
PHYSICAL REVIEW E 89, 043011 (2014)

Geometry and wetting of capillary folding
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Capillary forces are involved in a variety of natural phenomena, ranging from droplet breakup to the physics
of clouds. The forces from surface tension can also be exploited in industrial applications provided the length
scales involved are small enough. Recent experimental investigations showed how to take advantage of capillarity
to fold planar structures into three-dimensional configurations by selectively melting polymeric hinges joining
otherwise rigid shapes. In this paper we use theoretical calculations to quantify the role of geometry and fluid
wetting on the final folded state. Considering folding in two and three dimensions, studying both hydrophilic
and hydrophobic situations with possible contact-angle hysteresis, and addressing the shapes to be folded to be
successively infinite, finite, curved, kinked, and elastic, we are able to derive an overview of the geometrical
parameter space available for capillary folding.
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I. INTRODUCTION

Capillarity, a field at the intersection of fluid mechanics
and statistical physics [1] and already over 200 year old [2],
strikes not only by its beauty but also by its broad range of
applications. It is involved in fundamental physical problems
including the shape of minimal surfaces, the physics of clouds,
and the dynamics of complex fluids [3] and plays also an
important role in a variety of applied processes such as spray
formation, foam dynamics, and industrial coatings [2]. At
the scale of the capillary length, typically on the order of
millimeters, surface tension dominates gravitational forces,
resulting in a number of commonly observed phenomena
such as the bundling of wet hair at the swimming pool [4],
possibilities for the control of fluid transport [5], and the design
of devices for filtering or sensing [6].

One aspect in which capillary forces could be particu-
larly useful is a means to apply small forces and deform
flexible objects at the microscale, possibly leading to new
manufacturing techniques based on capillary-driven self-
assembly of objects. In the submillimeter range of length
scales, manufacturing three-dimensional objects remains a
challenge. Classical processes such as photolithography are, by
essence, two dimensional [7]. One concept that has long been
discussed and implemented consists in cleverly patterning
two-dimensional structures and then folding them into three-
dimensional objects.

The idea of exploiting surface tension for folding purposes
has been proposed and explored in a number of studies. In
the case of smooth surfaces [8], Py et al. [9,10] studied the
deformations induced by droplets of liquid deposited on flat
flexible sheets with specified shapes subsequently leading to
folding (so-called capillary origami). They also determined

*jperaud@mit.edu
†e.lauga@damtp.cam.ac.uk

numerically the folding geometry for two-dimensional elastic
sheets in the particular case where the contact line of the
droplet remains pinned on the edge of the sheet. A dynamic
version of the same idea where the fluid droplet impacts the
flexible structure was suggested [11]. Surface tension can also
be used to induce buckling of an elastic rod [12] and further
investigations implemented the droplet evaporation concept on
templates with well-defined hinges [13].

Beyond the work on elastic sheets, capillary forces were
also exploited to enable precise micromanufacturing and three-
dimensional encapsulation, an approach pioneered by Leong
et al. to assemble polyhedra [7]. The idea is to first design two-
dimensional templates using traditional photolithography with
preselected hinges and faces of different materials. In a second
step, polymeric materials located on the hinges (solder) are
selectively melted and the resulting capillary forces transform
the two-dimensional template into a three-dimensional folded
structure. This process is illustrated in Fig. 1 in the case of
a metallic dodecahedron (reproduced from Ref. [14] with
permission). The early work designed metallic cubes from
a cruciform-shaped template [7]. Subsequent work induced
folding using a thin-film stress-driven mechanism with no
capillary forces [15]. A large variety of shapes were also
obtained using patterning on several layers of materials [16].
By including a soluble sacrificial layer and carefully designing
the mechanical properties of the other layers a range of three-
dimensional structures can be engineered [16]. More recent
work was able to generate complex polyhedra [14], decrease
the length scales involved below microns [17], and create
purely polymeric folded structures [18]. Ultimately, surface
tension may provide a robust mechanism to fold complex
three-dimensional structures with important potential biomed-
ical applications, including drug delivery, cell encapsulation,
and the fabrication of biocompatible materials with well-
defined porosity (see Refs. [19–22] and references therein).

From a theoretical standpoint, few models have been
developed to quantify the geometry and dynamics of folding
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JEAN-PHILIPPE PÉRAUD AND ERIC LAUGA PHYSICAL REVIEW E 89, 043011 (2014)

FIG. 1. (Color online) Experimental self-assembly of a 500-μm metallic dodecahedron using surface-tension-induced folding from molten
hinges. Image reproduced from Ref. [14] with permission (Copyright 2009 IOP Publishing).

by surface tension. The original capillary origami paper
considered the balance between surface and bending energies
in the case of complete wetting by the fluid on the solid
surface, putting forward an important elastocapillary length
[9]. Further work considered the two-dimensional bending of
flexible strips and the resulting encapsulation phenomena that
may occur, accounting for gravity of the sheet or evaporation
of the fluid, but in both cases assuming the droplet contact
line to be pinned [23]. In the case of polyhedra folding using
fluidic hinges, numerical simulations using SURFACE EVOLVER

[24] showed that the folding angle depends strongly on the
solder volume [7].

In the present paper we propose to explore the parameter
space for folding by focusing on the equilibrium geometry of
simple configurations as building blocks for more complex
three-dimensional structures. The emphasis is on the main
control parameters for folding, namely, (a) the volume of
the drop, which could be controlled either by active change
or by passive change due to drying or condensation; (b) the
surface energies, directly linked to the equilibrium contact
angle through Young’s equation, with possible contact-angle
hysteresis; (c) the geometry of the structures to be folded; and
(d) the flexibility of the solid surface when relevant. We assume
to be below the capillary length and ignore the effect of gravity.
In addition, most of our study focuses on two-dimensional
geometries with some extensions to three dimensions.

This article is organized as follows. In Sec. II we present
a series of idealized two-dimensional models in which we
calculate the equilibrium configuration of two rigid walls
folded by a droplet and vary a number of the model parameters
(contact angle, size and geometry of the walls, number of
droplets, and possible dewetting near the hinge). In Sec. III
we address the case in which the contact line between the
droplet and the solid surface displays hysteresis, showing in
particular how hysteresis can lead to folded structures whose
shapes depend on initial configurations and may also help to
prevent dewetting near hinge points. In Sec. IV we generalize

the two-dimensional results from Sec. II to three dimensions.
This is followed in Sec. V by a theoretical study of the
two-dimensional folding of an elastic sheet by a droplet with a
free contact line by focusing on the role of wetting and droplet
size. Our results are finally summarized in Sec. VI.

II. FOLDING IN TWO DIMENSIONS

In this section we study the system composed of two freely
hinged rigid walls subject to capillary forces only from a
droplet in the absence of contact-angle hysteresis. Starting
from the simplest configuration with one droplet and two
planar infinite walls, we progressively add more complex
features (finite walls, curved walls, two droplets, and dewetting
effects) in order to assess the influence of the different
geometrical and physical parameters. We demonstrate in
particular the importance of the equilibrium contact angle and
the droplet volume on the final folding angle.

