; Berg 1993). Furthermore, if
we chose U= 0 in (6.1)–(6.3), one recovers the classical result of a Brownian passive
particle under an external flow performing pure rotation (San-Miguel & Sancho 1979;
Foister & van de Ven 1980) as

〈x1(t)x1(t)〉 = 〈x2(t)x2(t)〉 = 〈x3(t)x3(t)〉 = 2DBt, (6.4)
〈x1(t)x2(t)〉 = 0. (6.5)

The fact that this result is identical to the case without any external flow will be
addressed in detail in § 8.

6.2. Simple shear flow
We now turn to the case of a simple shear flow, for which α=0. Exploiting the results
from (5.1)–(5.30) to evaluate (4.5)–(4.8) at α = 0, together with (4.4), gives us the
explicit analytical expressions for the long time components of the tensor 〈x(t)x(t)T〉,
namely

〈x1(t)x1(t)〉 =
[

32Pe2D2
ΩDB

3
+ 16U2DΩ

9
Pe2

1+ Pe2

]
t3 + 4U2

3

[
Pe4 − Pe2

(
1+ Pe2

)2

]
t2

+
[

4U2

3DΩ

Pe2

(
1+ Pe2

)2 +
U2

3DΩ

(
1+ Pe2

) + 2DB

]
t, (6.6)
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〈x2(t)x2(t)〉 =
[

U2

3DΩ

(
1+ Pe2

) + 2DB

]
t, (6.7)

〈x3(t)x3(t)〉 =
[

U2

3DΩ

+ 2DB

]
t, (6.8)

〈x1(t)x2(t)〉 =
[

4DΩDBPe+ 2U2

3
Pe

1+ Pe2

]
t2 + U2

3DΩ

[
Pe3 − Pe
(
1+ Pe2

)2

]
t, (6.9)

with the Péclet number, Pe, defined above. If we set U = 0 in (6.6)–(6.9) then our
results reduce to those known for Brownian motion of passive particles in simple shear
(San-Miguel & Sancho 1979; Foister & van de Ven 1980). We obtain

〈x1(t)x1(t)〉 = 2
3 G2DBt3 + 2DBt, (6.10)

〈x2(t)x2(t)〉 = 〈x3(t)x3(t)〉 = 2DBt, (6.11)
〈x1(t)x2(t)〉 = GDBt2. (6.12)

The dynamics quantified by (6.6)–(6.9), which combines self-propulsion, Brownian
motion and an external simple shear flow, has a few notable features. The diagonal
component in the direction of the applied simple shear flow, 〈x1x1〉, is dominated, at
long time, by the O(t3) superdiffusive scaling, with a coefficient enhanced, by the
presence of swimming, above its value for passive particles. The 〈x1x1〉 component
also includes an O(t) diffusive term, which was present for passive particles but is
enhanced here by swimming, and a new intermediate O(t2) term. In contrast, the
diagonal components in the directions perpendicular to the shear flow, 〈x2x2〉 and
〈x3x3〉, grow linearly with time in an anisotropic fashion. The effective diffusion
constant in the shear direction, 〈x2x2〉, is always smaller than that in the vorticity
direction, 〈x3x3〉, due to shear-induced particle rotation. In both cases, swimming
increases the effective diffusion constant above the purely Brownian diffusion constant
for passive particles. Finally, as was the case for passive Brownian motion, a non-zero
cross-correlation in displacements in the plane of the flow also arises due to shear,
〈x1x2〉, scaling quadratically in time, and enhanced by the presence of swimming also
leads to a new O(t) term.

