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Evaporation-Driven Assembly of Colloidal Particles
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Colloidal particles absorbed at the interface of a liquid droplet arrange into unique packings during
slow evaporation [V. N. Manoharan et al., Science 301, 483 (2003)]. We present a numerical and
theoretical analysis of the packing selection problem. The selection of a unique packing arises almost
entirely from geometrical constraints during the drying.
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FIG. 1. Schematic two-dimensional representation of the dry-
ing experiment: (a) particle configuration when the droplet
volume is above the critical volume; (b) critical packing; (c) re-
arrangement below the critical packing with both capillary and
contact forces acting on each particle; (d) final packing.
Manoharan et al. [1] recently presented an ingenious
method for fabricating clusters of small particles into
precise configurations. Polystyrene spheres (diameter
844 nm) were dispersed in a toluene-water emulsion
with each oil droplet containing a low number N of
spheres. The toluene was then preferentially evaporated,
forcing the particles to come together into compact clus-
ters. Surprisingly, the final particle packings were unique:
the observed packings for N � 11 closely correspond to
those previously identified [2] as minimizing the second
moment of the particle distribution, M �

P
ijjri � r0jj2,

where r0 is the center of mass of the cluster.
The fact that such a simple process leads to precision

assembly at the submicron scale points to exciting possi-
bilities for controlling the assembly of more general
objects [3]. The goal of this Letter is to understand the
physical principles underlying the observations of
Manoharan et al. [1]. Why are the final packings unique?
(Why) do they minimize the second moment? What
physical parameters do these results depend upon? We
first present numerical simulations of hard spheres on an
evaporating liquid droplet for a wide range of liquid-solid
contact angles: for each contact angle the simulations
reproduce the final packings of [1]. We then demonstrate
that the uniqueness of the packings can be understood
almost entirely from purely geometrical considerations.
The arguments suggest a method for creating new pack-
ings, which we confirm through simulations.

Numerical simulations.—The experiments suggest the
following theoretical problem: for a given liquid volume,
the particle configuration is determined from minimiz-
ing the total surface energy

U� � �D

Z
D
dS� �DP

Z
DP

dS� �P

Z
P
dS; (1)

while respecting excluded volume constraints between
the particles. Here D, DP, and P refer to the droplet
surface, droplet-particle interface, and particle surface,
respectively (see Fig. 1).

Numerical simulations are performed using Brakke’s
Surface Evolver [4], a program which determines the
equilibrium configuration of deformable surfaces given
the definition of an energy. The colloidal spheres are
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modeled as liquid droplets with high surface tension,
typically 1 to 2 orders of magnitude larger than the
main droplet, in order to penalize nonspherical deforma-
tions of their shape. Interfacial tensions between the
droplet and the particles are chosen appropriately in order
to satisfy Young’s law at the liquid-solid contact line,
�P � �D cos
� �DP, where 
 is the equilibrium contact
angle. Non-interpenetrability is enforced with an ex-
cluded volume repulsion energy UR acting between the
centers of the spheres [5]; UR dominates when at least two
spheres overlap by 1%.

The particles are initially positioned randomly on the
droplet. The droplet volume is then slightly decreased (by
1% or less) and the particles rearrange to a new equilib-
rium, minimum of U � U� �UR. This procedure repla-
ces the evaporation dynamics by a series of equilibrium
problems and therefore mimics the low evaporation rate
limit of the experiments.

We find that the packings obtained numerically are
unique and agree with those obtained by Manoharan
et al. [1], over the range of contact angles tested (10 � �

 � 170 �) and initial conditions. A comparison of the
final computational and experimental packings is illus-
trated in Fig. 2. In all cases, the final second moment
obtained numerically differs by less than 0.5% from the
minimum moment packings of [2]. The agreement veri-
fies that the experimental packing problem is consistent
with the energy minimization posed above and that other
particle-particle interactions (electrostatic, van der
Waals...) are not essential to generate the final packings.