A. Idealized folding using a single droplet

Let us first consider a two-dimensional system composed
of two rigid, freely articulated infinite walls (Fig. 2). The fluid
droplet is located at the intersection of the two walls that
are opened by a semiangle α termed the folding angle. The
equilibrium contact angle of the droplet on the solid is denoted
by θE . A direct study of the total surface energy of the system
(Fig. 3) shows that the wetting characteristics of the droplet on
the wall (hydrophobic vs hydrophilic) play an important role
in determining the folding angle.1 Using the subscripts SL,
AL, and SA to refer to the solid-liquid, air-liquid, and solid-
air interfaces, respectively, and using γ to denote the surface

1Due to the absence of intrinsic length scales to the problem,
the surface energies in Fig. 3 are plotted with arbitrary units.
Consequently, only the relative, instead of absolute, energy values
are important.

043011-2



GEOMETRY AND WETTING OF CAPILLARY FOLDING PHYSICAL REVIEW E 89, 043011 (2014)

FIG. 2. (Color online) Idealized folding in two dimensions. A
fluid droplet is located at the intersection of two freely hinged walls,
opened by a semiangle α (the folding angle). The equilibrium contact
angle of the droplet on the solid is denoted by θE and we assume
that there is no contact-angle hysteresis (that assumption is relaxed
in Sec. III). The length of the wetted region is denoted by R and the
radius of curvature of the droplet by r .

energies, Young’s equation is given by γSL + γAL cos(θE) =
γSA, where θE is the equilibrium contact angle of the droplet on
the surface. The hydrophobic case is the one in which γSL >

γSA and θE > π/2. Similarly, the hydrophilic case corresponds
to γSL < γAL, or θE < π/2.

Examining the energy profile numerically in the hydrophilic
case [Fig. 3(a), θE = π/6], we see that it does not display
a minimum until complete folding: The energy continues to
monotonically decrease with the folding angle and tends to
−∞ when the opening angle tends to 0. As a result, the
most energetically favorable configuration is complete folding
(in this idealized geometry, the liquid-air interface is sent to
infinity).

A simple scaling analysis in the small-angle limit can be
used to understand why α = 0 is the energetically favorable
configuration. Using the notation from Fig. 2, in the limit
where α is small it is clear that we have the scaling L ∼ αR,
where L is the typical size of the air-liquid interface. The
total (two-dimensional) surface energy is thus given by E ∼
2R(γSL − γSA) + αRγAL, which, using Young’s formula,

(b)(a)

FIG. 3. (Color online) Total surface energy E including solid-
solid, solid-liquid, and liquid-gas surfaces (arbitrary units) as a
function of the folding angle α (radians) at constant volume for (a)
the hydrophilic case (θE = π/6), in which the minimum energy is
obtained for complete folding, and (b) the hydrophobic case (θE =
3π/4), in which the stable folding angle is given by α = θE − π/2,
which is π/4 here.

gives the scaling E ∼ γAL(αR − 2R cos θE). The droplet
volume is given by the scaling V ∼ αR2 and thus R is
R ∼ (V/α)1/2. We finally obtain the scaling for the surface
energy given by

E ∼ γALV 1/2(α1/2 − 2α−1/2 cos θE). (1)

Clearly the minimum of Eq. (1) is obtained for α = 0, which
is complete folding.

As a difference with the hydrophilic situation, the hy-
drophobic regime leads to a stable minimum of energy at a
finite value of the folding angle. This is illustrated in Fig. 3(b)
for θE = 3π/4. This equilibrium opening angle can be derived
by a direct approach considering the forces acting on the
surface. In order to determine the relationship between the con-
tact angle θE and the stable folding angle αeq, a simple balance
of forces between the contribution of the contact line in the
direction normal to the surface and the capillary pressure leads
to the relationship

αeq = −π

2
+ θE. (2)

To derive Eq. (2), consider the setup in Fig. 2. The capillary
pressure inside the droplet subjects the wall to the moment
R2�p2−1 = R2γ (2r)−1 with respect to the hinge, while the
direct surface tension force induces the moment γR sin(θE).
The balance of moment then results in

R

r
= 2 sin(θE)· (3)

Noting that the ratio R/r can also be written

R

r
= sin

(
α + θE − π

2

)
sin(α)

, (4)

we then obtain

cos(α − θE) = 0, (5)

whose solution is αeq = −π/2 + θE or αeq = π/2 + θE

depending on the case.
The geometry of folding is thus fully determined by the

wetting property of the liquid droplet on the solid surface.
Notice that the maximum possible folding angle in this
situation is predicted to be π/2, meaning that the two walls
become aligned with each other (open configuration). From
a geometrical standpoint, the relation obtained in Eq. (2)
actually corresponds to a specific configuration in which the
expansion of the circular shape of the droplet exactly intersects
the hinge point [see Fig. 4(a)]. A similar geometry arises if
we look for a balance of forces in the hydrophilic case [see
Fig. 4(b)]. We do obtain a metastable equilibrium with the
relation αeq = π/2 + θE , corresponding to the limiting case
where the droplet and the walls intersect at the same point.
The folding results are summarized in Fig. 5. Importantly, by
varying the droplet contact angle in the hydrophobic region, all
possible folding geometries can be obtained, from completely
open (αeq = π/2) to completely closed (αeq = 0).

B. Finite-size folding

We next examine the situation where the walls have finite
size. For simplicity we assume that both sides have the same
length. In that case, in addition to the contact angle, the droplet
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(a)  (b)  

FIG. 4. (Color online) (a) Hydrophobic folding with αeq =
−π/2 + θE (energy minimum); the expansion of the droplet and
the hinge intersect at the same location. (b) Hydrophilic case with
αeq = π/2 + θE (energy maximum); here also, the droplet and the
two walls intersect at the same point.

volume will impact the folding angle. Let us consider a fixed
equilibrium contact angle θE . In the hydrophobic case, for
a sufficiently small volume of liquid located near the hinge,
the problem is just the same as in the previous section (in
other words the walls appear to be infinite). Therefore, under
a certain critical volume, the folding angle obeys the relation
previously derived αeq = −π/2 + θE . The critical volume cor-
responds to the point where the interface of the droplet reaches
the edges of the walls. That critical volume depends thus on
both the wall length and the equilibrium contact angle and can
be easily computed (alternatively, one can compute the critical
folding angle). If the droplet volume is further increased
beyond this critical value, the contact line remains pinned at the
edge of the walls (equivalently, the contact area remains fixed).

Two different methods can be applied to study this situation.
As a first option, we can investigate the energy profile
numerically for a given fixed volume as a function of the
folding angle (or the contact angle) and verify that there is still
a minimum of energy at a given folding angle. Alternatively,
we can also notice that the relationship αeq = −π/2 + θ still

FIG. 5. (Color online) Equilibrium folding angle αeq as a func-
tion of the contact angle θE . In the hydrophilic case θE < π/2,
the system folds completely. In contrast, in the hydrophobic case
θE > π/2, the folding angle is finite and follows the relationship
αeq = −π/2 + θE .