6.3. Pure extension
The final case we analyse is that of an active particle swimming steadily in a pure
extensional (irrotational) flow. Following the analysis in the previous sections we now
find the long-time components of 〈x(t)x(t)T〉 to be given by

〈x1(t)x1(t)〉 = U2

48D2
Ω

[
1

Pe (1+ 2Pe)

]
e2Gt + DB

8DΩPe
e2Gt, (6.13)

〈x2(t)x2(t)〉 = 〈x1(t)x2(t)〉 = 〈x1(t)x1(t)〉 , (6.14)

〈x3(t)x3(t)〉 =
(

U2

3DΩ

+ 2DB

)
t. (6.15)

Note that in order to derive the equations above we have neglected all algebraic terms
which are subdominant compared with e2Gt as long as G 6= 0. Once again, by setting
U = 0 into (6.13)–(6.15), one recovers (to within exponentially small corrections) the
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classical long-time correlations results of a Brownian passive particle in an extensional
flow (San-Miguel & Sancho 1979; Foister & van de Ven 1980)

〈x1(t)x1(t)〉 = 〈x2(t)x2(t)〉 = 〈x1(t)x2(t)〉 =DBG−1e2Gt/2. (6.16)

The effect of activity is to lead to the same exponential scaling as for passive particle,
but with an enhanced coefficient.

7. Extension to run-and-tumble swimmers
In this section, we extend the analysis to a spherical active particle whose

orientation decorrelates due to stochastic instantaneous tumble events, in addition
to the rotary diffusion process assumed above. The particle now ‘runs’, on average,
in a given direction during which its orientation evolves continuously due to rotary
diffusion. However, such runs are interrupted by ‘tumbles’ that lead to large impulsive
changes in orientation. The statistics of the tumbles are well approximated by a
Poisson process for the bacterium E. coli (Berg 1993). The duration of a run, trun,
is therefore governed by an exponential distribution function, e−trun/τ/τ , where τ−1 is
the average tumbling frequency.

In addition to describing the temporal statistics of tumbling events, one has to
provide a model for the correlations between the pre- and post-tumble orientations.
For instance, in E. coli, an average angular change of 68◦ per tumble has been
observed (Berg 1993), indicative of a positive correlation. The original transition
probability distribution introduced in § 3, P(e, t|e0, 0), is again transformed to a
coordinate system rotating with the particle (e → R(t)e′, the rotation matrix R(t)
being defined in § 3), and P(e′, t|e0, 0) now satisfies the equation

∂P
∂t
−DΩ∇2

e′P+
1
τ

(
P−

∫
K(e′|e′′)P(e′′, t|e0, 0)de′′

)
= δ(e′ − e0)δ(t), (7.1)

where ∇e′ is the gradient operator over the unit sphere (Othmer, Dunbar & Alt 1988;
Subramanian & Koch 2009). The exponential distribution of run lengths ensures that
the probability of a tumble occurring in an infinitesimal interval dt remains the same
(∝dt/τ ), independent of any earlier tumbling events. As described in (7.1), tumbling
may be regarded as a linear collision process with ‘direct’ (third term on the left-
hand side of (7.1)) and ‘inverse’ events (fourth term), which lead, respectively, to a
decrease and an increase in the probability density in the differential angular interval
(e, e+ de). The kernel, K(e′|e′′), is the transition probability density associated with a
tumble from e′′ to e′, which in the absence of chemical gradient is expected to be a
function of e′ · e′′ only. Conservation of probability further requires that

∫
K(e′|e′′) de′=∫

K(e′|e′′) de′′ = 1. An example of a kernel satisfying the above constraints is

K(e′|e′′)= β

(4π sinh β)
exp(βe′ · e′′), (7.2)

