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Abstract A number of swimming microorganisms, such as ciliates (Opalina) and multicellular colonies of flagel-
lates (Volvox), are approximately spherical in shape and swim using beating arrays of cilia or short flagella covering
their surfaces. Their physical actuation on the fluid may be mathematically modeled as the generation of sur-
face velocities on a continuous spherical surface—a model known in the literature as squirming, which has been
used to address various aspects of the biological physics of locomotion. Previous analyses of squirming assumed
axisymmetric fluid motion and hence required all swimming kinematics to take place along a line. In this paper
we generalize squirming to three spatial dimensions. We derive analytically the flow field surrounding a spherical
squirmer with arbitrary surface motion and use it to derive its three-dimensional translational and rotational swim-
ming kinematics. We then use our results to physically interpret the flow field induced by the swimmer in terms of
fundamental flow singularities up to terms decaying spatially as ∼1/r3. Our results will make it possible to develop
new models in biological physics, in particular in the area of hydrodynamic interactions and collective locomotion.

Keywords Low-Reynolds-number locomotion · Squirming motion · Stokes flows

1 Introduction

Due to their small sizes, microorganisms inhabit a world where viscous forces dominate and inertial effects are
negligible. The Reynolds number, which characterizes the relative importance of inertial to viscous forces, ranges
typically from 10−5 for the smallest bacteria up to 10−2 for spermatozoa [1]. Fluid-based locomotion of microor-
ganisms is vital in a number of biological processes, including reproduction, locating nutrient sources, preying,
and escaping from predation [2–4]. Physically, locomotion at low Reynolds numbers suffers from the constraints
due to the absence of inertia, mathematically manifested by the linearity and time independence of the governing
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equation—the Stokes equations [5]. Purcell illustrated the difficulties encountered in small-scale locomotion by
introducing his scallop theorem [6], which states that no reciprocal motion (body deformation possessing a time-
reversal symmetry) can lead to net propulsion at zero Reynolds number [7].

Nature showcases a variety of mechanisms by which it is possible to overcome the constraints of the theorem
and achieve micropropulsion. Many cells use one or more appendages, called flagella (singular: flagellum), for
propulsion. Traveling waves are then propagated along the flagellum either by internal bending (seen, for example,
in the spermatozoon of eukaryotic cells) or passive rotation of a rigid helical flagellum (the case of swimming
bacteria), in both cases making it possible to break the time-reversal symmetry and hence escape from the constraints
of the scallop theorem [5]. A number of microorganisms possess multiple flagella. Escherichia coli is a bacterium
with a few helical flagella that can wrap into a bundle to move the cell forward when the motor turns in a specific
direction. Chlamydomonas reinhardtii is an alga (eukaryotic cell) with two flagella. Ciliates such as Opalina and
Paramecium (illustrated in Fig. 1a) and colonies of flagellates such as Volvox (shown in Fig. 1b) have their surface
covered by arrays of cilia (or short flagella) beating in a coordinated fashion [1].

Over the past 60 years, theoretical and experimental studies on the locomotion of microorganisms have improved
our understanding of life under the microscope [1,5,10]. Topics of recent active interest include the locomotion
of cells in environments with complex geometries [11–13] and complex fluids [14–17], the role of motility in
the formation of biofilms [18–21], the collective dynamics of active particles [22,23], and the effect of Brownian
noise on swimming [24–26]. Considerable attention has also been devoted to the design of artificial microscopic
swimmers [27] for potential biomedical applications such as microsurgery and targeted drug delivery [28].

Historically, Taylor [29] pioneered the theoretical modeling of flagellar hydrodynamics by analyzing the motion
of a waving sheet in Stokes flows. The propulsion speed of the sheet was solved asymptotically in the limit of a
small waving amplitude compared to its wavelength. Subsequently, most of the theoretical studies in the field have
derived their results asymptotically, meaning they are physically valid only in specific mathematical limits: small
amplitudes [14,15,29,30], long wavelengths [31,32], slender filaments [33–38], or in the far field [21,39]. As a
result, very few exact solutions for swimming in Stokes flows exist.

The most popular exact solution is originally due to Lighthill [40] and Blake [41] and was developed to address
the propulsion of ciliates. In their model, sometimes referred as the envelope model, the motion of closely packed
cilia tips are modeled as a continuously deforming surface (envelope) over the body of the organism, taken to
be of spherical shape [40,41]. The deformation of the envelope can then be expanded about the surface of the
spherical cell body, and to leading order the action of the cilia is represented by distributions of radial and tangential
velocities on the spherical surface. Lighthill [40] first derived the exact solution to the Stokes equation due to such
a squirming motion on a sphere, with subsequent corrections and generalizations by Blake [41]. Since then, the
squirmer model has been all but adopted as the hydrogen atom of low-Reynolds-number swimming. Originally
developed to specifically model the swimming of ciliates, the squirmer model can also be useful in the study of other
types of swimming microorganisms, broadly categorized as “pushers” and “pullers” [5]. Pushers obtain their thrust
from the rear part of their body, such as the swimming of all peritrichous bacteria (like E. coli). In contrast, for pullers
the thrust comes from their front part, such as the breaststroke swimming of algae genus Chlamydomonas. The

Fig. 1 a Ciliary motion of Paramecium [8]. b Flagellar motion of Volvox [9]. All images were reprinted with permission: a from Tamm
[8] Copyright 1972 Rockefeller University Press; b from Solari et al. [9] Copyright 2006 National Academy of Sciences of the United
States of America
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squirmer model can represent pushers and pullers by correspondingly changing the surface actuation (squirming
profile), rendering it a general model for investigating the locomotion of microorganisms. As such, it has been
used to study many problems including the hydrodynamic interactions of swimmers [42,43], suspension dynamics
[44,45], nutrient transport and uptake by microorganisms [46–48], optimal locomotion [49], and non-Newtonian
[50,51] and inertial effects [52].

Most studies on squirming motion follow the notation of Lighthill [40] and Blake [41] and assume that the
surface distortion is axisymmetric. This simplifies the analysis significantly and results in swimmers undergoing
swimming along their axis of symmetry only. Real microorganisms, however, actuate the fluid in a nonaxisymmetric
fashion. The protozoan Paramecium, for instance, rotates as it swims and has a helical distribution of cilia (Fig. 1a).
Stone and Samuel [53] derived formulae that relate the translational and rotational velocities of a squirmer to the
arbitrary squirming profiles on the sphere via the reciprocal theorem. In experiments with V. carteri, Drescher et al.
[54] measured nonaxisymmetric squirming profiles and utilized these reciprocal relations to analyze the swimming
kinematics of the cell. However, the reciprocal relations give no information on the flow surrounding the squirmer.

In this paper, we generalize the classical squirming results to nonaxisymmetric actuation. Using Lamb’s general
solution in Stokes flow [55], we derive analytically the exact solution for the flow field surrounding the swimmer,
together with the swimming kinematics, for a general nonaxisymmetric squirmer. Lamb’s general solution is ideally
suited for problems with spherical or nearly spherical [56] geometries, and a detailed description of the solution
and its applications can be found in classical textbooks [57,58]. Our results will be useful for addressing the role
of nonaxisymmetric actuation in a variety of problems in the biological physics of locomotion, including feeding
and sensing, and the rheology of active suspensions. Furthermore, from a fundamental fluids perspective, our study
makes it possible to establish a link between arbitrary surface motion and the appearance of nonaxisymmetric flow
singularities.

The structure of the paper is as follows. The problem is mathematically formulated in Sect. 2, followed by
a summary of the axisymmetric case in Sect. 3, where the swimming kinematics (Sect. 3.1) and flow structure
(Sect. 3.2) are presented. We then generalize the analysis to a nonaxisymmetric squirmer in Sect. 4, where we
present the swimming kinematics (Sects. 4.1 and 4.2), the three-dimensional flow structure (Sect. 4.3), the rate of
work due to swimming (Sect. 4.4), and the decomposition of arbitrary surface velocities in the form of Lamb’s
general solution (Sect. 4.5). We conclude in Sect. 5. In Appendix A, we include detailed expressions of the flow
singularities used throughout the paper. While in the main text we present the results of a squirmer with purely
tangential deformation, we include the more general case of a nonaxisymmetric squirmer with radial deformation
in Appendices B–D.