(a)  

(b) 

(c) 

FIG. 6. (Color online) Folding angle αeq (radians) as a function
of the droplet volume V (arbitrary units) for finite-size walls. Before
the critical volume, the droplet does not reach the edges of the walls
and the opening angle remains constant (dotted lines). The cases
depicted here correspond to (a) θE = 2π/3, (b) θE = 3π/4, and
(c) θE = 5π/6. After the critical volume, the contact line is pinned and
the opening angle increases monotonically (solid line). The critical
volume depends on the value of contact angle (or, alternatively, on
the critical folding angle, as shown here).

holds in that case, due to the balance of forces perpendicular
to each wall, provided θ > θE is understood as the apparent
contact angle. The same geometrical feature as seen previously
(see Fig. 4) applies here. In particular, the continuation of
the circular droplet exactly intersects the hinge of the walls,
making the calculation of the volume for a given folding angle
α straightforward, and we obtain

V (α) = L2

2
tan α + αL2

2 cos2 α
(6)

for 0 � α < π/2.
In summary, for a fixed contact angle, the folding angle

remains constant and given by Eq. (2) below the critical droplet
volume, after which the volume-folding angle relationship is
given by Eq. (6). The results are illustrated numerically in
Fig. 6 in the cases θE = 2π/3, θE = 3π/4, and θE = 5π/6.
Note that the folding angle converges to π/2 in the limit of
large droplet volumes, which can also be seen by evaluating
Eq. (6) in the limit V → ∞.

C. Folding of curved walls

We now consider another potential feature to the system,
namely, the fact that the walls might not be perfectly straight.
Here we focus on smooth curved surfaces and address both
convex and concave walls. For illustrative purposes, we
consider the particular case of walls whose shapes are given by
the equation y = x + x2 (convex) and its reciprocal function
y = −1/2 + √

1/4 + x (concave), as illustrated in Fig. 7
(left). In both cases, the equation refers to the shape of the
topmost wall when α = π/4 and the bottom wall is assumed
to be its mirror image. We define the folding angle as the
semiangle between the tangents of the two walls at the hinge.

As in the previous section, two different approaches can
be exploited to derive the relationship between folding angle
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FIG. 7. (Color online) The left shows shapes chosen for concave
and convex walls and the right shows that for a given α and a known
wall shape, we can calculate the corresponding angles ν and μ(ν).
Mechanical equilibrium requires that the expansion of the arc of
the circle of the droplet intersects the hinge of the walls, which is
equivalent to the relationship α + ν = −π/2 + θE + μ(ν).

and droplet volume. We can elect to compute directly the
surface energies for different folding angles at a given droplet
volume and determine the angle leading to the smallest energy.
Alternatively, we can use the local balance of forces as
illustrated in Fig. 7 (right). The relationship becomes α +
ν = −π/2 + θE + μ(ν), with the angle ν and μ(ν) defined
geometrically in Fig. 7 (right) to find the corresponding
flat-wall problem. That relationship can be exploited to plot
the folding angle αeq as a function of the droplet volume, with
results shown in Fig. 8. In the case of convex walls (concave
walls), the folding angle decreases (increases) with an increase
in the droplet volume.

D. Folding of walls with discontinuous slopes (kinks)

Instead of a continuous change in wall shape, the geometry
of the surface could undergo a discontinuous slope change and
be kinked. This is the situation we address here. We consider

Flat walls

0 400 800

FIG. 8. (Color online) Equilibrium folding angles αeq for con-
cave (top), flat (middle), and convex (bottom) boundaries, for a
contact angle θ = 3π/4, as a function of the droplet volume V .
The volume is given in normalized units corresponding to the
two curves y = x + x2 and the reciprocal function given by y =
(−1 + √

1 + 4x)/2. For concave walls the folding angle α increases
with the volume V , while it decreases in the convex case. Note that
the two curves are not symmetric with each other.

FIG. 9. (Color online) If the kink angle φ is larger than π − θE ,
the contact line remains pinned at the kink and the system behaves
similarly to the finite-folding case studied in Sec. II B.

a wall described by y = x (y = −x for the symmetric wall)
for 0 � x � 1 and y = tan(φ + π/4)x − 1 (y = −[tan(φ +
π/4)x − 1] for its symmetric wall) for x � 1, where the angle
φ is defined in Fig. 9. Following the same method as above,
we obtain the numerical results shown in Fig. 10 for several
values of θE and φ and featuring three different regimes. The
first two portions of the curve correspond to the finite-size
folding problem. Below a critical droplet volume, the folding
angle follows αeq = −π/2 + θE , similarly to the infinite-wall
situation. Then the droplet reaches the kink and the contact
line gets pinned, giving a problem equivalent to the finite-size
wall folding problem. This is valid until the volume reaches
a new limit, corresponding to the exact moment when the
apparent angle between the droplet interface and the second
part of the wall equals the actual contact angle θE . In the
particular case considered in the figure (θE = 150◦,φ = 18◦),
we see that this limit is accompanied by a sudden jump in the
folding angle and hysteresis. Such a feature is absent when

(1)

(2)
(3)

FIG. 10. (Color online) Equilibrium folding angle αeq as a func-
tion of the droplet volume V when there is a kink along the walls
(θE = 5π/6). As the droplet volume increases, three regimes appear:
(i) The folding angle αeq is constant and the configuration similar to
the infinite-size wall. (ii) When the interface reaches the kink, the
contact line remains pinned, as in the finite-size folding problem, and
the folding angle increases. (iii) When the angle of contact with the
second part of the wall reaches θE , the triple line moves again and
αeq decreases, possibly with a sudden jump (hysteresis).
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the angle between the two walls, measured by φ, is small or
if the contact angle is small enough. Finally, if the angle φ

at the kink is larger than π − θE , the contact angle can never
reach θE (see Fig. 9) and the relationship between volume and
folding angle is equivalent to the finite-wall problem.

E. Two-droplet folding

The situations considered so far addressed the influence of
contact angle, droplet volume, and wall shape on the folding
by surface tension. We focus here on the case in which fluid
is present on both sides of the hinge; in two dimensions this is
equivalent to saying that we have two droplets. Assuming the
walls to be of infinite extent, the problem with two droplets
is characterized by three dimensionless parameters: the two
equilibrium contact angles, denoted here by θ1 and θ2, and the
ratio of droplet volumes V1/V2 assumed to be above 1 without
loss of generality.

1. Identical contact angles

Both the energetic approach and the one based on the
balance of forces show that there exists a constant C > 1
that depends on θ1 = θ2 ≡ θE so that if V1/V2 > C, i.e., if
droplet 1 is sufficiently larger than droplet 2, there is only
one stable equilibrium position, in which droplet 1 behaves
as if isolated, αeq = −π/2 + θE , while droplet 2 touches the
walls only at the hinged point (see Fig. 11). In contrast, if
V1/V2 < C, both configurations mentioned above correspond
to a stable equilibrium. Between these two positions, there
exists an unstable equilibrium (i.e., a maximum of energy).