where tuning the parameter β allows for a wide range of correlations (Subramanian &
Koch 2009). For β→ 0, K = 1/4π, corresponding to perfectly random tumbles (and
an average angular change of 90◦), while for β→∞, there is only an infinitesimally
small change in orientation, and thence, a near balance between the direct and inverse
collision terms. The value β = 1 leads to an average angle change, during tumbles,
close to that observed for E. coli.
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Interestingly, in the limit β→∞ and τ → 0, and with βτ finite, the combination
of the direct and inverse collision terms in (7.1) simplifies to the orientational
Laplacian multiplied by a factor proportional to (βτ)−1. The simplification may be
seen by noting that, for β→∞, tumbles are increasingly local events in orientation
space, and accordingly, P(e′′, t|e0, 0) in the inverse collision term may be expanded
about P(e′, t|e0, 0) as a Taylor series, leading to the orientational Laplacian at the
leading order. In this limit, the governing equation, (7.1), again describes orientational
decorrelation due to a rotary diffusion process, but with the rotary diffusivity being
now given by the sum of the original rotary diffusivity, DΩ , and the added contribution
of O(βτ)−1 from small-amplitude tumbles.

We solve (7.1) by expanding the orientation probability distribution in terms of the
surface spherical harmonics, Ym

l (θ
′, ϕ′), defined in § 3. The kernel, on account of its

dependence on the scalar argument e′ · e′′ alone, can be expanded in terms of Legendre
polynomials in e′ · e′′. Thus, we formally obtain

P(e′, t|e0, 0)=
∞∑

l=0

m=l∑

m=−l

clmYm
l (θ

′, ϕ′)glm(t), (7.3)

and

K(e′|e′′)=
∞∑

n=0

anPn(e′ · e′′), (7.4)

where {an}, {clm} are constants, the {glm(t)} are functions of time and Pn refers to the
Legendre polynomial of degree n, which may be expressed in terms of the original
spherical harmonics by means of the addition theorem (Abramowitz & Stegun 1970).
The solution can be then transformed back to a space-fixed coordinate system and is
finally given by

P(e, t|e0, 0)=
∞∑

l=0

m=l∑

m=−l

Ym
l (θ, ϕ)Y

m∗
l (θ0, ϕ0)e−[DΩ l(l+1)+(1/τ)−(4πal/(2l+1)τ )]te−imωα t, (7.5)

where Ym
l and Ym∗

l are defined in § 3. From (7.5), it is seen that the relaxation
of the initial delta function in orientation space to an isotropic distribution is
characterized by a denumerable infinity of decaying exponentials. In the absence
of rotary diffusion, and with the additional simplification of the tumbles being
perfectly random (i.e. K(e′|e′′)= 1/4π), equation (7.5) reduces to

P(e, t|e0, 0)= 1
4π
(1− e−t/τ )+ δ(e− e0)e−t/τ , (7.6)

where we have used a0 = 1/4π, DΩ = 0 and ωα = 0. The expression in (7.6) shows
that in this limit, the initial delta function in orientation space now relaxes to isotropy
as a single exponential.

It is of interest to compare (7.5), that includes stochastic decorrelation due
to both diffusion and tumbling, to (3.2), which quantified only rotary diffusion.
The introduction of tumbling only leads to a difference in the decay rates of the
exponentials which now include an additional contribution proportional to 1/τ . This
is because the eigenfunctions in both cases are the surface spherical harmonics
themselves, and the introduction of the tumbling terms only affects the distribution
of eigenvalues.
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With the probability distribution, P(e, t|e0, 0), known from (7.5), the calculation
from § 3 for the average orientation correlation matrix, 〈e(t)e(0)〉T, can be carried out
and we now obtain

〈
e(t)e(0)T

〉= 1
3

exp
{
−
(

2DΩ + 1
τ
− 4πa1

3τ

)
t
}


cosωαt − sinωαt 0
sinωαt cosωαt 0

0 0 1


 , (7.7)

where a1 is the coefficient of the first-order Legendre polynomial in the expansion of
the tumbling kernel; for K as in (7.2) we have a1 = (3β coshβ−3 sinhβ)/(4πβ sinhβ)
and a1 ≈ 0.075 for β = 1. Note that in the limit β→∞, we obtain a1 = 3/4π, and
(7.7) reduces to (3.9).