2 Formulation

We model theoretically the motion of a spherical ciliate of radius a in an incompressible fluid at zero Reynolds
number using spherical coordinates (Fig. 2), with er , eθ , and eφ as the basis vectors. Following the envelope model,
the action of the cilia is represented by a general squirming profile (tangential and radial surface velocities) over
the spherical surface at r = a. The fluid around the squirmer is governed by the Stokes equations

η∇2u = ∇ p, (1)

and the continuity equation for incompressible flows

∇ · u = 0, (2)

where u = ur er + uθeθ + uφeφ and p represent the velocity and pressure fields, respectively, and η denotes the
dynamic viscosity of the fluid. In the main text, we present only the results in the case of purely tangential squirming
motion (i.e., no radial surface velocities), ur (r = a, θ, φ) = 0, because it is the most widely used squirming model
in the literature. For completeness the more general case, which includes the radial deformation, is presented in
Appendices B and C.
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Fig. 2 Geometrical setup
of a spherical squirmer of
radius a. Using spherical
coordinates, we denote the
radial coordinate, the polar,
and azimuthal angles by r ,
θ , and φ, respectively

A general solution to the Stokes equations can be obtained by constructing the homogeneous (uH) and particular
(uP) solutions. The homogenous solution can be constructed as [55,57,58]

uH = ∇� + ∇ × (rχ), (3)

where r is the position vector, and � and χ are both harmonic functions

∇2� = ∇2χ = 0. (4)

One can expand the functions � and χ in series of solid spherical harmonics, � = ∑∞
n=−∞ �n and χ = ∑∞

n=−∞ χn ,
where �n and χn denote spherical harmonics of order n as

�n = rn
n∑

m=0

Pm
n (μ)(bmn cos mφ + b̃mn sin mφ), (5)

χn = rn
n∑

m=0

Pm
n (μ)(cmn cos mφ + c̃mn sin mφ). (6)

Here μ = cos θ and Pm
n (μ) are the associated Legendre polynomials [59,60] of order m and degree n, defined as

solutions to the linear differential equation for f (μ)

d

dμ

[

(1 − μ2)
d f

dμ

]

+
[

n(n + 1) − m2

1 − μ2

]

f = 0. (7)

By taking the divergence of Eq. (1) and utilizing the continuity equation, Eq. (2), we obtain that the pressure
satisfies the Laplace equation ∇2 p = 0. The pressure is therefore also harmonic, and we can again expand it in a
series of solid spherical harmonics, p = ∑∞

n=−∞ pn , where

pn = rn
n∑

m=0

Pm
n (μ)(amn cos mφ + ãmn sin mφ). (8)

One can then use these results to construct a particular solution to the Stokes equation as

uP =
∞∑

n=−∞

[
(n + 3)r2∇ pn

2η(n + 1)(2n + 3)
− nr pn

η(n + 1)(2n + 3)

]

, (9)

where r = |r| denotes the magnitude of the position vector.
Superimposing the homogenous and particular solutions gives the general solution

u =
∞∑

n=−∞

[
(n + 3)r2∇ pn

2η(n + 1)(2n + 3)
− nr pn

η(n + 1)(2n + 3)
+ ∇�n + ∇ × (rχn)

]

, (10)

usually named after Lamb [55].
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Here we require that the solution must decay at infinity (r → ∞), and hence all harmonics of positive order are
discarded. In addition, following Brenner [56], we replace n by −(n + 1) in Eq. (10) to obtain the form of Lamb’s
solution convenient for exterior problems,

u(r, θ, φ) =
∞∑

n=1

[

− (n − 2)r2∇ p−n−1

2ηn(2n − 1)
+ (n + 1)r p−n−1

μn(2n − 1)
+ ∇�−n−1 + ∇ × (rχ−n−1)

]

, (11)

where

p−n−1 = r−n−1
n∑

m=0

Pm
n (Amn cos mφ + Ãmn sin mφ), (12)

�−n−1 = r−n−1
n∑

m=0

Pm
n (Bmn cos mφ + B̃mn sin mφ), (13)

χ−n−1 = r−n−1
n∑

m=0

Pm
n (Cmn cos mφ + C̃mn sin mφ), (14)

and the pressure field is given by p = ∑∞
n=1 p−n−1. Notice that the solutions of the case n = 0 have also been

discarded since they correspond to sources and sinks, which are unphysical in problems related to rigid particles
[40,41,58].

After performing all the differential operations in Eq. (11), Lamb’s general solution in spherical coordinates
u = ur er + uθ eθ + uφeφ takes the form

ur =
∞∑

n=1

n∑

m=0

(n + 1)Pm
n

2(2n−1)ηrn+2

{[
Amnr2 − 2Bmn(2n − 1)η

]
cos mφ+

[
Ãmnr2 − 2B̃mn(2n−1)η

]
sin mφ

}
, (15)

uθ =
∞∑

n=1

n∑

m=0

1

2rn sin θ

{

sin2 θ Pm′
n

[
n − 2

n(2n − 1)η
(Amn cos mφ+ Ãmn sin mφ)− 2

r2 (Bmn cos mφ+ B̃mn sin mφ)

]

+ 2m

r
Pm

n (C̃mn cos mφ − Cmn sin mφ)

}

, (16)

uφ =
∞∑

n=1

n∑

m=0

1

2rn sin θ

{

m Pm
n

[
n − 2

n(2n − 1) η
Pm

n (−Ãmn cos mφ+ Amn sin mφ)− 2

r2 (−B̃mn cos mφ+Bmn sin mφ)

]

+ 2

r
sin2 θ Pm′

n (Cmn cos mφ + C̃mn sin mφ)

}

· (17)

Here we have employed a recursion expression of associated Legendre polynomials,

(n + 1)μPm
n − (1 + n − m)Pm

n+1 = (1 − μ2)Pm′
n , (18)

to simplify the equations [59,60] (the primes represent differentiation with respect to the variable μ).
From the radial velocity component, Eq. (15), the requirement of purely tangential deformation leads to the

relations

Amn = 2(2n − 1)η

a2 Bmn, Ãmn = 2(2n − 1)η

a2 B̃mn . (19)

Enforcing the conditions in Eq. (19), the general flow field due to purely tangential squirming motion becomes

ur =
∞∑

n=1

n∑

m=0

(n + 1)Pm
n

rn+2

(
r2

a2 − 1

)[
Bmn cos mφ + B̃mn sin mφ

]
, (20)
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uθ =
∞∑

n=1

n∑

m=0

[

sin θ Pm′
n

(
n − 2

na2rn
− 1

rn+2

)(
Bmn cos mφ + B̃mn sin mφ

)

+ m Pm
n

rn+1 sin θ
(C̃mn cos mφ − Cmn sin mφ)

]

, (21)

uφ =
∞∑

n=1

n∑

m=0

[
sin θ Pm′

n

rn+1 (Cmn cos mφ + C̃mn sin mφ)

− m Pm
n

sin θ

(
n − 2

na2rn
− 1

rn+2

)(
B̃mn cos mφ − Bmn sin mφ

)
]

. (22)

To reiterate, the preceding flow fields decay at infinity in the laboratory frame and correspond to purely tangential
velocities at the body surface; the case with radial velocities is detailed in Appendices B and C.

Note that for simplicity in this paper we consider a neutrally buoyant squirmer, where the buoyancy force from
the fluid balances the gravitational force on the squirmer. Hence, there is no net force or torque acting on the fluid
(the force- and torque-free conditions). Should there be a density offset between the squirmer and the fluid, it would
result in a net force [61] and thus would add a Stokeslet component (Appendix A.1) to the flow field around the
squirmer, which can be superimposed on the results of the current work.

3 Axisymmetric squirming motion

In this section, we use Lamb’s general solution to reproduce the axisymmetric results first derived by Lighthill [40]
and Blake [41]. The analysis also identifies new axisymmetric modes. With the general solution, Eqs. (21)–(22),
the axisymmetric flow field (m = 0) reduces to

u(r, θ, φ) =
∞∑

n=1

(n + 1)Pn

rn+2

(
r2

a2 − 1

)

B0ner +
∞∑

n=1

sin θ P ′
n

(
n − 2

na2rn
− 1

rn+2

)

B0neθ +
∞∑

n=1

sin θ Pm′
n

rn+1 C0neφ (23)

for purely tangential squirming motion, where we denote by Pn(μ) = P0
n (μ) the Legendre polynomials of degree

n. The surface velocities on the sphere have the form

u(a, θ, φ) =
∞∑

n=1

−2 sin θ P ′
n

an+2n
B0neθ +

∞∑

n=1

sin θ P ′
n

an+1 C0neφ. (24)

Upon setting C0n = 0 and using a simple rescaling

B0n = − an+2

n + 1
Bn, (25)

the preceding surface velocities reduce to the form used in Lighthill [40] and Blake [41], where Bn are the coefficients
used in their work.

Here we have identified new axisymmetric modes, denoted C0n , acting in the azimuthal direction φ (right-hand
side of Eq. (24)) and the corresponding flow fields (last sum in Eq. (23)), which were not accounted for in previous
works. While Stone and Samuel [53] and Drescher et al. [54] employed the reciprocal theorem to discuss the
swimming kinematics of a squirmer subject to arbitrary squirming profiles, the current results complete the analysis
of axisymmetric squirming motion by providing the whole flow field. The physical interpretation of these new
axisymmetric modes is discussed subsequently in Sect. 3.2.
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Generalized squirming motion of a sphere 7

3.1 Swimming of an axisymmetric squirmer

When studying the swimming of a squirmer, it is best to think about the problem in two separate steps. In the first
step, we consider the preceding solution, Eq. (23), with boundary conditions from Eq. (24), so that the squirmer is
fixed in space (by an external force) and not allowed to move. This is sometimes referred to in the literature as the
pumping problem. In the second step, we allow the squirmer to move freely and compute the induced translational
(U) and rotational (�) velocities, given the boundary actuation in the pumping problem, Eq. (24). This allows the
separation of the surface velocities due to the boundary actuation of the squirmer from the contribution due to the
induced translation and rotation. To obtain the overall flow field, v, of a swimming squirmer, we superimpose the
solution of the pumping problem, u, and the flow fields due to the induced translation, uT, and rotation, uR, and
thus write

v = u + uT + uR. (26)

This first step (computing u) was accomplished in Eq. (23). We now determine the unknown swimming kine-
matics, {U,�}, when the squirmer is free to move. This involves computing all the forces and torques acting on
the swimming squirmer: the fluid force, Fp, and torque, Tp, due to the boundary actuation in the pumping problem,
and the drag, Fs, and torque, Ts, due to the induced translation and rotation of the squirmer. We then enforce the
overall force-free and torque-free conditions in swimming problems of Stokes flows as