2. Different contact angles

Let us consider the case in which we start with a single
hydrophobic droplet (droplet 1) in the equilibrium folded
configuration. We then add a second hydrophobic droplet
on the other side of the hinge (droplet 2) and progressively
increase its size (see Fig. 12). If droplet 2 is more hydrophobic
than droplet 1, the only stable equilibrium is the same as
the one depicted in Fig. 11. In contrast, if droplet 2 is more
hydrophilic, then surface energies from the two droplets lead
to a modification of the equilibrium folding. An increase of
V2/V1 leads to an increase of the folding angle until a critical
angle of π/2, after which the folding angle reverses and is such

FIG. 11. (Color online) In the situation with two droplets from
the same liquid, the stable equilibrium configuration has one droplet
satisfying the single-droplet equilibrium αeq = θE − π/2, while the
other one merely touches the hinged point.

FIG. 12. (Color online) Variation of the folding angle with the
volume ratio if the additional droplet (droplet 2) is more hydrophilic
than the original droplet (droplet 1).

that π − α is equal to the equilibrium folding angle of droplet
2 while droplet 1 barely touches the hinge, as in Fig. 11. This is
illustrated numerically in Fig. 13 in the case where θ1 = 160◦
for three different wetting angles for droplet 2.

F. Dewetting from the hinge

In all cases analyzed in the previous sections, we have
assumed that the droplet was present at the hinge point all
the way to the tip. Alternatively, a second free surface could
appear near the hinge point whose surface energy would need
to be included. This situation, which we refer to as dewetting,
would be of particular relevance in three dimensions where air
(or the surrounding fluid of any kind) could easily reach the
hinge from the sides of the droplet.

Let us therefore reexamine here the model of Sec. II A in
the case where a degree of freedom is authorizing a second
interface to be created at the hinge point. In the absence of
gravity, the new interface must have the same curvature as the
external free surface of the droplet. Because both interfaces
intersect a flat surface with the same constant contact angle
they must have the same center of curvature, which leads to
the interesting geometrical property illustrated in Fig. 14: The
droplets are both part of the same disk from which two identical
caps have been removed. The size of these caps remain

FIG. 13. (Color online) Folding with two hydrophobic droplets:
equilibrium folding angle as a function of the ratio of volumes.
Droplet 1 has a contact angle θ1 = 160◦ and we consider three
different contact angles for droplet 2 (145◦, 150◦, and 155◦). Without
droplet 2, the equilibrium folding angle would be αeq = θ1 − 90◦ =
70◦. The most hydrophilic droplet pulls the system closer towards
its own equilibrium folding angle. When the folding angle reaches
π/2 (open configuration), the instability reverses the folding into the
situation of Fig. 12 (right) with droplet 2 inside and 1 outside.
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FIG. 14. (Color online) Dewetting from the hinge leads to no
change in surface energy with a change in the droplet position
provided there is no contact-angle hysteresis. Configurations (a),
(b), and (c) have the same surface energy, although the folding
angles are different. In cases (a) and (b) the folding angle satisfies
α < −π/2 + θE , while (c) corresponds to the limit case where
α = αeq = −π/2 + θE .

identical in order to keep a constant contact angle and droplet
volume. This implies that the different areas intervening in the
calculus of the energy are the same and the energy is therefore
constant. For any folding angle such that 0 � α � −π/2 + θE ,
all configuration similar to the ones in Fig. 14 have the same
surface energy (see Fig. 15) and therefore all folding angles
are equally energetically possible. So the presumed stable
equilibrium is actually metastable. As discussed below, this
remains true in three dimensions. However, as shown in the
next section, the presence of contact-angle hysteresis will in
general prevent dewetting and render the equilibrium folding
angle stable.

III. FOLDING WITH CONTACT-ANGLE HYSTERESIS

In the models we considered in Sec. II we derived the energy
profile against relevant geometrical and physical parameters
through direct differentiation. This was actually only made
possible by the fact that δE, the variation of surface energy
accompanying a small change in the parameters, was an
exact differential. Real droplets behave a bit differently [3].
The triple line (at the air-liquid-wall junction) can stay
fixed and, instead of moving, adopt various configurations,

FIG. 15. (Color online) Total surface energy E (arbitrary units)
as a function of the folding angle α for θE = 3π/4, in two
dimensions. When we allow dewetting to occur, the same minimum
of surface energy is obtained for the range of folding angles 0 � α �
−π/2 + θE .

a phenomenon well known as contact-angle hysteresis, which
can, for example, be due to deformations of the triple line
caused by impurities and defects [3]. In order to move the triple
line, a net tangential force has to be applied, hence producing
a work term in the variation of the energy. This is in contrast to
the ideal case where the different surface-tension terms always
balance in the tangential direction. As a consequence, the
difference of energy �E between two different configurations
will depend on the path followed; in other words, δE is no
longer an exact differential. The contact angle no longer takes
a unique value but varies between a lower and an upper bound.
The smallest value, denoted by θr , is the receding angle. It
is the minimum contact angle before the triple line starts
to recede in the direction of the liquid. The largest value,
denoted by θa , is the advancing angle. It is the maximum
contact angle before the triple line moves away from the
fluid.

With hysteresis, the manner in which the system gets
to a local equilibrium is therefore path dependent. The
different relevant parameters are the following: the initial
nonequilibrium folding angle, the initial contact angle, the
droplet volume, θr , θa , and the various surface energies (which
can be related using Young’s equation and the value of θE).
As a starting point for this problem, we first notice that as
long as the contact angle stays between θr and θa , the triple
line does not move, so no additional work is involved and we
can study the energy directly by computing the areas of the
interfaces exactly as previously. In that case, we can take either
α or θ as the variable given that they are related to each other
by the fixed volume and fixed contact line conditions. As the
inequality constraint is on the contact angle, it is natural to use
θ as the variable against which to minimize the total surface
energy. Plotting the surface energy in Fig. 16 as a function
of θ ∈ [0,π ] yields a minimum of energy at θ = θm. In the
general case, θm is different from θE . However, it is important
to note that the relation α = −π/2 + θm still holds by normal

FIG. 16. (Color online) Surface energy E as a function of the
contact angle θ for a fixed location of the contact line. Since the
volume remains constant, the folding angle α decreases as θ increases.
The surface energy is minimal at the angle θm. If θr � θm � θa , θ and
α will vary until θ reaches θm. If θm � θr , then θ will decrease (and
α will increase) until it reaches θr and the contact line will recede. If
θa � θm, θ will increase until it reaches θa and the contact line will
advance.
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force balance. With the value of θm determined, we compare it
to both θr and θa and distinguish between three different cases.

A. Case θr � θm � θa

If θr � θm � θa and provided the initial configuration also
lies within this range, the system will directly find its minimum
of energy without requiring a motion of the triple line. The
final folding angle will then follow α = −π/2 + θm. If θm is
outside the range [θr ,θa], then the contact line will necessarily
move before reaching a local equilibrium, with two different
situations to distinguish: θm < θr and θm > θa .