A comparison between the expressions in (3.9) and (7.7) reveals that the effect of
correlated tumbling is to yield an effective rotary diffusivity that is larger than the
true diffusivity by an amount (1/2− 2πa1/3)/τ , even though the actual decorrelation
mechanism is, of course, no longer diffusive. All results obtained above in § 6 for the
three canonical flows with rotary diffusion alone, can thus be generalized to include
also run-and-tumble dynamics by merely replacing the rotary diffusivity, DΩ , by an
effective diffusion constant, denoted D̃Ω , and given by

D̃Ω =DΩ + 1
τ

(
1
2
− 2πa1

3

)
. (7.8)

Note that this effective rotary diffusivity may also be arrived at by noting that the
total rate of decorrelation due to independent stochastic processes must be the sum
of the individual decorrelation rates. The individual decorrelation rates due to rotary
diffusion and tumbling may be obtained from the respective translational diffusivities,
D = U2/6DΩ for rotary diffusion versus D = [U2/(3 − 4πa1)]τ for tumbling alone,
implying that the total rate of decorrelation must involve the combination DΩ + (3−
4πa1)/(6τ).

8. Discussion
In the cases of simple shear and extensional flow, we saw that the activity of the

particles leads to long-time temporal scalings for the tensor 〈xx〉 similar to those
obtained for the dynamics of passive particles, albeit with increased coefficients.
In this section we examine the order of magnitude of our results, investigate the
physical origin of the scalings obtained, estimate the typical time scale after which
the enhancement is observed, and discuss the relevance of our results for biology and
bioengineering.

8.1. Enhanced mean-square displacement
We first summarize the results from § 6 and § 7 in table 1. For all three flows, we show
the terms dominating the behaviour at t→∞ and separate the passive (U = 0) case
from the case where particle executes a run-and-tumble motion with rotary diffusion
during the runs (U 6=0). The results for the active swimmer with rotary diffusion alone
may be obtained by formally replacing the effective diffusion constant, D̃Ω , by the
true rotary diffusivity, DΩ . In all cases, the strength of the flow is characterized by
the rotary Péclet number, Pe, the ratio of the time scale characterizing the intrinsic
orientation decorrelation due both to rotary diffusion and tumbling and a characteristic
flow time scale.
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α =−1 α = 0 α = 1
Rotation Simple shear Extension

〈x1x1〉 U = 0 2DBt
2
3

G2DBt3 DB

2G
e2Gt

U 6= 0 + U2

3D̃Ω

t + G2U2

9D̃Ω(1+ Pe2)
t3 + U2

12GD̃Ω (1+ 2Pe)
e2Gt

〈x2x2〉 U = 0 2DBt 2DBt
DB

2G
e2Gt

U 6= 0 + U2

3D̃Ω

t + U2

3D̃Ω

(
1+ Pe2

) t + U2

12GD̃Ω (1+ 2Pe)
e2Gt

〈x3x3〉 U = 0 2DBt 2DBt 2DBt

U 6= 0 + U2

3D̃Ω

t + U2

3D̃Ω

t + U2

3DΩ

t

〈x1x2〉 U = 0 0 GDBt2 DB

2G
e2Gt

U 6= 0 0 + U2G

6D̃Ω

(
1+ Pe2

) t2 + U2

12GD̃Ω (1+ 2Pe)
e2Gt

TABLE 1. Long-time components of the mean-square displacement tensor, 〈x(t)x(t)T〉, for
three different linear flows, namely rotation (α=−1) shear (α= 0) and extension (α= 1).
In each row, the results first show the dynamics in the no-swimming case (U= 0) followed
by the additional term due to activity (U 6= 0). Recall that we have defined the Péclet
number as Pe=G/D̃Ω where the effective rotational diffusivity, D̃Ω , is given in equation
(7.8).