Fp + Fs = 0, (27)

Tp + Ts = 0. (28)

The drag and torque due to the translation and rotation of a spherical squirmer are simply Fs = −6πηaU and
Ts = −8πηa3�, respectively. For the contributions from the pumping problem, the net force and torque due to
the boundary actuation can be conveniently computed in Lamb’s general solution as Fp = −4π∇(r3 p−2) and
Tp = −8πη∇(r3χ−2), respectively [57,58]. The force and torque balances, Eqs. (27) and (28), therefore become

−4π∇(r3 p−2) − 6πηaU = 0, (29)

−8πη∇(r3χ−2) − 8πηa3� = 0. (30)

The solutions for p−2 and χ−2 are given by Eqs. (12) and (14), respectively, and we thus obtain the swimming
kinematics

U = − 2

3ηa
∇ (r P1) A01 = −4B01

3a3 ez, (31)

� = −∇ (r P1)

a3 C01 = −C01

a3 ez, (32)

where we have used Eq. (19). Note that the propulsion and rotational velocities may also be obtained using a
reciprocal theorem approach [53], as discussed in Sect. 4.2. The translational swimming velocity agrees with that
given by Lighthill [40] and Blake [41] provided the rescaling from Eq. (25) is used, giving U = 2B1/3ez .

For an axisymmetric squirmer, propulsion and rotation can only occur in the same direction (here, the z-direction),
and hence the squirmer can only follow a straight swimming trajectory. Also notice that among all the modes in
the squirming profile, Eq. (24), just one mode, mode B01, contributes to propulsion. Similarly, among all the new
azimuthal modes in the boundary condition, only mode C01 contributes to the rotation of the squirmer.

Finally, by superimposing the solution of the pumping problem, Eq. (26), and the flow fields due to the swimming
kinematics, Eqs. (31) and (32), we obtain the overall flow field of an axisymmetric swimming squirmer, v =
vr er + vθ eθ + vφeφ , in the laboratory frame as

vr = −4 cos θ

3r3 B01 +
∞∑

n=2

(n + 1)Pn

rn+2

(
r2

a2 − 1

)

B0n, (33)

vθ = −2 sin θ

3r3 B01 +
∞∑

n=2

sin θ P ′
n

(
n − 2

na2rn
− 1

rn+2

)

B0n, (34)
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8 O. S. Pak, E. Lauga

vφ =
∞∑

n=2

sin θ P ′
n

rn+1 C0n . (35)

Note that throughout the paper we will refer to the flow fields in the pumping and swimming problems as u and v,
respectively.

3.2 Axisymmetric flow structure

In this section, we identity the flow structure generated by a swimming squirmer as due to a superposition of flow
singularities. This allows a physical interpretation of the flows caused by different modes of ciliary action in terms
of combinations of point forces and torques and their spatial derivatives [42]. Such an understanding is useful for
constructing approximations for swimmers in theoretical modeling and computer simulations, where one can retain
only modes relevant to the aspects of physics of interest. For instance, in the axisymmetric case, it is common to
retain only the mode contributing to swimming (the source dipole mode) and the mode due to two point forces
(Stokes dipoles) [42,44–46], where the arrangement of the two-point forces (the sign of the Stokes dipole) can
represent different types of swimmers (pushers vs. pullers; see Sect. 1). In what follows, we first revisit the known
correspondences between the flow field around an axisymmetric squirmer and different flow singularities. We then
proceed to discuss the new axisymmetric modes and the interpretation of their corresponding flow singularities.

3.2.1 The B01 mode

The primary fundamental singularity in Stokes flows is the flow due to a point force f αδ(r) of magnitude f and
direction α at the origin, where δ(r) is the Dirac delta function. The solution is given by u = f G(α)/(8πη), where

G(α) = 1

r
[α + (α · er )er ] , (36)

and is called a Stokeslet. That flow is long-ranged and decays as 1/r . A Stokeslet acting in the z-direction has the
explicit form in spherical coordinates

G(ez) = 1

r
[2 cos θer − sin θeθ ] . (37)

In the pumping problem, Eq. (23), we can then identify that the B01 mode,

uB01 =
(

2P1

a2r
− 2P1

r3

)

B01er +
(

− sin θ P ′
1

a2r
− sin θ P ′

1

r3

)

B01eθ (38)

= B01

a2r
(2 cos θer − sin θeθ ) − B01

r3 (2 cos θer + sin θeθ ) , (39)

contains a Stokeslet in the z-direction (Eq. 37). The other component, decaying faster as 1/r3, corresponds to a
source dipole singularity, also in the z-direction, which we discuss subsequently (Eq. 53).

To obtain the overall flow field, v, surrounding a swimming squirmer, Eq. (26), the solution to the pumping
problem, u, needs to be superimposed by that due to a translating sphere at a velocity −4B01/3a3, Eq. (31), leading
to

uT = − B01

a2r
(2 cos θer − sin θeθ ) + B01

3r3 (2 cos θer + sin θeθ ) , (40)

which also contains a Stokeslet and a source dipole. Unsurprisingly, the Stokeslet components cancel each other
exactly and satisfy the overall force-free condition of a free swimming squirmer. Therefore, a Stokeslet component
does not appear in the swimming flow field from Eqs. (33)–(35). Notice, however, that the cancellation of the source
dipole components is incomplete, leaving a residual source dipole in the swimming flow field as

vB01 = −2B01

3r3 (2 cos θer + sin θeθ ) . (41)
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Generalized squirming motion of a sphere 9

3.2.2 The B02 and C01 modes

Analyzing the structure of flow around a swimming squirmer from Eqs. (33)–(35), we see that the slowest decaying
flow field (∼1/r2) is contained in the B02 mode as

vB02 = 3P2

r4

(
r2

a2 − 1

)

B02er − sin θ P ′
2

r4 B02eθ (42)

= 3B02

4a2r2 (1 + 3 cos 2θ)er − 3B02

4r4 [(1 + 3 cos 2θ)er + 2 sin 2θeθ ] . (43)

The part decaying as 1/r2 can be interpreted as the contribution of a Stokes dipole, which is a higher-order
singularity of Stokes flows, and obtained by taking a derivative of a Stokeslet (directed in the α-direction) along the
direction β,

GD(β,α) = β · ∇G(α) = (β × α)er

r2 − (β · α)er − 3(α · er )(β · er )er

r2 · (44)

The symmetric part of a Stokes dipole is termed a stresslet, first defined by Batchelor [62], and given by

S(β,α) = − (β · α)er − 3(α · er )(β · er )er

r2 , (45)

which physically represents the straining motion of the fluid. The antisymmetric part is termed a rotlet,

R(γ ) = ζ × er

r2 , (46)

where ζ = β × α represents the strength (magnitude and direction) of the flow due to a singular point torque. The
Stokes dipole with α = β = ez corresponds to only a stresslet

GD(ez, ez) = S(ez, ez) = 1 + 3 cos 2θ

r2 er . (47)

In the B02 mode of the flow field, Eq. (42), we can readily identify a Stokes dipole (stresslet) (see Appendices A.2
and A.3), while the other part decaying as 1/r4 corresponds to a source quadrupole, a higher-order singularity.

The first azimuthal mode in the pumping problem, Eq. (23), is given by the C01 mode,

uC01 = sin θ P ′
1

r2 C01eφ = sin θ

r2 C01eφ, (48)

and represents a rotlet in the z-direction, R(ez) = sin θ/r2eφ . Similar to the translation case, the pumping problem
solution, u, is superimposed by the flow field due to the induced rotation at the rate −C01/a3 (Eq. 32)

uR = − sin θ

r2 C01, (49)

leading to the total flow field surrounding a swimming squirmer, v (Eq. 26). Again, unsurprisingly, the rotlet
components exerting torques on the fluid cancel out completely, thereby satisfying the overall torque-free condition.
The C01 mode is hence absent from the resulting swimming flow field, Eqs. (33)–(35), leaving no trace of the
rotational motion of the squirmer. The important difference between rotation and translation is that the rotational
mode is due to velocities that are all in the direction of the rotation, so a complete cancellation of the flow field
satisfying the torque-free condition is possible by simply rotating in the opposite direction at the same rate. In
contrast, for translational swimming, such exact cancellation is not possible because the surface velocity has a
distribution of directions all along the sphere relative to its swimming direction. In other words, one can construct
the ultimate stealth rotating sphere using purely tangential modes but not a similarly stealth translating sphere.