B. Case θm < θr

We first consider the case for which θm < θr . Physically,
this is the situation in which one starts with a folding angle
that is too small and the system needs to open up (increase in
α) to reach the minimum of surface energy. With the initial
conditions and the information on the ratio of the surface
energies provided by θE , we can calculate the profile of
energy for a fixed contact line, with results shown in Fig. 17.
Starting from the initial position, θ first decreases until it
reaches θr , which is accompanied by an increase of the folding
angle. Once the receding angle is reached, the contact line
starts moving. The energy minimization problem changes and
becomes an evolution at fixed contact angle θ = θr . Neglecting
the dynamics and assuming a quasistatic evolution, this is
similar to the problems solved in Sec. II. The motion of the
contact line stops as soon as the equilibrium folding angle is
reached and we get therefore folding with α = −π/2 + θr by
force balance (at that point we therefore have θm = θr ).

C. Case θm > θa

The other relevant limit to consider is the one in which θm >

θa , which corresponds to a situation in which one starts with

FIG. 17. (Color online) Case θm < θr . The contact angle de-
creases, while the opening angle increases, and θ reaches θr , after
which the contact line moves until α = −π/2 + θr is reached. The
initial folding angle was αi = π/18 (10◦), the initial contact angle
θi = 3π/4 (135◦), and θE = 3π/4 (135◦). Note that the chosen values
for θa and θr are arbitrary and the shape of the energy profile shown
here is generic.

a folding angle that is too large. This is the situation relevant
to experiments where, typically, the initial fabrication stage
initially leads to planar structures with 2α = π , which will be
folded by surface tension into three-dimensional shapes [7,15].
In this case, the dynamics is similar to the previous case with
the receding angle replaced by the advancing angle. With the
contact line pinned, the contact angle increases (and the folding
angle decreases) until θa is reached. At this point, the contact
moves with θ = θa fixed, until the system reaches its local
minimum of surface energy. The final folded configuration is
thus characterized by the angle α = −π/2 + θa .

D. Configuration hysteresis

Contact angle hysteresis leads to nonreversible paths in the
configuration space. To illustrate this, let us imagine that we
can increase or decrease manually the folding angle at the
point where θ = θr . If we try to decrease it, we will return to
an evolution at fixed contact line with an increase in θ . This
is shown in Fig. 18 (left) with θr = 2π/3. If at a given point
we go backward and decrease the folding angle, the energy
profile encountered by the system is the one in dashed lines,
representing the energy for an evolution at fixed contact line,
which is different from the solid line showing an evolution at
fixed (receding) contact angle. This can be further illustrated
by imagining a controlled experiment where the system is
successively opened and closed (so α moves backward and
forward between two values), with the hysteresis leading to
net work being performed on the system. If we then sketch the
value of the contact angle θ as a function of the folding angle
α, we get a typical hysteretic path (Fig. 18, right).

E. Dewetting and contact-angle hysteresis

In Sec. II we addressed the issue of dewetting near the
hinge and showed that a range of folding angles was leading
to the same value of the surface energy. How is this changed
by contact-angle hysteresis? It is straightforward to see
that contact-angle hysteresis will actually prevent dewetting
altogether. The simplest argument is energetic. We saw in
Sec. II that, in the case of a single contact angle, both wetted
and dewetted configurations had the same surface energy. With
hysteresis this is no longer the case. In order to dewet near the
hinge point, energy must be supplied to the system in order
to induce a motion of the contact line. Starting with one of
the three final configurations outlined in Secs. III A–III C that
correspond to local minima of surface energy, external work
would be required in order to move the new free surface away
from the hinge point and if the external contact angle is θ = θa

(situation outline in Sec. III C) move the external contact line
as well. Dewetting therefore will not occur spontaneously in
this system.

IV. FOLDING IN THREE DIMENSIONS

A. Idealized geometry: Infinite folding

We now consider the three-dimensional case and assume
for simplicity that we have no contact-angle hysteresis. The
main complication going from two to three dimensions is the
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FIG. 18. (Color online) The left shows the evolution from a folded configuration (small value of α). Surface energy E is plotted as a
function of the folding angle α. The value of α increases with θ = θr fixed until the configuration with a local minimum of energy is reached
(solid line). If the system goes backward and the hinge closes, θ is no longer constant but the contact line is pinned and the surface energy goes
back up, but along a different path (dashed lines). The right shows hysteresis for the contact angle as a function of the folding angle if we open
and close successively the system (θr = π/2, θa = 3π/4).

fact that the shape is no longer a simple circular arc, but a
more complex surface of constant mean curvature.

1. Hydrophobic case

The droplet shape must satisfy three constraints: (i) constant
volume, (ii) constant contact angle, and (iii) constant mean
curvature. Clearly, the portion of a sphere is a shape of
constant mean curvature. Let us show that this shape can
also satisfy the other two constraints. Let us imagine that we
make a planar surface intersect a sphere. The contact angle
between the sphere and the plan will be constant over the inter-
section line (see Fig. 19, left). By adding another surface
intersecting the sphere with the same angle and by removing
both spherical caps on the other side of the surfaces we get a
configuration matching both the constant contact angle and the
constant mean curvature conditions (Fig. 19, right). Changing
the radius of curvature of the droplet allows us to tune the
volume and thus the spherical solution allows us to satisfy all
three constraints. Note that this solution is unique since the
spherical shape ensures that the energy of the free surface is
minimized. It is worth mentioning that if the folding angle α is
between 0 and −π/2 + θE , the intersection line between the
two planes does not intersect the sphere, corresponding thus
to the dewetting configuration. With the solution known for

FIG. 19. (Color online) The left shows the intersection between a
sphere and a planar surface that leads to a constant contact angle along
the intersection line. The right shows two planar surfaces intersecting
a sphere and forming a corner that satisfy the contact-angle condition
along both contact lines. Removing the caps leads to the actual droplet
configuration.

the droplet shape, we can compute the surface areas giving the
surface energies as a function of the folding angle, with results
shown in Fig. 20. Similarly to the two-dimensional case and for
similar geometrical reasons, the surface energy stays constant
in the dewetting range (α between 0 and −π/2 + θE).

2. Hydrophilic case

In the hydrophilic case, computing the shape of the droplet
is more difficult. Given that two and three dimensions showed
similar results in the hydrophobic case, we can conjecture that
the same occurs in the hydrophilic limit and that complete
folding will be the final configuration. This hypothesis is
confirmed by numerical simulations performed using Brakke’s
SURFACE EVOLVER [24] and shown in Fig. 21. The total
surface energy monotonically decreases when the folding
angle decreases and complete folding leads to the global
minimum.

This situation can be further addressed using scaling
analysis, similarly to what was done in two dimensions. Let
us assume that, for small variations of the folding angle α,
the droplet shape is not modified and can be parametrized

FIG. 20. (Color online) Total surface energy E as a function of
the folding angle α, in three dimensions, for θE = 3π/4. For α �
−π/2 + θE , the energy does not depend on α, as in two dimensions.
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FIG. 21. (Color online) In three dimensions, and similarly to two
dimensions, the energy increases with α in the hydrophilic case
(computations with SURFACE EVOLVER). The system is driven towards
α = 0.

as in Fig. 22, with L = BR, B being a constant shape
parameter. For small values of α, the opening h can be
approximated as h ∼ Rα. The volume of the droplet V is then
proportional to V ∼ RLh = BR3α and the surface energy can
be approximated by

E ∼ 2C1RL(γSL − γAS) + C2LhγAL, (7)

where C1 and C2 are two other shape constants related to
the dimensionless areas of the solid-liquid and liquid-air
interfaces, respectively. Replacing R by its expression given
by V and α yields

E ∼ 2BC1(γSL − γAS)

(
V

Bα

)2/3

+ BγALC2α
1/3

(
V

B

)2/3

.