In the limit Pe � 1, for all cases in table 1, the ratio between the mean-square
displacement in the active (random tumbling) and the passive case is given by

〈xixj〉U 6=0

〈xixj〉U=0
∼ U2

D̃ΩDB
. (8.1)

From (8.1) we see that the flow strength, G, has disappeared, and the effect of the
activity is of the same order as the ratio between the typical swimming-induced
translational diffusivity in the absence of external flow, U2/D̃Ω , and the Brownian
diffusivity, DB. Note also that since the linear flow is two-dimensional, the scaling in
(8.1) remains actually valid for all values of Pe in the case of 〈x3x3〉.

In the case of strong flows, Pe� 1, and from table 1 we obtain the ratio of mean
squared displacements for the active and passive cases as

〈xixj〉U 6=0

〈xixj〉U=0
∼ U2

D̃ΩDBPen
, (8.2)

where n = 2 for simple shear, n = 1 in the case of extensional flow and n = 0 for
solid-body rotation. Thus, for simple shear and extensional flow, the strong flow limit
leads to a relative decrease of the contribution from the particle activity. For solid-
body rotation, however, the mean-squared displacement is the same as that known for
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a swimmer in a quiescent fluid medium. This can be seen from a reference frame
which is rotating with the flow wherein the only orientation decorrelation mechanism
for an active particle is rotary diffusion and potentially tumbling (see below for a
further discussion).

8.2. Physical scalings
One may use simple physical arguments to recover the scalings seen in table 1. The
arguments presented below are for particles without tumbling, and the generalization
to include run-and-tumble dynamics, as indicated above, may be done by way of an
effective rotary diffusivity.

We begin by recalling that, in a quiescent fluid, the characteristic step size scales
as U/DΩ , the decorrelation time scales as 1/DΩ , leading to a translational diffusivity
scaling as U2/DΩ , and thus 〈x2〉 ∼ (U2/DΩ)t. This may now be used to obtain the
convectively enhanced scalings for the mean-square displacements in simple shear
and extensional flow. For pure shear and in the weak flow limit, diffusion along
the gradient direction leads to x2 ∼ [(U2/DΩ)t]1/2, and the corresponding distance
traversed along the flow direction is x1∼Gx2t, implying that 〈x1x1〉∼O((GU)2t3/DΩ).
In the strong flow limit, the characteristic step size in the gradient direction is
U/G, since the displacement due to swimming is cut off by the rotation due to the
ambient vorticity. The decorrelation time scales as 1/DΩ , leading to a flow-dependent
translational diffusivity of (U/G)2DΩ and 〈x2x2〉 ∼ (U/G)2DΩ t. In turn, this implies
that 〈x1x1〉 ∼ O((Gx2t)2) ∼ U2DΩ t3, which is the limiting form, for high Pe, of the
results for simple shear flow in table 1.

In the case of extensional flow, the deterministic terms imply that x1 ∼ eGt, and
thus 〈x1x1〉 ∼ e2Gt − 1, for a swimmer starting from the origin. The prefactor in 〈x1x1〉,
given by U2/(GDΩ), is obtained by Taylor expansion by noting that for times of order
D−1
Ω (much smaller than G−1 in the weak flow limit), 〈x1x1〉 must still be diffusive.

In the strong flow limit, the prefactor scales as U2/G2, and is thus independent of
DΩ . In this limit, the decorrelation due to rotary diffusion occurs at a much larger
time compared with the flow time scale, and there is thus a direct transition from the
short-time ballistic regime to the exponential enhancement driven by the ambient flow.

8.3. The peculiar case of solid-body rotation
It is of interest to note that diffusivity in solid-body rotation is unaffected by vorticity
strength, whereas in simple shear flow, the diffusivity in the gradient direction
decreases with flow strength as ∝G−2 as shown by the above scaling arguments. The
orbital frequency (time taken to complete an entire circuit along a closed streamline)
and the rotation frequency (equal to half the ambient vorticity) are exactly the same
for an active particle in solid-body rotation, and this leads to the lack of dependence
on the flow vorticity. Solid-body rotation is thus a singular limit. For the family
of elliptic linear flows, with α = −|α|, that span the interval between simple shear
and solid-body rotation, there is always a mismatch between the orbital frequency,
G
√|α|, and the rotation frequency, G(1 + |α|)/2. This mismatch leads to a finite