In summary, the B02 and C01 modes together contain the representation of a Stokes dipole (stresslet plus rotlet)
with the direction and gradient taken both in the z-direction (α = β = ez).
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3.2.3 The B03 and C02 modes

Higher-order flow singularities can be obtained by repeatedly taking derivatives of the lower-order singularities.
Full vector expressions of these singularities can be found in the literature Spagnolie and Lauga [67]. For example,
a Stokes quadrupole can be obtained by taking a derivative of a Stokes dipole, GD(β,α), along the direction γ ,
leading to

GQ(γ ,β,α) = γ · ∇G(β,α)

= 1

r3

{
(β · α)γ + (γ · α)β − (γ · β)α + 15(γ · er )(β · er )(α · er )er

− 3
[
(β · α)(γ · er ) + (γ · α)(β · er ) + (γ · β)(α · er )

]
er

− 3
[
(γ · er )(α · er )γ + (γ · er )(α · er )β − (γ · er )(β · er )α

] }
. (50)

The flow field due to such a Stokes quadrupole decays as 1/r3. In particular, a Stokes quadrupole with α = β =
γ = ez takes the simple form

GQ(ez, ez, ez) = 1

r3

[

(cos θ + 3 cos 3θ)er + 1

4
(3 sin 3θ − sin θ)eθ

]

, (51)

which is useful in interpreting the B03 mode in Lamb’s solution, as we will see below.
Several components of the Stokes quadrupole have particularly clear physical meanings, such as the potential

(source) dipole

PD(α) = 1

r3 [−α + 3(α · er )er ] , (52)

where α denotes its direction. A potential dipole in the z-direction is given by

PD(ez) = 1

r3 [2 cos θ er + sin θ eθ ] , (53)

which is the residual component of the B01 mode in the overall flow field of a swimming squirmer (see Eq. (41)
or Eqs. (33)–(35)). This potential dipole component contained in the B01 mode, together with the part decaying as
1/r3 in the B03 mode and given by

vB03 = B03

2a2r3

[

(3 cos θ + 5 cos 3θ)er + 1

4
(sin θ + 5 sin 3θ)eθ

]

− B03

2r5

[

(3 cos θ + 5 cos 3θ)er + 3

4
(sin θ + 5 sin 3θ)eθ

]

, (54)

contains the representation of the Stokes quadrupole, GQ(ez, ez, ez), expressed in Eq. (51). The other component
decaying as 1/r5 in the B03 mode corresponds to a source octupole.

The first azimuthal component appearing in the flow field around a swimming squirmer is given by the C02 mode

vC02 = 3 sin 2θ

2r3 C02eφ, (55)

which represents another well-known component of the Stokes quadrupole, called a rotlet dipole. A rotlet dipole
can be obtained by taking a derivative along the γ direction of a rotlet with the direction ζ = β × α

RD(γ , ζ ) = γ · ∇R(ζ ) = 1

r3

[

γ × ζ + 3(γ · er )(ζ × er )

r3

]

· (56)

In particular, a rotlet dipole with γ = ζ = ez takes the simple form RD(ez, ez) = 3 sin 2θ/2r3eφ . This corresponds
to the C02 mode in Lamb’s general solution, Eq. (55), and provides the leading-order mode in the azimuthal direction.
In Fig. 3, we plot the slowest decaying flow field, given by the B02 mode with B02 = 1 (a stresslet in the far field,
Fig. 3a; a pusher, see Sect. 1), as well as the slowest decaying flow in the azimuthal direction, given by the C02

mode with C02 = 1 (a rotlet dipole, Fig. 3b).
To summarize, the B01 and B03 modes contain physically the Stokes quadrupole, GQ(ez, ez, ez); the C02 mode

corresponds to a rotlet dipole, RD(ez, ez) = 3 sin 2θ/2r3eφ , which is part of a Stokes quadrupole that is different
than GQ(ez, ez, ez) (see also Sect. 4.3 for further details).
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Fig. 3 Flow fields due to axisymmetric squirming motion of sphere of radius a = 1. a Flow field due to B02 mode with B02 = 1,
vB02 = 3(1 + 3 cos 2θ)B02/4a2r2er − 3[(1 + 3 cos 2θ)er + 2 sin 2θeθ ]B02/4r4, which is a source quadrupole in the near field and a
stresslet in the far field (a pusher, see Sect. 1). The color density represents the flow speed. b Flow field due to C02 mode with C02 = 1,
vC02 = 3 sin 2θC02/2r3eφ (a rotlet dipole), with all the velocities in the azimuthal (φ) direction, i.e., perpendicular to the page. The
color density represents the speed, with red and blue denoting positive “+” (into page) and negative “−” (out of page) velocities in
different quadrants

4 Nonaxisymmetric squirming motion

We now generalize the results for axisymmetric swimming to the nonaxisymmetric case using Eqs. (21)–(22). The
velocities on the surface of the sphere for this general case are given by

ur
∣
∣
r=a = 0, (57)

uθ

∣
∣
r=a =

∞∑

n=1

n∑

m=0

[

−2 sin θ Pm′
n

nan+2

(
Bmn cos mφ + B̃mn sin mφ

)
+ m Pm

n

an+1 sin θ
(C̃mn cos mφ − Cmn sin mφ)

]

, (58)

uφ

∣
∣
r=a =

∞∑

n=1

n∑

m=0

[
sin θ Pm′

n

an+1 (Cmn cos mφ + C̃mn sin mφ) + 2m Pm
n

nan+2 sin θ

(
B̃mn cos mφ − Bmn sin mφ

)
]

. (59)

Recall that the more general analysis, which includes nonzero radial surface velocities, is given in Appendices B
and C, and we focus in what follows on the swimming problem of a nonaxisymmetric squirmer with purely tangential
squirming profiles.

4.1 Swimming of a nonaxisymmetric squirmer

We follow closely the analysis presented in the axisymmetric case (Sect. 3) to investigate the situation where the
surface motion is nonaxisymmetric. As discussed in Sect. 3.1, we consider the swimming problem as a superposition
of a pumping problem with the boundary actuation in Eqs. (57)–(59) and the flow field due to the induced translation
and rotation of the squirmer (given in Eq. (26)). Applying the force and torque balances in this nonaxisymmetric
case, the results from Eqs. (29) and (30) continue to hold, but with solutions for p−2 and χ−2, which are more
involved, resulting in

U = − 2

3ηa
∇

[
r
(

P1 A01 + P1
1 cos φ A11 + P1

1 sin φ Ã11

)]
= 4

3a3

(
B11ex + B̃11ey − B01ez

)
, (60)

� = − 1

a3 ∇
[
r
(

P1C01 + P1
1 cos φC11 + P1

1 sin φC̃11

)]
= 1

a3

(
C11ex + C̃11ey − C01ez

)
. (61)

For an axisymmetric squirmer, only the B01 and C01 modes contribute to propulsion and rotation, respectively. In
contrast, for a general nonaxisymmetric squirmer, Eqs. (60) and (61) identify all the modes contributing to its three-
dimensional locomotion. Specifically, three modes, B11, B̃11, and B01, contribute to the translational swimming
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12 O. S. Pak, E. Lauga

in the x-, y-, and z-directions, respectively; similarly, three modes, C11, C̃11, and C01, lead to rotation in the x-,
y-, and z-directions, respectively. By superimposing the flow fields due to the induced translation and rotation
according to the velocities determined, Eqs. (60) and (61), with the solution to the nonaxisymmetric pumping
problem, Eqs. (21)–(22), we obtain the flow field around a nonaxisymmetric swimming squirmer as

vr = 4

3r3

(
B11 sin θ cos φ + B̃11 sin θ sin φ − B01 cos θ

)

+
∞∑

n=2

n∑

m=0

(n + 1)Pm
n

rn+2

(
r2

a2 − 1

)[
Bmn cos mφ + B̃mn sin mφ

]
, (62)

vθ = − 2

3r3

(
B11 cos θ cos φ + B̃11 cos θ sin φ + B01 sin θ

)

+
∞∑

n=2

n∑

m=0

[

sin θ Pm′
n

(
n − 2

na2rn
− 1

rn+2

)(
Bmn cos mφ + B̃mn sin mφ

)

+ m Pm
n

rn+1 sin θ
(C̃mn cos mφ − Cmn sin mφ)

]

, (63)

vφ = 2

3r3

(
B11 sin φ − B̃11 cos φ

)
+

∞∑

n=2

n∑

m=0

[
sin θ Pm′

n

rn+1 (Cmn cos mφ + C̃mn sin mφ)

− m Pm
n

sin θ

(
n−2

na2rn
− 1

rn+2

)(
B̃mn cos mφ−Bmn sin mφ

)]

· (64)

The flow reduces to Eqs. (33)–(35) in the axisymmetric case (m = 0). The physical meaning of the new nonax-
isymmetric terms (m �= 0) is interpreted in Sect. 4.3.

4.2 Swimming kinematics by integral theorems

The swimming kinematics of a squirmer can also be arrived using the reciprocal theorem approach taken by Stone
and Samuel [53] without having to solve for the whole flow field. The theorem relates the swimming velocity to
the surface distortion, u

∣
∣
r=a , via a surface integral on the sphere S,

U = − 1

4πa2

∫

S

u
∣
∣
r=adS, (65)

which in spherical coordinates reads

U = − 1

4π

2π∫

0

1∫

−1

(uθ eθ + uφeφ)r=adμ dφ. (66)

By transforming the basis vectors in spherical coordinates to those in Cartesian coordinates, the integral simplifies
due to the orthogonality of sinusoidal functions in the azimuthal angle φ, and we obtain

U = −1

4

∞∑

n=1

⎧
⎨

⎩

C̃1n

an+1

1∫

−1

(
P1′

1 P1
n + P1

1 P1′
n

)
dμ − 2B1n

nan+2

1∫

−1

[

(1 − μ2)P1′
1 P1′

n + P1
1 P1

n

1 − μ2

]

dμ

⎫
⎬

⎭
ex

−1

4

∞∑

n=1

⎧
⎨

⎩

C1n

an+1

1∫

−1

(
P1′

1 P1
n + P1

1 P1′
n

)
dμ − 2B̃1n

nan+2

1∫

−1

[

(1 − μ2)P1′
1 P1′

n + P1
1 P1

n

1 − μ2

]

dμ

⎫
⎬

⎭
ey

−1

2

∞∑

n=1

⎡

⎣ 2B0n

an+2n

1∫

−1

(1 − μ2)P ′
1 P ′

ndμ

⎤

⎦ ez . (67)
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Generalized squirming motion of a sphere 13

The integrals associated with C1n and C̃1n vanish upon integration by parts. The remaining integrals can be evaluated
using a general expression derived below (Eq. 78) in the special cases of m = 0 and 1. We then obtain results identical
to those given by Lamb’s solution, Eq. (60). Similarly, one can employ the reciprocal theorem to derive the rotational
velocity, [53]

� = − 3

8πa3

∫

S

n × u
∣
∣
r=a dS, (68)

and obtain the same result as earlier (Eq. 61). However, while the reciprocal theorem is a useful tool for determining
swimming kinematics, it provides no information about the flow around the swimmer, which is a main result of our
work.