(8)

Differentiating E from Eq. (8) and using Young’s formula to
relate the surface energies leads to

dE

dα
∼ BγAL

(
V

B

)2/3 [
4

3
C1 cos(θE)α−1 + 1

3

]
α−2/3. (9)

Since in the hydrophilic case cos θE > 0, we have dE/dα > 0
for all values of α and therefore the minimum of energy
is obtained for α = 0. As in the two-dimensional case, a
hydrophilic droplet in three dimensions leads to complete
folding.

L 

R 
h 

Droplet 

FIG. 22. (Color online) In the hydrophilic case, for small values
of (and changes in) α we assume that the droplet remains of a similar
shape (see the text for notation).

FIG. 23. (Color online) Example of a final three-dimensional
folded configuration visualized with SURFACE EVOLVER, assuming
a contact angle θE = π/2. The size of the square supports is 1 × 1
and the volume of the droplet 0.5. The edges deform the otherwise
spherical shape.

B. Finite-size folding in three dimensions

As we did in Sec. II B, we now examine the three-
dimensional folding behavior as the interface reaches the
edges of the wall. In that case, as a difference with the easier
two-dimensional case, the droplet edges deform the spherical
cap shape and an analytical treatment is difficult. We use
SURFACE EVOLVER [24] to analyze the system behavior,
illustrating the results with θE = π/2 and 3π/4. The goal is
to investigate if the results are qualitatively similar to those
obtained in two dimensions (as we will see below, they are).

Simulations are performed with two square walls of size
1 × 1 attached by a hinge. We fix the contact angle, vary
the folding angle, and for each value of α compute the total
surface energy, allowing us to determine the particular value
αeq at which the surface energy is minimum. Final numerical
results are then converged to through mesh refinements. As an
example, we illustrate in Fig. 23 the shape of the droplet at
equilibrium in the case of θE = π/2 and V = 0.5 (leading to
αeq ≈ 25◦).

We display the results for the folding angle as a function
of the droplet volume in Fig. 24. They are close to what was
obtained in two dimensions (Fig. 6). In the case where θE =
3π/4, αeq remains constant and equal to π/4 (= −π/2 + θE)
until the droplet reaches the edges of the wall. As in two
dimensions, the folding angle therefore remains independent
of the droplet volume until that point. After reaching the
critical volume, the equilibrium angle increases with the
volume. In the case θE = π/2, the edges are reached for any
small droplet volume since the infinite-wall case would lead
to a completely folded configuration αeq = −π/2 + θE = 0.
The folding angle therefore increases monotonically with the
droplet volume in that case. Note that for both contact angles,
α reaches π/2 asymptotically in the limit of large volumes.

V. FOLDING OF A TWO-DIMENSIONAL ELASTIC SHEET

Instead of considering two rigid walls joined at a free hinge,
we add in this section a new ingredient, namely, the elastic cost
of deforming the solid. We adopt the same setup as the one
studied in Ref. [9] in the context of capillary origami, namely, a
purely two-dimensional configuration of an elastic sheet bent
by a two-dimensional droplet. In the study of Ref. [9], the
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FIG. 24. (Color online) Folding angle αeq vs droplet volume V

for finite-size three-dimensional folding, obtained numerically using
SURFACE EVOLVER. The behavior is similar to the two-dimensional
calculations (Fig. 6). For θE = 3π/4, αeq = π/4 and is independent
of volume until the droplet reaches the edges of the wall. After that
stage, the folding angle increases with the droplet volume. For θE =
π/2, the edges are reached for all volumes and the folding volume
always increases with the droplet volume. In both cases, αeq slowly
asymptotically approaches π/2 as V → ∞.

droplet was assumed to always reach the edge of the sheet.
As a difference, we will focus here on the case in which the
droplet does not reach the edge of the sheet and investigate the
role of wetting on the equilibrium folding geometry.

A. Geometry and parameters

The problem geometry and its parameters are illustrated
in Fig. 25. As in the previous sections, the contact angle is
denoted by θE and we ignore the effects of gravity. The droplet
is assumed to wet a (two-dimensional) length L. The portion
of the sheet not wet by the droplet remains straight (since
they are subject to no external force or moment) and can be
used to define the folding angle α. By analogy to the previous
problems, α is half the angle formed by these lines. A flat sheet
with no bending corresponds thus to a folding angle of π/2.
The goal of this section is to compute the folding angle as a
function of the (two-dimensional) volume of the droplet and
its contact angle.

We denote by F the resultant internal stress acting on a cross
section of the sheet, by K the external force per unit length,
by M the resultant internal moment, and by t the unit tangent
vector to the rod representing the sheet. We parametrize the
rod with the curvilinear coordinate s, with s = 0 set at one of
the two triple points and s = L at the other. With this variable,
the complete set of equilibrium equations for the sheet are
written as [25]

dF
ds

= −K,
dM
ds

= F × t. (10)

Let us call ψ the angle between the tangent of the sheet
(represented by t) and the x axis. We know that, in this
problem, K = −�p n = −(γ /r) n, where r is the radius of
curvature of the droplet and γ the surface tension. Assuming
linear elasticity, the equilibrium condition (10) must now be
closed by the Hookean constitutive relationship relating the

magnitude of the bending moment M to the sheet curvature as
[25]

M = EI
dψ

ds
, (11)

where EI is the sheet bending stiffness. Written in the Frenet-
Serret frame {t,n}, mechanical equilibrium on the interval 0 <

s < L takes the form

dFn

ds
+ Ft

dψ

ds
= γ

r
, (12a)

dFt

ds
− Fn

dψ

ds
= 0, (12b)

dM

ds
= −Fn, (12c)

together with Eq. (11).
The system in Eq. (12) needs to be accompanied by

appropriate force boundary conditions, which can simply
be found by projecting the surface tension in the directions
tangent and normal to the sheet at the triple point

Fn(0+) = −γ sin θE, (13a)

Fn(L−) = γ sin θE, (13b)

Ft (0
+) = −γ cos θE, (13c)

Ft (L
−) = −γ cos θE. (13d)

The value of L, however, is unknown and must be computed.
It can be calculated by solving the equation with the boundary
condition at s = 0 and finding the location along the sheet
where the values of the stresses match the force boundary
conditions. It is to be noted also that with this set of equations
we cannot enter the volume directly as an input. Instead, we
set a value for the radius of the droplet r , solve the equations,
and get both the volume and the folding angle a posteriori. If
we span all the possible values for r , then we can obtain the
folding angle as a function of the droplet volume.