There is one noteworthy difference between the simu-
lations and the experiments. In the simulations, the clus-
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FIG. 2. Comparison of the experimen-
tally observed packings (left) with those
obtained by numerical simulations
(right) as a function of the number of
spherical particles.
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ter of spheres evolves smoothly (c.f. Fig. 3). In contrast,
experiments [1] showed a discontinuous transition to the
final packing. The discrepancies must arise from experi-
mental features not present in the simulations, probably
contact angle hysteresis.

The critical volume.—We now study theoretically the
packing selection problem. For sufficiently large liquid
volumes, the minimum energy solution is a spherical
droplet with noninteracting force-free particles
[Fig. 1(a)]. There exists a critical volume Vc below which
the droplet cannot remain spherical [Fig. 1(b)]; below this
critical volume each particle is acted upon by capillary
forces. At the critical volume Vc, there is a critical pack-
ing of particles, which can be characterized as follows.

The interactions between particles on the surface of a
sphere are equivalent to the steric interactions between
the ‘‘cone of influence’’ of each particle, defined as the
cone originating from the droplet center and tangent to
the particle [Fig. 1(b)]. These are also equivalent to the
interactions between the intersection of these cones with
FIG. 3. Numerical evolution of the second moment as a
function of the droplet volume for N � 9 (both in units of
the particle radius). The final second moments are 25.899
(theory) and 25.946 (simulations). Inset, packings observed
during the drying process when M � 25:946, 27.016, 35.014,
45.058. Solid line, minimal second moment; dashed line,
second moment at the critical packing (M � 27).
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the droplet, which are circles. Consequently, packing
spherical particles at the critical volume is equivalent to
packing circles on a sphere, a mathematical problem with
rich history [6–9] and for which numerical solutions have
been proposed up to N � O�100�. Usually, the circle
packings for a given N are unique, with two types of
exceptions. For N � 5, 19, 20, 23, 26, 28, 29. . . the circle
packing has continuous degrees of freedom (where at least
one circle is free to ‘‘rattle’’) [9]; for N � 15 two different
configurations (15a and 15b) lead to the densest packings
with equal surface density [9].

Hence, provided that there are no kinetic traps, identi-
cal particles will arrange themselves into the circle pack-
ing at the critical volume. Figure 3 confirms this con-
clusion in numerical simulations for N � 9. Changing
the contact angle of a particle changes the size of its
circle of influence and the droplet radius by the same
amount, so the circle packing problem is unchanged and
the critical packing of particles at the critical volume is
independent of wetting characteristics; the critical drop-
let volume is, however, contact angle dependent.

How do the particles rearrange when V < Vc?—The
energy minimization problem suggests that we must find
the particle configuration which minimizes U� under
interpenetrability and contact angle constraints. Owing
to the complexity of solving for the liquid surface of
constant mean curvature, this at first appears to be an
extraordinarily difficult theoretical problem. However, we
have found that, at least at low N, the constraints asso-
ciated with packing of particles are sufficient to uniquely
determine their initial rearrangements.

Let us suppose the droplet volume is reduced by a small
amount �V 	 Vc. Deviations of the droplet interface
from spherical lead to capillary forces (Fi) on each par-
ticle. Since every particle must be in force equilibrium,
these forces must be balanced by contact forces (fji)
between the particles [Fig. 1(c)], such that

F i �
X

j2C�i�

fji � 0: (2)

where C�i� denotes the set of particles in contact with
sphere i [10].
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Let us now characterize the number of ways the parti-
cles can rearrange to accommodate this change in vol-
ume. Each particle has 3 degrees of freedom and the
droplet has one (the value of its mean curvature or pres-
sure), so there are 3N � 1 degrees of freedom. The con-
straints include (a) solid body rotation does not modify
the packing (3 constraints); (b) the particles cannot over-
lap, (nc constraints, where nc is the number of contacts at
the critical packing) [11]; (c) forces have to balance
[Eq. (2)].