4.3 Nonaxisymmetric flow structure

In the axisymmetric case, we have interpreted the flow fields due to different modes of the squirming profile as
fundamental flow singularities. We extend the idea here to physically interpret the flow induced by the nonaxisym-
metric terms. Note that in each of the modes discussed subsequently, the corresponding flow field is not a far-field
approximation of the flow induced by the squirmer but an exact solution valid in the entire space, and it is an
appropriate superposition of these modes that satisfies arbitrary boundary conditions on the spherical surface.

4.3.1 The B11 and B̃11 modes

In Sect. 3.2, we identified that part of the B01 mode of Lamb’s solution in the pumping problem, Eqs. (57)–(59),
corresponds to a Stokeslet directed in the z-direction. One can then verify that other nonaxisymmetric modes
decaying as 1/r in Lamb’s solution, namely B11 and B̃11, with the flow fields

uB11 = B11

a2r

(−2 cos θ cos φ er − cos θ cos φ eθ + sin φ eφ

)

+ B11

r3

(
2 sin θ cos φ er − cos θ cos φ eθ + sin φ eφ

)
, (69)

uB̃11
= B̃11

a2r

(−2 sin θ sin φ er − cos θ sin φ eθ − cos φ eφ

)

+ B̃11

r3

(
2 sin θ sin φ er − cos θ sin φ eθ − cos φ eφ

)
, (70)

contain Stokeslets directed in the x- and y-directions, respectively (Appendix A.1). Similarly, the parts decay-
ing as 1/r3 in the B11 and B̃11 modes correspond to potential dipoles in the x- and y-directions, respectively
(Appendix A.6).

Naturally, all Stokeslet components are cancelled out exactly upon the superposition with the flow fields due to
translational swimming in different directions, Eq. (60), satisfying the force-free condition and leaving only residual
potential dipoles in different directions in the flow field of a nonaxisymmetric swimming squirmer, Eqs. (62)–(64).

4.3.2 The Bm2, B̃m2, C11, and C̃11 modes (1 ≤ m ≤ 2)

Once all the Stokeslet contributions have been removed, the slowest decaying components in the flow around a
general (nonaxisymmetric) swimming squirmer, Eqs. (62)–(64), decay as 1/r2, which are associated with the B02,
Bm2, and B̃m2 modes (1 ≤ m ≤ 2). The parts decaying as 1/r2 in the nonaxisymmetric terms (Bm2 and B̃m2) have
the same physical meaning as that in the axisymmetric B02 mode – these are stresslets – but they are formed by
taking a gradient along various directions of a Stokeslet, itself aligned in different directions. Specifically, the B12

mode alone contains the stresslet S(ez, ex ). The ∼1/r2 components in the B22 and B02 modes can be combined
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14 O. S. Pak, E. Lauga

to represent the stresslet S(ex , ex ), formed by taking the gradient along ex of a Stokeslet directed also in ex .
Alternatively, one can understand that a component decaying as 1/r2 in the B22 mode alone represents a stresslet
formed by the superposition of S(ex , ex ) and −S(ez, ez). We refer the reader to Appendix A.3 for the expressions
of all stresslets in different configurations. The correspondence between stresslets with different configurations and
the modes in Lamb’s general solution is summarized in Table 1.

As first proposed by Batchelor [62], we can also write down a stresslet tensor in the Cartesian coordinates
containing the contributions from different modes of squirming motion, and we obtain

S = −8πη

a2

⎛

⎜
⎜
⎝

− B02
2 + 3B22 3B̃22 − 3

2 B12

3B̃22 − B02
2 − 3B22 − 3

2 B̃12

− 3
2 B12 − 3

2 B̃12 B02

⎞

⎟
⎟
⎠ · (71)

That equation, allowing to determine the exact far-field nature of a generalized squirmer, is one of the important
results of our paper.

In the pumping solution, Eqs. (21)–(22), the C02, C11, and C̃11 modes in Lamb’s solution also decay as 1/r2.
However, they do not contribute to the overall flow field in the swimming problem due to the torque-free condition.
Similar to the C02 mode, the C11 and C̃11 modes represent rotlets in the x- and y-directions, respectively. Expressions
of rotlets with different configurations are reproduced in Appendix A.4.

4.3.3 The Bq3, B̃q3, Cm2, and C̃m2 modes (1 ≤ q ≤ 3 and 1 ≤ m ≤ 2)

In a similar fashion, one can identify that the Bq3, B̃q3, Cm2, and C̃m2 modes (1 ≤ q ≤ 3 and 1 ≤ m ≤ 2) have the
same physical meaning as their counterparts in the axisymmetric case (namely the B03 and C02 modes). Together
with the parts decaying as 1/r3 in the B01, B11, and B̃11 modes, the six modes B03, Bq3, B̃q3, C02, Cm2, and C̃m2

contain the representation of a general Stokes quadrupole with all possible geometrical configurations. Which mode
corresponds to which quadrupole is summarized in Table 2.

In particular, we can identify the modes associated with better known components of the Stokes quadrupole,
namely the potential dipoles and the rotlet dipoles. The flow fields associated with modes B11 and B̃11, and decaying
as 1/r3, correspond to potential dipoles in the x- and y-directions, respectively (Table 3 and Appendix A.6). The
C02, Cm2, and C̃m2 modes with the potential dipole modes (B01, B11 and B̃11) contain the representation of a general
three-dimensional rotlet dipole with different configurations (Table 3 and Appendix A.7).

At this point it should be clear that the flow field generated by a swimming squirmer, Eqs. (62)–(64), may also
be viewed as combinations of fundamental flow singularities. The nonaxisymmetric terms have the same physical
meanings as their counterparts in the axisymmetric case (with the same value of n in Eqs. (21)–(22)), but they

Table 1 Correspondence between force dipoles (stresslets plus rotlets) and different modes of squirming motion

Force dipole (∼1/r2) Contained in modes Stresslet (∼1/r2) Contained in modes Rotlet (∼1/r2) Contained in modes

GD(ex , ex ) B02, B22 S(ex , ex ) = GD(ex , ex ) B02, B22 RD(ex ) C11

GD(ey, ex ) B̃22, C01 S(ey, ex ) = S(ex , ey) B̃22 RD(ey) C̃11

GD(ez, ex ) B12, C̃11 S(ez, ex ) = S(ex , ez) B12 RD(ez) C01

GD(ex , ey) B̃22, C01 S(ey, ey) = GD(ey, ey) B02, B22

GD(ey, ey) B02, B22 S(ez, ey) = S(ez, ey) B̃12

GD(ez, ey) B̃12, C11 S(ez, ez) = GD(ez, ez) B02

GD(ex , ez) B12, C̃11

GD(ey, ez) B̃12, C11

GD(ez, ez) B02
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Table 2 Correspondence
between force quadrupoles
and different modes of
squirming motion

Force quadrupole (∼1/r3) Contained in modes

GQ(ex , ex , ex ) B11, B13, B33

GQ(ey, ex , ex ) = GQ(ex , ey, ex ) B̃11, B̃13, B̃33, C12

GQ(ez, ex , ex ) = GQ(ex , ez, ex ) B01, B03, B23, C̃22

GQ(ey, ey, ex ) B11, B13, B33, C̃12

GQ(ez, ey, ex ) = GQ(ey, ez, ex ) B̃23, C22, C02

GQ(ez, ez, ex ) B11, B13, C̃12

GQ(ex , ex , ey) B̃11, B̃13, B̃33, C12

GQ(ey, ex , ey) = GQ(ex , ey, ey) B11, B13, B33, C̃12

GQ(ez, ex , ey) = GQ(ex , ez, ey) B̃23, C22, C02

GQ(ey, ey, ey) B̃11, B̃13, B̃33

GQ(ez, ey, ey) = GQ(ey, ez, ey) B01, B03, B23, C̃22

GQ(ez, ez, ey) B̃11, B̃13, C12

GQ(ex , ex , ez) B01, B03, B23, C̃22

GQ(ey, ex , ez) = GQ(ex , ey, ez) B̃23, C22

GQ(ez, ex , ez) = GQ(ex , ez, ez) B11, B13, C̃12

GQ(ey, ey, ez) B01, B03, B23, C̃22

GQ(ez, ey, ez) = GQ(ey, ez, ez) B̃11, B̃13, C12

GQ(ez, ez, ez) B01, B03

Table 3 Correspondence
between both rotlet dipoles
and potential dipoles and
different modes of
squirming motion

Rotlet dipole (∼1/r3) Contained in modes Source dipole (∼1/r3) Contained in modes

RD(ex , ex ) C02, C22 PD(ex ) B11

RD(ex , ey) B01, C̃22 PD(ey) B̃11

RD(ex , ez) B̃11, C12 PD(ez) B01

RD(ey, ex ) B01, C̃22

RD(ey, ey) C02, C22

RD(ey, ez) B11, C̃12

RD(ez, ex ) B̃11, C12

RD(ez, ey) B11, C̃12

RD(ez, ez) C02

include all possible configurations of the flow singularities (for different values of m in Eqs. (21)–(22)). From a
physical point of view, the essential physics is therefore all contained in the case of the axisymmetric squirming
motion, and the nonaxisymmetric flow fields are linear superpositions of flow singularities in different directions.
For a given nonaxisymmetric squirming profile, the more general analysis in our paper provides a way to quantify,
and understand, the general three-dimensional flow structure.