displacement in the deterministic limit. An active swimmer in an elliptic linear flow
ends up swimming indefinitely, and with a periodic reversal in direction, within a
region whose spatial extent is ∼U/[G(1−√|α|)]. The reversal in direction happens
on a time scale of order G(1−√|α|)−1, and thus, the behaviour of the mean square
displacement in an elliptic linear flow depends on the relative magnitudes of the
intrinsic decorrelation time, D−1

Ω , and the aforementioned deterministic reversal time.
When D−1

Ω � G(1 − √|α|)−1, then the long-time diffusivities along the principal
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axes of the elliptical streamlines are independent of the flow strength; note that this
is the only limit relevant to solid-body rotation. In the strong flow limit, however,
we have D−1

Ω � G(1 − √|α|)−1, and the diffusivities scale as ∝ G−2. This, and the
additional dependence on |α|, may be obtained by noting that the characteristic step
size is now of order U/[G(1−√|α|)], while the decorrelation time is still ∼D−1

Ω . So,
the long-time diffusivity (along the minor axis of the closed streamlines) scales as
(U/G(1−√|α|)2DΩ . The breakdown of this argument, and the flow-independence of
the diffusivity for solid-body rotation, arises from the divergence of the elementary
step size in the limit α→−1.

8.4. Time scales for enhancement
Another issue of interest, in the case of shear flows, is the time one has to wait
in order to observe the enhanced mean-square displacement, ∼t3, along the flow
direction, 〈x1x1〉. That time scale can be obtained by comparing the order of
magnitudes of the ∼t2 and ∼t3 terms in (6.6). For a weak shear flow, Pe � 1,
we get a cross-over at a critical time scale such that D̃Ω t ∼ U2/(D̃ΩDB + U2).
Assuming that activity leads to enhanced mean-square displacement, we thus have
U2� D̃ΩDB (see (8.1)), and therefore see that the cross-over occurs of the order of
the rotational time scale, t ∼ D̃−1

Ω . In the case of a strong shear flow, Pe � 1, we
get that the cross over occurs when t ∼ U2/(U2D̃Ω + G2DB). If we assume again to
be in the enhanced regime, corresponding to U2 � D̃ΩDBG2τ 2 (see (8.2)), and thus
U2D̃Ω � G2DB, leading again to t ∼ D̃−1

Ω . The relevant time to obtain the enhanced
mean square displacement is therefore independent on weak versus strong nature of
the flow, and is always the typical orientation decorrelation time. A similar analysis
can be carried out for the cross-term, 〈x1x2〉, with similar results.

8.5. Relevance to biology and bioengineering
From a practical standpoint, when can we expect these results to be quantitatively
important? Let us consider a small biological or synthetic swimmer with a typical
size of 1 µm. At room temperature and in water this leads to a Brownian diffusion
constant of DB ≈ 0.22 µm2 s−1 and DΩ ≈ 0.16 s−1 leading to a thermal time scale
of ≈3 s. The estimate in (8.1) says that, for weak flows, the critical swimming
speed to observe an enhancement is Uc∼ (DΩDB)

1/2≈ 200 nm s−1. Micrometre-sized
swimmers, both biological (Lauga & Powers 2009) and synthetic (Mallouk & Sen
2009), typically go much faster than this value, and thus the effect quantified here
should result in enhancement by orders of magnitude and should be easily seen
experimentally.