Equation (2) implies nontrivial constraints. Suppose we
solve (2) for the nc contact forces fji � fjieji (eji � ei �
ej, where ei is the unit vector directed from the droplet
center to the particle center). Equation (2) has 3N com-
ponents, and nc � 2N unknowns (Table I). Consequently,
solutions exist only if compatibility relations are satisfied
between the Fi. Since capillary forces depend on the
position of the particles, these equilibrium considerations
constrain the rearrangement of the particles. Close to the
critical volume, the capillary forces are given by Fi �
Fiei. From the N scalar forces Fi, Eq. (2) shows that only
a subset nf can be chosen independently, i.e. equilibrium
of each particle leads to N � nf additional constraints; nf
is found by computing the rank of the compatibility
matrix in (2) [12].

The total number of admissible modes of rearrange-
ment nm for the colloidal particles is found by subtracting
the number of constraints from the number of degrees of
freedom: we find nm � 2N � 2� nf � nc. For a given N,
nm is entirely determined by the geometry of the critical
packing. The results are displayed in Table I. Whenever
the circle packing is unique, we find that nm � 1. When
nm > 1, we find that the number of modes is always
correlated with the presence of rattlers. If a total number
of continuous degrees of freedom nd exist in the circle
packing (nd � 2 or one per rattler depending on if it is
completely free, as in N � 19 or constrained in a slot, as
in N � 5), we always find that nm � 1� nd. Since nd � 0
indicates that there exist nd force-free surface modes for
TABLE I. Characteristics of critical packings of spherical
colloidal particles as a function of their number N: number
of contacts (nc), number of independent forces (nf) and number
of admissible modes of rearrangement (nm).

N nc nf nm N nc nf nm N nc nf nm

4 6 1 1 13 24 1 1 21 40 1 1
5 6 1 3 14 28 3 1 22 42 1 1
6 12 3 1 15a 30 3 1 23 43 2 3
7 12 1 1 15b 30 3 1 24 60 15 1
8 16 3 1 16 32 3 1 25 48 1 1
9 18 3 1 17 34 3 1 26 46 1 5

10 19 2 1 18 34 1 1 27 52 1 1
11 25 6 1 19 34 1 3 28 52 1 3
12 30 9 1 20 39 6 5 29 54 1 3
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the packing, we obtain therefore that there exists a unique
mode of rearrangement for all particles which are non-
rattlers. In experiments, the degeneracy in the circle
packing problem is chosen by additional information:
for example, in [1], because the particles are charged
only on the side exposed to the water, there is a weak
dipolar repulsive force between the particles which
breaks the degeneracy [13,14].

This result implies that there is only a single set of fFig
that is consistent with all the constraints. In five cases
(N � 4, 6, 8, 12, 24), a decrease of the droplet volume
leads to an increase in the droplet pressure without re-
arrangement of the particles; in these cases, we predict
the final packings to be the same as the spherical pack-
ings, which is confirmed experimentally and by our simu-
lations for N � 4, 6, 12. In all other cases, the modes in-
clude rearrangements of the particles and are unique, in-
dependent of surface energies and only a function of ge-
ometry. Capillarity enters the problem in relating the
force Fi to the displacement �ri. If the radius of curvature
of the droplet changes from R to R� �R then volume
conservation implies that �ri and �R are related through
A
P

i�ri��4�R2�NA��R�0, where A is the wetted area
of the particles. The capillary force Fi is then given by

Fi � �2��D cos�
�
�ri �

A cos�

4�R2 � NA

X
i

�ri

�
; (3)

where � is the dry angle of the particle on the critical
packing, 
 the equilibrium contact angle, and � � �� 
.
This formula is asymptotically valid in the limit �V ! 0
so that deviations from a spherical cap droplet are small.