Finally, we note that in the axisymmetric case, Sect. 4.1, the translational and rotational velocities are always
in the same direction, and hence an axisymmetric squirmer can only swim along a straight line (possibly in an
unsteady fashion). This is generalized in the nonaxisymmetric case, where the motion of a steady squirmer is in
general helical provided that U · � �= 0. The special case

U · � = 0 (72)

reduces the helical trajectory to a circle (a helix with zero pitch, Eq. (72)) while in the situation where

U × � = 0, (73)
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the trajectory is reduced to a straight line (a helix with zero radius, Eq. (73)). According to the swimming kinematics
computed previously in Eqs. (60) and (61), and using Eqs. (58) and (59), we obtain that a squirmer performs a
circular motion when

B11C11 + B̃11C̃11 + B01C01 = 0, (74)

while it follows a straight line when

B̃11C01 − B01C̃11 = B11C01 − B01C11 = B11C̃11 − C11 B̃11 = 0. (75)

4.4 Rate of work

In this section, the rate of work by the surface, P , during a squirming motion is considered. In spherical coordinates,
we write

P = −
∫

S

n · σ · vdS = −
2π∫

0

π∫

0

(
σrrvr + σrθ vθ + σrφvφ

) ∣
∣
r=a a2 sin θdθ dφ. (76)

The integrand can be evaluated with the Newtonian constitutive relation, σ = −p + η(∇vT + ∇v), and the
overall flow field of a swimming squirmer from Eqs. (62 )–(64). After some lengthy manipulation, we find that, for
purely tangential deformation, the rate of work for a general nonaxisymmetric squirming motion is given by the
positive-definite formula

P = 64πη

3a5

(
B2

01 + B2
11 + B̃2

11

)
+

∞∑

n=2

4n(n + 1)πη

a2n+1

(
4

n2a2 B2
0n + n + 2

2n + 1
C2

0n

)

+
∞∑

n=2

n∑

m=1

2n(n + 1)(n + m)!πη

a2n+1(n − m)!
[

4

n2a

(
B2

mn + B̃2
mn

)
+ n + 2

2n + 1

(
C2

mn + C̃2
mn

)]

. (77)

Note that the identity

1∫

−1

[

(1 − μ2)Pm′
n Pm′

l + m2 Pm
n Pm

l

1 − μ2

]

dμ = 2n(n + 1)(n + m)!
(2n + 1)(n − m)! δnl (78)

was derived and used in order to evaluate the necessary integrals in P .
Using the result in Eq. (77), one can then compute the hydrodynamic efficiency of a swimming squirmer,

E = 6πηaU2

P , (79)

defined as the rate of work required to drag a spherical body at its swimming speed divided by the rate of work done
by self-propulsion to produce the same swimming speed [63,64]. In the unsteady case, the efficiency is given by
6πηa〈U 〉2/〈P〉, where 〈· · · 〉 denotes time averaging. In Eq. (77) we see that all components contribute a positive
rate of work. However, only the modes B01, B11, and B̃11 contribute to the propulsion of the squirmer (Eq. 60). In
other words, the inclusion of any other squirming modes leads to less efficient swimming. The same holds in the
axisymmetric case, where the expression for the rate of work reduces to

P = 64πη

3a5
B2

01 +
∞∑

n=2

4n(n + 1)πη

a2n+1

(
4

n2a2 B2
0n + n + 2

2n + 1
C2

0n

)

, (80)

a result that reduces to Blake’s [41] in the case of purely tangential deformation, with the rescaling given by Eq. (25).
Note that the results for the axisymmetric case here, Eq. (80), are more general because of the inclusion of the rate
of work by the azimuthal but axisymmetric components C0n that were not previously accounted for.
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Generalized squirming motion of a sphere 17

Interestingly, using the reciprocal theorem, Stone and Samuel [53] showed that the rate of work done by a general
swimming organism is given by

P = η

∫

V

ω2dV − 2η

∫

S

n · (v · ∇v) dS, (81)

where ω is the vorticity field in the fluid. Hence, for two swimmers propelling at the same speed, the one producing
more vorticity dissipates more energy. It was therefore concluded that it is less efficient for an axisymmetric object
to rotate as it swims compared with the corresponding nonrotating swimmer.

In the explicit expression of the rate of work in the axisymmetric case (Eq. 80), the modes causing rotation of the
squirmer, C11, C̃11, and C01, do not appear, which is not surprising given that these modes do not contribute to the
flow field (see Eqs. (62)–(64) and Sect. 3.2 for explanations) due to zero apparent rotation from the perspective of
the fluid. In other words, a squirmer that self-rotates by exploiting purely the C11, C̃11, or C01 mode induces no extra
viscous dissipation. In this case, the swimmer rotates as it swims but it is as efficient as a nonrotating swimmer, simply
because the rotational motion alone produces no net flow (or vorticity). In other words, no rotation is truly felt from
the perspective of the fluid, even though from the perspective of the swimmer itself there is a nonzero rotation rate.

In general, however, a squirmer would have an azimuthal squirming profile containing not only the rotlet terms
but also other modes Cmn (n ≥ 2), which would dissipate more energy, making the swimmer less efficient according
to Eq. (80). The body rotation is apparent from the perspective of the fluid only when the azimuthal squirming profile
contains modes Cmn (n ≥ 2) other than the rotlet terms, hence the conclusion by Stone and Samuel [53].

4.5 Squirming with arbitrary surface velocities

In previous sections, the surface velocities were expressed in the form of the boundary values of Lamb’s general
solution, Eqs. (58) and (59), and the flow structure under such a decomposition was discussed. In general however,
the surface velocities could be more naturally described using other surface decompositions. Here, we detail how
to relate surface velocities expressed in arbitrary forms to the decomposition employed in Lamb’s general solution.

For illustration, we decompose the arbitrary surface velocities in natural Fourier modes along the azimuthal
direction φ as

u(a, θ, φ) =
∞∑

m=0

[
Em(θ) cos mφ + Ẽm(θ) sin mφ

]
eθ +

∞∑

m=0

[
Fm(θ) cos mφ + F̃m(θ) sin mφ

]
eφ, (82)

where Em(θ), Ẽm(θ), Fm(θ), F̃m(θ) are arbitrary functions in the polar direction projected from the boundary
actuation under this decomposition. The goal here is therefore to derive the set of coefficients, Amn , Ãmn , Bmn ,
B̃mn , Cmn , C̃mn , in Lamb’s general solution, Eqs. (58) and (59), given the surface velocities expressed in Eq. (82).

The attempt to directly project Eq. (82) onto Eqs. (58) and (59) to calculate the coefficients is nontrivial because
a mix of basis functions is used in Eq. (58) and (59), and there is no obvious way of doing orthogonal projections
to calculate the coefficients (unless m = 0 for the axisymmetric case). We instead follow a systematic scheme due
to Brenner [56], facilitating the projections of boundary conditions when using Lamb’s general solution. While the
radial velocity on the sphere is still matched, in place of matching the polar and azimuthal velocity components on
the sphere, the quantities r(∇ · u

∣
∣
r=a) and rer · (∇ × u

∣
∣
r=a) are matched [56,57,65], leading to

er · u
∣
∣
r=a =

∞∑

n=1

[
(n + 1)ap−(n+1)

∣
∣
r=a

2η(2n − 1)
− n + 1

a
�−(n+1)

∣
∣
r=a

]

, (83)

−r∇ · (u
∣
∣
r=a) =

∞∑

n=1

[

− n(n + 1)a

2η(2n − 1)
p−(n+1)

∣
∣
r=a + (n + 1)(n + 2)

a
�−(n+1)

∣
∣
r=a

]

, (84)

rer · (∇ × u
∣
∣
r=a) =

∞∑

n=1

n(n + 1)χ−(n+1)

∣
∣
r=a , (85)
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18 O. S. Pak, E. Lauga

in terms of Lamb’s general solution.
In the case of the purely tangential deformation, the first matching condition, Eq. (83), is simply the conditions for

no radial deformation, Eq. (19), relating Bmn and B̃mn to Amn and Ãmn . We are therefore left only with Eqs. (84) and
(85) to determine the remaining coefficients. Expressed in spherical coordinates, Eqs. (84) and (85) are written as

−2 ur
∣
∣
r=a − 1

sin θ

[
∂

∂θ
(uθ sin θ) + ∂uφ

∂φ

]

r=a
=

∞∑

n=1

n∑

m=0

2(n + 1)

an+2 Pm
n

(
Bmn cos mφ + B̃mn sin mφ

)
, (86)