In the presence of a strong flow, the critical swimming speed necessary in order to
observe an enhanced mean-square motion is increased due to the Pen term in equation
(8.2). What is the typical value of a deformation rate, G, in a practical situation? We
consider two cases. The first is that of planktonic bacteria (Guasto et al. 2012), which
are subject to wind-driven flows with root-mean-square (r.m.s.) deformation rates of
up to G∼ 10 s−1 on the smallest length scales (Jimenez 1997). These flows typically
possess both extensional (n = 1) and viscous (n = 2) components and are typically
turbulent, but given that the Kolmogorov length scale is at least a few millimetres, they
appear laminar on the scale of a micrometre-size organism. In that case, the critical
velocity becomes Uc ∼ (DΩDB)

1/2(Pe)n/2 ∼ 1 µm s−1 for extensional flow and Uc ∼
5 µm s−1 for shear and rotation. These swimming speeds are below typical velocities
in biological locomotion, and thus the random motion of bacteria in oceanic flow is
expected to be strongly affected by their activity.
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A second situation of interest would be that of synthetic swimmers in blood flow,
where in this case the motion is dominated by shear (n= 2). In large blood vessels we
have G∼ 102 s−1 (Pedley 1980), leading to a critical swimming speed for enhanced
motion in a shear flow of Uc ∼ 50 µm s−1, on the upper limit of the synthetic
swimming speeds measured in the laboratory. In contrast, for flow in capillaries
we have much larger deformation rates, up to G ∼ 104 s−1 (Lipowsky, Kovalcheck
& Zweifach 1978), leading to a large value Uc ∼ 5 mm s−1. Whereas the random
motion of small synthetic swimmers is expected to be affected by both blood flow
and the swimmer motion in large vessels, the effect of swimming in small capillaries
will probably be negligible.

8.6. Summary and perspective
In summary we have addressed theoretically the stochastic dynamics of spherical
active particles diffusing in an incompressible, two-dimensional linear flow. After
deriving the general framework valid for an arbitrary time-dependent swimming
velocity of the particles, we focused on the special case of steadily swimming
particles and have illustrated our analytical results on three different flows: solid-body
rotation, simple shear and extension. We have also shown that the results can be
extended to a particle which executes a run-and-tumble motion, as a model for the
dynamics of bacteria. Compared with passive colloidal particles, we have shown that
the activity of the particle leads to the same long-time scalings but with increased
values of the coefficients, which can be physically rationalized (see the summary in
table 1). By comparing the new terms with those obtained for passive particles we
have shown that the activity of the particles could lead to enhancement by orders
of magnitude of their mean-square displacement, for example for planktonic bacteria
subject to oceanic turbulence. Our results could thus be further exploited to quantify
the ability of specific small-scale biological organisms to sample their surroundings.

The calculations in the paper were made under a number of assumptions which
suggest ways in which the study could be generalized. We have assumed the flows
to be of an infinite extent, whereas for example in a biological setting it is clear that
the presence of boundaries would play an important role. We have also assumed the
active particle to be spherical, allowing us to perform all calculations analytically. For
non-spherical bodies, relevant for example for elongated bacteria, equation (2.1) would
include an additional term which depends on the symmetric part of the rate-of-strain
tensor, and would require the use of numerical computations to derive the effective
long-time dynamics of the active particle (or restriction of the analysis to certain
asymptotic regimes in the rotary Péclet number). One important difference between the
dynamics of spherical and non-spherical particles is that whereas spherical particles
undergo uniform rotation at a rate proportional to the flow vorticity, non-spherical
particles rotate along Jeffery orbits, and for large aspect ratios, end up spending a
significant amount of time aligned in certain directions (the flow-vorticity plane in
simple shear).

Finally, beyond thermal forces and run-and-tumble, other sources of directional
change could be address with our modelling approach, in particular run-and-reverse
for bacteria (Guasto et al. 2012), phase slips in eukaryotic flagella (Polin et al. 2009),
collisions (Ishikawa & Pedley 2007) or even non-thermal turbulent fluctuations in
flow vorticity in environmental flows (Jimenez 1997). Despite these limitations, we
hope that our study will provide new insight into the interplay among orientation
decorrelation, external flows and activity, and will be valuable in order to develop
coarse-grained theories of swimming populations in complex, external flows.
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