B. Solving the problem

We start by rearranging Eq. (12) by differentiating once
to eliminate Ft , Fn, and M and obtain a third-order equation
for ψ ,

d3ψ

ds3
+ γ cos θE

EI

dψ

ds
+ 1

2

(
dψ

ds

)3

+ γ

EIr
= 0, (14)

valid for 0 < s < L. We nondimensionalize Eq. (14) by
introducing the elastocapillary length LEC = (EI/γ )1/2 in-
troduced in Refs. [4,9,26]. If the radius of curvature of the
droplet is r and the curvilinear coordinate is s, we define the
dimensionless radius r = r/LEC and the reduced curvilinear
abscissa s = s/LEC . The dimensionless third-order differen-
tial equation is then

d3ψ

ds3 + cos θE

dψ

ds
+ 1

2

(
dψ

ds

)3

+ 1

r
= 0 (15)

for 0 < s < L/LEC . Using a prime to denote derivatives
with respect to s, the boundary conditions are ψ(0) = 0
(arbitrary condition to set the origin of the coordinate system),
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Radius of 
curvature = r 

t 
n 

droplet 

Elas�c 
sheet 

FIG. 25. (Color online) Elastic sheet bent by a droplet in two dimensions. On the left the contact angle is θE and the folding angle α. The
droplet wets a total length L along the rod. The right shows the specific notation used to enforce force and moment balance along the flexible
sheet (see the text for details).

ψ ′(s = 0) = 0 (no moment condition), and ψ ′′(s = 0) =
sin θE (force condition).

We compute the solution to Eq. (15) numerically using
MATLAB. We find the missing dimensionless parameter L/LEC

by noticing that it corresponds to the positive value of the
curvilinear coordinate s for which ψ ′(s = L/LEC) = 0 (no
moment at the exit contact line). Once ψ and L/LEC are
known, we can compute α and the volume as a function of r

for different values of the contact angle.

C. Numerical results

In Fig. 26 we plot the direct dependence of the folding angle
with the droplet curvature r for three different values of the
contact angle. When r tends to 0, α tends to π/2 and there is no
folding. This is the large-stiffness limit. Inversely, when r tends
to +∞, α asymptotically approaches the value π/2 − θE . That
value simply arises from the fact that the liquid-air interface
is flat and thus the sum of the folding angle and the contact
angle needs to add up to π/2. Note that in this small-stiffness
limit, the capillary pressure is zero (no curvature of the free

0 

10 20 0 30 

FIG. 26. (Color online) Folding angle α as a function of the
nondimensional droplet curvature r . For small r (large stiffness), α

is close to π/2 and there is no folding. In the opposite small-stiffness
limit of large r , α tends to π/2 − θE .

surface) and the only force affecting the sheet is the surface
tension acting locally on both contact lines. As can be seen,
both the hydrophilic and hydrophobic cases lead to folding of
the elastic sheet, hydrophilic droplets leading to α > 0 while
the hydrophobic situation leads to α < 0. Note that we have
ignored here steric effects between both ends of the sheet
(physical overlap), which would have to be addressed for all
cases in which α < 0.

After calculating the volume for each configuration, we can
plot the dependence of the folding angle on the dimensionless
droplet volume V = V γ/B. In order to compute the complete
curve, we need to consider also negative values for r

corresponding to the situation in which the droplet is concave.
The final results are shown in Fig. 27 for three different values
of the contact angle. Solid lines show cases with r > 0, while
dashed lines indicate r < 0. For each contact angle, there exists
a range of droplet volumes in which two solutions for α exist. In
that case, the equilibrium reached experimentally will depend
on the initial configuration between the droplet and the sheet.
Given the typical protocols discussed in the Introduction, we
expect that experiments will start in a completely unfolded
geometry (2α = π ) and thus the equilibrium reached for a

0 

2 4 6 

FIG. 27. (Color online) Folding angle α as a function of the
dimensionless droplet volume V = V γ/B for three values of the
equilibrium contact angle (π/4,π/2, and 3π/4). The dashed lines
represent cases where r < 0.
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given volume in Fig. 27 will be the largest of the two values
of α.

VI. CONCLUSION

In this work we have used theoretical calculations, scaling
analysis, and numerical computations to address the role
of geometry and wetting on capillary folding. Our study
was motivated by a number of experiments demonstrat-
ing the folding of two-dimensional templates into complex
three-dimensional shapes and the goal of the paper was
to provide an overview of the various experimental control
parameters.

One of the important messages of our paper is the demon-
stration that by simply varying the contact angle between the
liquid-air interface and the solid surface, the complete range of
folding angles can be obtained, from complete folding (α = 0)
to a fully flat configuration (α = π/2). The key formula,
derived in Sec. II A and seen repeatedly throughout the paper,
relates the folding angle αeq to the equilibrium contact angle
θE as

αeq = −π

2
+ θE. (16)

This equation governs the equilibrium in the case of the infinite
walls, without dewetting, and a hydrophobic droplet. Even in
geometrically complicated situations such as in the presence
of nonstraight walls or with contact-angle hysteresis, Eq. (16)
can still be used provided the parameters α and θ are defined
correctly, as detailed above.

In Sec. II the idealized two-dimensional geometry allowed
us to consider different parameters allowing us to control the

folding angle. The volume of the droplet is one of these tuning
parameters, either when the droplet is large enough that it
reaches the edges of the walls (Sec. II B), when the walls
display nontrivial shapes (Secs. II C and II D), or when we add
another droplet on the other side of the ridge (Sec. II E). The
ability for a droplet to dewet from the corner of the folded
region or the presence of contact-angle hysteresis can have
major consequences too (Sec. II F). If dewetting theoretically
leads to an undetermined minimum energy configuration, it
appears that contact-angle hysteresis would prevent dewetting
from occurring (Sec. III). These results, derived theoretically
in two dimensions, appear to remain valid in three dimensions
(Sec. IV). We finally considered and solved the problem of
capillarity-driven folding of an elastic sheet in two dimensions
(Sec. V). Once again, the contact angle and the volume of
the droplet were important control parameters, along with
flexibility.

One of the exciting avenues for extending this line of
work would be to address the inverse folding problem. We
now have a thorough physical picture of how geometrical and
material parameters affect folding in two and three dimensions.
Would it be then possible to design the two-dimensional
pattern and control parameters able to yield a particular
folded three-dimensional structure? Can shapes of arbitrary
complexity be obtained or are there intrinsic limits to the use
of surface tension for small-scale manufacturing? We hope that
our study will motivate further work along these directions.
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P. Sanders, J. Sundaram, M. Elwenspoek, and N. R. Tas, Appl.
Phys. Lett. 97, 014103 (2010).

[14] D. J. Filipiak, A. Azam, T. G. Leong, and D. H.
Gracias, J. Micromech. Microeng. 19, 075012
(2009).

[15] T. G. Leong, B. R. Benson, E. K. Call, and D. H. Gracias, Small
4, 1605 (2008).

[16] N. Bassik, G. M. Stern, M. Jamal, and D. H. Gracias, Adv. Mater.
20, 4760 (2008).

[17] J.-H. Cho and D. H. Gracias, Nanolett. 9, 4049
(2009).