1

sin θ

[
∂

∂θ

(
uφ sin θ

) − ∂uθ

∂φ

]

r=a
=

∞∑

n=1

n∑

m=0

n(n + 1)

an+1 Pm
n

(
Cmn cos mφ + C̃mn sin mφ

)
. (87)

The benefits of Brenner’s matching conditions are now clear because the coefficients on the right-hand side
of Eqs. (86) and (87) can be readily determined by the orthogonality of the associated Legendre polynomials.
Substituting the prescribed boundary conditions, Eq. (82), into the preceding matching conditions yields the two
equations

− 1

sin θ

∂

∂θ
(E0 sin θ)−

∞∑

m=1

{[
1

sin θ

∂

∂θ
(Em sin θ)+m

F̃m

sin θ

]

cos mφ+
[

1

sin θ

∂

∂θ

(
Ẽm sin θ

)
+m

Fm

sin θ

]

sin mφ

}

=
∞∑

n=1

2(n + 1)

an+2 Pn B0n +
∞∑

n=1

∞∑

n=m

2(n + 1)

an+2 Pm
n

(
Bmn cos mφ + B̃mn sin mφ

)
, (88)

1

sin θ

∂

∂θ
(F0 sin θ) +

∞∑

n=1

1

sin θ

{[
∂

∂θ
(Fm sin θ) − m Ẽm

]

cos mφ +
[

∂

∂θ

(
F̃m sin θ

)
+ m Em

]

sin mφ

}

=
∞∑

n=1

n(n + 1)

an+1 PnC0n +
∞∑

m=1

∞∑

n=m

n(n + 1)

an+1 Pm
n

(
Cmn cos mφ + C̃mn sin mφ

)
. (89)

Finally, by the orthogonality of the associated Legendre polynomials we obtain the remaining explicit expressions
for the Lamb coefficients as

Bmn = an+2

4

(2n + 1)(n − m)!
(n + 1)(n + m)!

1∫

−1

[
∂

∂μ
(Em sin θ) − m F̃m

sin θ

]

Pm
n dμ, (90)

B̃mn = an+2

4

(2n + 1)(n − m)!
(n + 1)(n + m)!

1∫

−1

[
∂

∂μ

(
Ẽm sin θ

)
+ m Fm

sin θ

]

Pm
n dμ, (91)

Cmn = an+1

2n

(2n + 1)(n − m)!
(n + 1)(n + m)!

1∫

−1

[

− ∂

∂μ
(Fm sin θ) − m Ẽm

sin θ

]

Pm
n dμ, (92)

C̃mn = an+1

2n

(2n + 1)(n − m)!
(n + 1)(n + m)!

1∫

−1

[

− ∂

∂μ

(
F̃m sin θ

)
+ m Em

sin θ

]

Pm
n dμ, (93)

for 0 ≤ m ≤ ∞ and m ≤ n �= 0. Note that the coefficients Amn and Ãmn are given by the purely tangential
deformation conditions, Eq. (19). A more general analysis, including radial deformation at the squirmer surface, is
presented in Appendix D.

5 Discussion

In this paper, we have investigated the squirming motion of a sphere using Lamb’s general solution. With this
alternative formulation, our results first completed the classical analysis of axisymmetric squirming motion by
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Generalized squirming motion of a sphere 19

including the azimuthal velocity fields not taken into account in previous studies (Sect. 3). We then extended the
analysis to the general nonaxisymmetric case in order to study the motion of a squirmer performing arbitrary
three-dimensional translation and rotation (Sect. 4). Analytical formulae for both the swimming kinematics and the
complete flow field were derived (Sect. 4.1). In the axisymmetric case, the motion of a squirmer is restricted to a
straight line, and removing the axisymmetry frees the squirmer to move with helical trajectories in general, with
circular and straight paths as special limits.

As summarized in Sect. 4.2, the swimming kinematics of arbitrary squirming profiles can be obtained using a
reciprocal theorem approach. However, that approach does not allow us to gain information on the flow induced by
the squirmer, which is important for the computation of the swimmer hydrodynamic efficiency and for problems
such as the transport and uptake of nutrients of microorganisms. In our paper, we obtained the flow field around the
squirmer analytically using Lamb’s general solution, and we interpreted the flow structure in terms of fundamental
singularities in Stokes flows (Sect. 4.3). We also remarked on the power dissipation and efficiency of a generalized
squirmer (Sect. 4.4) and detailed the general procedure of relating surface velocities of arbitrary forms to the form
used in Lamb’s general solution (Sect. 4.5).

The traditional, axisymmetric squirmer model has been widely adopted to describe pushers and pullers by
changing the sign of the stresslet component relative to the source dipole (B02/B01), thereby making it possible
to address many problems in biological physics (as detailed in the introduction). With the axisymmetric azimuthal
modes identified in this work, the squirmer model may, for instance, be modified to incorporate a rotlet dipole to
represent the effect of the rotating cell body and the counterrotating flagellum of Escherichia coli. The freedom to
choose the sign of the rotlet dipole relative to the source dipole (C02/B01) may also be useful in the study of the
switching of rotation direction in bacterial flagella during tumbling processes [66]. Higher-order, nonaxisymmetric
modes may now also be included to model more complex hydrodynamic effects. This generalized squirmer model
may then be useful for investigating three-dimensional swimmer–swimmer or swimmer–boundary interactions.

Acknowledgments Funding from the US National Science Foundation (Grant CBET-0746285 to E.L.) and the Croucher Foundation
(through a fellowship to O.S.P.) is gratefully acknowledged. The authors also wish to thank the Department of Mechanical and Aerospace
Engineering at the University of California, San Diego where this work was initiated.

Appendix A: Fundamental flow singularities in spherical coordinates

A.1 Stokeslets

The solution to Stokes equations due to a point force f αδ(r) of magnitude f , and the direction α at the origin is
given by u = f G(α)/(8πη), where the vectorial representation of a Stokeslet is given by Eq. (36) in the main text.

Note that α denotes the direction of the Stokeslet. Stokeslets in different Cartesian directions are expressed in
spherical coordinates as

G(ex ) = 1

r

[
2 sin θ cos φ er + cos θ cos φ eθ − sin φ eφ

]
, (94)

G(ey) = 1

r

[
2 sin θ sin φ er + cos θ sin φ eθ + cos φ eφ

]
, (95)

G(ez) = 1

r
[2 cos θ er − sin θ eθ ] . (96)

A.2 A general Stokes dipole

A general force dipole is obtained by taking the derivative of a Stokeslet along the direction of interest. The vectorial
representation of a force dipole is given by Eq. (44) in the main text, where α and β denote respectively the direction
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of the Stokeslet and the direction along which the derivative is taken. The expressions of Stokes dipoles of different
configurations in spherical coordinates are given by

GD(ex , ex ) = 1

r2

[

−1

4
(1 + 3 cos 2θ) + 3

4
(1 − cos 2θ) cos 2φ

]

er , (97)

GD(ey, ey) = 1

r2

[

−1

4
(1 + 3 cos 2θ) − 3

4
(1 − cos 2θ) cos 2φ

]

er , (98)

GD(ez, ez) = 1

2r2 (1 + 3 cos 2θ)er , (99)

GD(ey, ex ) = 1

r2

[
3

4
(1 − cos 2θ) sin 2φ er − sin θ eφ

]

, (100)

GD(ez, ex ) = 1

r2

(
3

2
sin 2θ cos φ er + cos φ eθ − cos θ sin φ eφ

)

, (101)

GD(ex , ey) = 1

r2

[
3

4
(1 − cos 2θ) sin 2φ er + sin θ eφ

]

, (102)

GD(ez, ey) = 1

r2

(
3

2
sin 2θ sin φ er + sin φ eθ + cos θ cos φ eφ

)

, (103)

GD(ex , ez) = 1

r2

(
3

2
sin 2θ cos φ er − cos φ eθ + cos θ sin φ eφ

)

, (104)

GD(ey, ez) = 1

r2

(
3

2
sin 2θ sin φ er − sin φ eθ − cos θ cos φ eφ

)

. (105)

A.3 Stresslets

The vectorial representation of a stresslet is given by Eq. (45) in the main text, where α and β denote respectively
the direction of the Stokeslet and the direction along which the derivative is taken. The expressions of stresslets of
different configurations in spherical coordinates are given by

S(ex , ex ) = GD(ex , ex ) = 1

r2

[

−1

4
(1 + 3 cos 2θ) + 3

4
(1 − cos 2θ) cos 2φ

]

er , (106)

S(ey, ey) = GD(ey, ey) = 1

r2

[

−1

4
(1 + 3 cos 2θ) − 3

4
(1 − cos 2θ) cos 2φ

]

er , (107)

S(ez, ez) = GD(ez, ez) = 1

2r2 (1 + 3 cos 2θ)er , (108)

S(ey, ex ) = S(ex , ey) = 3

4r2 (1 − cos 2θ) sin 2φ er , (109)

S(ez, ex ) = S(ex , ez) = 3

2r2 sin 2θ cos φ er , (110)

S(ez, ey) = S(ey, ez) = 3

2r2 sin 2θ sin φ er . (111)

A.4 Rotlets

The vectorial representation of a rotlet is given by Eq. (46) in the main text, where ζ = β × α denotes the direction
of the rotlet. The expressions of rotlets in different directions in spherical coordinates are given by
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R(ex ) = 1

r2

(− sin φ eθ − cos θ cos φ eφ

)
, (112)