The above results apply just below Vc. However, the
general principle can be iteratively applied below the
critical volume: starting from the spherical packing, we
decrease the droplet volume by small increments and,
assuming Eq. (3) continues to hold as a modeling as-
sumption, we calculate the corresponding incremental
particle rearrangement consistent with all the constraints.
At each step in the iteration it is necessary to recompute
the mode fFig (and to check whether fij > 0); for every
packing there is a unique choice that is consistent with the
constraints. This process iterates until the final equilib-
TABLE II. Final second moment of the model (Mm) com-
pared with the final second moment in the experiment [1] if the
particles are assumed to be perfectly spherical (Mexp) and with
the minimum second moment (M2).

N Mexp Mm M2 N Mexp Mm M2

3 4 4 4 9 25.899 25.899 25.899
4 6 6 6 10 31.828 31.828 31.828
5 9.333 9.333 9.333 11 37.835 37.929 37.835
6 12 12 12 12 43.416 43.416 42.816
7 16.683 17.100 16.683 13 51.316 52.032 47.701
8 21.157 21.657 21.157 14 59.225 61.000 54.878

-3



FIG. 4. Comparison for N � 9 between the packing given by
(a) experiments, (b) simulations, and (c) model.

FIG. 5. Final configuration of nine spheres with different
wetting conditions: on the droplet, n1 spheres have a contact
angle of 160 � and n2 � 9� n1 spheres have a contact angle of
20 �. (a) cases fn1; n2g � f2; 7g and f4; 5g, M � 27:706; (b) case
fn1; n2g � f6; 3g, M � 29:780; (c) case fn1; n2g � f8; 1g, M �
30:754 (units of the particle radius).
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rium configuration is reached. During the process the
packing changes substantially from the initial disk pack-
ing—typically multiple new contacts are added.

The results of the model are displayed in Table II and in
Fig. 4. The model reproduces accurately the final experi-
mental packings for N � 6 and 9 � N � 14; in particu-
lar, the nonconvex packing for N � 11 is well predicted
by the model. Differences in the final packings for N � 7
and 8 likely arise from deviations of the capillary force-
particle displacement relationship from the linear law (3)
when the change in droplet volume is sufficiently large. It
should be emphasized that the computational cost of the
new algorithm is orders of magnitude lower than that of a
full simulation. To our surprise the final packing can be
computed quite accurately without ever knowing the
shape of the liquid surface during the packing process!

Finally, we remark on the minimal moment criterion
itself: our results suggest that the drying influences the
final packings only (a) through enforcing the initial disk
packing at the critical volume; and (b) through Eq. (3),
relating the Fi to the particle displacements. It is prob-
ably not coincidental that (up to prefactors) Eq. (3) is
similar to the force-displacement relation Fi � �@iM�
c1�ri � c2

P
i�ri, for the minimal moment criterion. We

believe that this explains the similarity between the ob-
served structures and those minimizing the second
moment.

The calculations presented herein suggest that the
unique packings observed by Manoharan et al. arise
because (i) the initial circular packing is unique for the
regime they explored, except for N � 15, and (ii) the
subsequent evolution of the particles is so highly con-
strained that there is only one final packing that is con-
sistent with the constraints.

This suggests that the only way to generate different
packings is to modify the circle packing at the critical
volume. This can be easily modified by choosing particles
with differing sizes or wettabilities (thus creating circles
of different sizes). We have run simulations where parti-
cles on a given droplet possess different contact angles.
Figure 5 shows three cases of N � 9 particles with con-
tact angles of either 160 �or 20 �. The three packings and
their second moment differ significantly from Fig. 4.

In summary, we have presented a numerical and theo-
retical study of the packing selection problem of
Manoharan et al. [1]. The selection of a unique packing
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was found to arise almost entirely from geometrical con-
straints during the drying process. The analysis suggests
that changes in wettability among the particles lead to
changes in the final packings.
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