[18] A. Azam, K. E. Laflin, M. Jamal, R. Fernandes, and D. H.
Gracias, Biomed. Microdevices 13, 51 (2010).

[19] L. Ionov, Soft Matter 7, 6786 (2011).
[20] C. L. Randall, E. Gultepe, and D. H. Gracias, Trends Biotech.

30, 138 (2012).
[21] R. Fernandes and D. H. Gracias, Adv. Drug Deliv. Rev. 64, 1579

(2012).
[22] N. B. Crane, O. Onen, J. Carballo, Q. Ni, and R. Guldiken,

Microfluid. Nanofluid. 14, 383 (2013).
[23] M. Rivetti and S. Neukirch, Proc. R. Soc. London Ser. A 468,

1304 (2012).
[24] K. Brakke, Exp. Math. 1, 141 (1992).
[25] L. D. Landau and E. M. Lifshitz, Theory of Elasticity, 3rd ed.

(Butterworth-Heinemann, Oxford, 1986).
[26] C. Py, R. Bastien, J. Bico, B. Roman, and A. Boudaoud,

Europhys. Lett. 77, 44005 (2007).

043011-13

http://dx.doi.org/10.1103/RevModPhys.57.827
http://dx.doi.org/10.1103/RevModPhys.57.827
http://dx.doi.org/10.1103/RevModPhys.57.827
http://dx.doi.org/10.1103/RevModPhys.57.827
http://dx.doi.org/10.1063/1.2195314
http://dx.doi.org/10.1063/1.2195314
http://dx.doi.org/10.1063/1.2195314
http://dx.doi.org/10.1063/1.2195314
http://dx.doi.org/10.1038/432690a
http://dx.doi.org/10.1038/432690a
http://dx.doi.org/10.1038/432690a
http://dx.doi.org/10.1038/432690a
http://dx.doi.org/10.1038/nnano.2013.41
http://dx.doi.org/10.1038/nnano.2013.41
http://dx.doi.org/10.1038/nnano.2013.41
http://dx.doi.org/10.1038/nnano.2013.41
http://dx.doi.org/10.1103/RevModPhys.77.977
http://dx.doi.org/10.1103/RevModPhys.77.977
http://dx.doi.org/10.1103/RevModPhys.77.977
http://dx.doi.org/10.1103/RevModPhys.77.977
http://dx.doi.org/10.1021/la700913m
http://dx.doi.org/10.1021/la700913m
http://dx.doi.org/10.1021/la700913m
http://dx.doi.org/10.1021/la700913m
http://dx.doi.org/10.1088/0953-8984/22/49/493101
http://dx.doi.org/10.1088/0953-8984/22/49/493101
http://dx.doi.org/10.1088/0953-8984/22/49/493101
http://dx.doi.org/10.1088/0953-8984/22/49/493101
http://dx.doi.org/10.1103/PhysRevLett.98.156103
http://dx.doi.org/10.1103/PhysRevLett.98.156103
http://dx.doi.org/10.1103/PhysRevLett.98.156103
http://dx.doi.org/10.1103/PhysRevLett.98.156103
http://dx.doi.org/10.1140/epjst/e2009-00880-4
http://dx.doi.org/10.1140/epjst/e2009-00880-4
http://dx.doi.org/10.1140/epjst/e2009-00880-4
http://dx.doi.org/10.1140/epjst/e2009-00880-4
http://dx.doi.org/10.1073/pnas.1101738108
http://dx.doi.org/10.1073/pnas.1101738108
http://dx.doi.org/10.1073/pnas.1101738108
http://dx.doi.org/10.1073/pnas.1101738108
http://dx.doi.org/10.1016/j.jmps.2006.11.009
http://dx.doi.org/10.1016/j.jmps.2006.11.009
http://dx.doi.org/10.1016/j.jmps.2006.11.009
http://dx.doi.org/10.1016/j.jmps.2006.11.009
http://dx.doi.org/10.1063/1.3462302
http://dx.doi.org/10.1063/1.3462302
http://dx.doi.org/10.1063/1.3462302
http://dx.doi.org/10.1063/1.3462302
http://dx.doi.org/10.1088/0960-1317/19/7/075012
http://dx.doi.org/10.1088/0960-1317/19/7/075012
http://dx.doi.org/10.1088/0960-1317/19/7/075012
http://dx.doi.org/10.1088/0960-1317/19/7/075012
http://dx.doi.org/10.1002/smll.200800280
http://dx.doi.org/10.1002/smll.200800280
http://dx.doi.org/10.1002/smll.200800280
http://dx.doi.org/10.1002/smll.200800280
http://dx.doi.org/10.1002/adma.200801759
http://dx.doi.org/10.1002/adma.200801759
http://dx.doi.org/10.1002/adma.200801759
http://dx.doi.org/10.1002/adma.200801759
http://dx.doi.org/10.1021/nl9022176
http://dx.doi.org/10.1021/nl9022176
http://dx.doi.org/10.1021/nl9022176
http://dx.doi.org/10.1021/nl9022176
http://dx.doi.org/10.1007/s10544-010-9470-x
http://dx.doi.org/10.1007/s10544-010-9470-x
http://dx.doi.org/10.1007/s10544-010-9470-x
http://dx.doi.org/10.1007/s10544-010-9470-x
http://dx.doi.org/10.1039/c1sm05476g
http://dx.doi.org/10.1039/c1sm05476g
http://dx.doi.org/10.1039/c1sm05476g
http://dx.doi.org/10.1039/c1sm05476g
http://dx.doi.org/10.1016/j.tibtech.2011.06.013
http://dx.doi.org/10.1016/j.tibtech.2011.06.013
http://dx.doi.org/10.1016/j.tibtech.2011.06.013
http://dx.doi.org/10.1016/j.tibtech.2011.06.013
http://dx.doi.org/10.1016/j.addr.2012.02.012
http://dx.doi.org/10.1016/j.addr.2012.02.012
http://dx.doi.org/10.1016/j.addr.2012.02.012
http://dx.doi.org/10.1016/j.addr.2012.02.012
http://dx.doi.org/10.1007/s10404-012-1060-1
http://dx.doi.org/10.1007/s10404-012-1060-1
http://dx.doi.org/10.1007/s10404-012-1060-1
http://dx.doi.org/10.1007/s10404-012-1060-1
http://dx.doi.org/10.1098/rspa.2011.0589
http://dx.doi.org/10.1098/rspa.2011.0589
http://dx.doi.org/10.1098/rspa.2011.0589
http://dx.doi.org/10.1098/rspa.2011.0589
http://dx.doi.org/10.1080/10586458.1992.10504253
http://dx.doi.org/10.1080/10586458.1992.10504253
http://dx.doi.org/10.1080/10586458.1992.10504253
http://dx.doi.org/10.1080/10586458.1992.10504253
http://dx.doi.org/10.1209/0295-5075/77/44005
http://dx.doi.org/10.1209/0295-5075/77/44005
http://dx.doi.org/10.1209/0295-5075/77/44005
http://dx.doi.org/10.1209/0295-5075/77/44005