R(ey) = 1

r2

(
cos φ eθ − cos θ sin φ eφ

)
, (113)

R(ez) = 1

r2

(
sin θ eφ

)
. (114)

A.5 A general Stokes quadrupole

A higher-order singularity, the force quadrupole, is obtained by taking the derivative of a force dipole along different
directions and is given by Eq. (50) in the main text, where β, γ are the directions along which each derivative is
taken. The expressions of Stokes quadrupoles of different configurations in spherical coordinates are given by

G(ex , ex , ex ) = 1

4r3 [−(5 sin θ + 9 sin 3θ) cos φ + 3(3 sin θ − sin 3θ) cos 3φ] er

+ 1

16r3 [(7 cos θ + 9 cos 3θ) cos φ − 3(cos θ − cos 3θ) cos 3φ] eθ

+ 1

8r3 [−(5 + 3 cos 2θ) sin φ + 3(1 − cos 2θ) sin 3φ] eφ, (115)

G(ey, ex , ex ) = G(ex , ey, ex )

= 1

4r3 [(sin θ − 3 sin 3θ) sin φ + 3(3 sin θ − sin 3θ) sin 3φ] er

+ 1

16r3 [(13 cos θ + 3 cos 3θ) sin φ + 3(cos 3θ − cos θ) sin 3φ] eθ

+ 1

8r3 [(9 cos 2θ − 1) cos φ − 3(1 − cos 2θ) cos 3φ] eφ, (116)

G(ez, ex , ex ) = G(ex , ez, ex )

= 1

2r3 [−(cos θ + 3 cos 3θ) + 3(cos θ − cos 3θ) cos 2φ] er

+ 1

8r3 [(sin θ − 3 sin 3θ) + 3(3 sin θ − sin 3θ) cos 2φ] eθ , (117)

G(ey, ey, ex ) = 1

4r3 [−(7 sin θ + 3 sin 3θ) cos φ − 3(3 sin θ − sin 3θ) cos 3φ] er

+ 1

16r3 [(3 cos 3θ − 19 cos θ) cos φ + 3(cos θ − cos 3θ) cos 3φ] eθ

+ 1

8r3 [(15 cos 2θ − 7) sin φ − 3(1 − cos 2θ) sin 3φ] eφ, (118)

G(ez, ey, ex ) = G(ey, ez, ex )

= 1

r3

[
3

2
(cos θ − cos 3θ) sin 2φ er + 3

8
(3 sin θ − sin 3θ) sin 2φ eθ − 3

2
sin 2θ eφ

]

, (119)

G(ez, ez, ex ) = 1

r3

[

(3 sin 3θ − sin θ) cos φ er + 1

4
(11 cos θ − 3 cos 3θ) cos φ eθ

− 1

2
(1 + 3 cos 2θ) sin φ eφ

]

, (120)

G(ex , ex , ey) = 1

4r3 [−(7 sin θ + 3 sin 3θ) sin φ + 3(3 sin θ − sin 3θ) sin 3φ] er

+ 1

16r3 [cos θ(−19 + 3 cos 2θ) sin φ − 3(cos θ − cos 3θ) sin 3φ] eθ

+ 1

8r3 [(7 − 15 cos 2θ) cos φ − 3(1 − cos 2θ) cos 3φ] eφ, (121)
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G(ey, ex , ey) = G(ex , ey, ey)

= 1

4r3 [(sin θ − 3 sin 3θ) cos φ − 3(3 sin θ − sin 3θ) cos 3φ] er

+ 1

16r3 [(13 cos θ + 3 cos 3θ) cos φ + 3(cos θ − cos 3θ) cos 3φ] eθ

+ 1

8r3 [(1 − 9 cos 2θ) sin φ − 3(1 − cos 2θ) sin 3φ] eφ, (122)

G(ez, ex , ey) = G(ex , ez, ey)

= 1

r3

[
3

2
(cos θ − cos 3θ) sin 2φ er + 3

8
(3 sin θ − sin 3θ) sin 2φ eθ + 3

2
sin 2θ eφ

]

, (123)

G(ey, ey, ey) = 1

4r3 [−(5 sin θ + 9 sin 3θ) sin φ − 3(3 sin θ − sin 3θ) sin 3φ] er

+ 1

16r3 [(7 cos θ + 9 cos 3θ) sin φ + 3(cos θ − cos 3θ) sin 3φ] eθ

+ 1

8r3 [(5 + 3 cos 2θ) cos φ + 3(1 − cos 2θ) cos 3φ] eφ, (124)

G(ez, ey, ey) = G(ey, ez, ey)

= 1

2r3 [−(cos θ + 3 cos 3θ) − 3(cos θ − cos 3θ) cos 2φ] er

+ 1

8r3 [(sin θ − 3 sin 3θ) − 3(3 sin θ − sin 3θ) cos 2φ] eθ , (125)

G(ez, ez, ey) = 1

r3

[

(3 sin θ − sin θ) sin φ er + 1

4
(11 cos θ − 3 cos 3θ) sin φ eθ

+ 1

2
(1 + 3 cos 2θ) cos φ eφ

]

, (126)

G(ex , ex , ez) = 1

2r3 [−(5 cos θ + 3 cos 3θ) + 3(cos θ − cos 3θ) cos 2φ] er

− 1

8r3 [(7 sin θ + 3 sin 3θ) + 3(5 sin θ + sin 3θ) cos 2φ] eθ + 3

2r3 sin 2θ sin 2φ eφ, (127)

G(ey, ex , ez) = G(ex , ey, ez)

= 1

r3

[
3

2
(cos θ − cos 3θ) sin 2φ er − 3

8
(5 sin θ + sin 3θ) sin 2φ eθ − 3

2
sin 2θ cos 2φ eφ

]

, (128)

G(ez, ex , ez) = G(ex , ez, ez)

= 1

r3

[

(sin θ + 3 sin 3θ) cos φ er − 1

4
(5 cos θ + 3 cos 3θ) cos φ eθ + 1

2
(1 + 3 cos 2θ) eφ

]

, (129)

G(ey, ey, ez) = 1

2r3 [−(5 cos θ + 3 cos 3θ) − 3(cos θ − cos 3θ) cos 2φ] er

+ 1

8r3 [−(7 sin θ + 3 sin 3θ) + 3(5 sin θ + sin 3θ) cos 2φ] eθ − 3

2r3 sin 2θ sin 2φ eφ, (130)

G(ez, ey, ez) = G(ey, ez, ez)

= 1

r3

[

(sin θ + 3 sin 3θ) sin φ er − 1

4
(5 cos θ+3 cos 3θ)sin φ eθ − 1

2
(1 + 3 cos 2θ)cos φ eφ

]

, (131)

G(ez, ez, ez) = 1

r3

[

(cos θ+3 cos 3θ) er + 1

4
(3 sin 3θ − sin θ) eθ

]

. (132)
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A.6 Potential dipoles

The vectorial representation of a potential (source) dipole is given by Eq. (52) in the main text, where α denotes
the direction of the dipole. The expressions of potential dipoles in different directions in spherical coordinates are
given by

PD(ex ) = 1

r3

[
2 sin θ cos φ er − cos θ cos φ eθ + sin φ eφ

]
, (133)

PD(ey) = 1

r3

[
2 sin θ sin φ er − cos θ sin φ eθ − cos φ eφ

]
, (134)

PD(ez) = 1

r3 [2 cos θ er + sin θ eθ ] . (135)

A.7 Rotlet dipoles

One can take a derivative of a rotlet to obtain a rotlet dipole, which is given by Eq. (56) in the main text, where
ζ and γ denote respectively the direction of the rotlet and the direction along which the derivative is taken. The
expressions of rotlet dipoles of different configurations in spherical coordinates are given by

RD(ex , ex ) = 1

r3

[

−3

2
sin θ sin 2φ eθ − 3

4
sin 2θ (1 + cos 2φ) eφ

]

, (136)

RD(ey, ey) = 1

r3

[
3

2
sin θ sin 2φ eθ − 3

4
sin 2θ (1 − cos 2φ) eφ

]

, (137)

RD(ez, ez) = 3 sin 2θ

2r3 eφ, (138)

RD(ey, ex ) = 1

r3

[

− cos θ er − 1

2
sin θ (1 − 3 cos 2φ) eθ − 3

4
sin 2θ sin 2φ eφ

]

, (139)

RD(ez, ex ) = 1

r3

[

sin θ sin φ er − 2 cos θ sin φ eθ − 1

2
(1 + 3 cos 2θ) cos φ eφ

]

, (140)

RD(ex , ey) = 1

r3

[

cos θ er + 1

2
sin θ (1 + 3 cos 2φ) eθ − 3

4
sin 2θ sin 2φ eφ

]

, (141)

RD(ez, ey) = 1

r3

[

− sin θ cos φ er + 2 cos θ cos φ eθ − 1

2
(1 + 3 cos 2θ) sin φ eφ

]

, (142)

RD(ex , ez) = 1

r3

[

− sin θ sin φ er − cos θ sin φ eθ + 1

2
(1 − 3 cos 2θ) cos φ eφ

]

, (143)

RD(ey, ez) = 1

r3

[

sin θ cos φ er + cos θ cos φ eθ + 1

2
(1 − 3 cos 2θ) sin φ eφ

]

. (144)

Appendix B: Swimming of a squirmer with radial deformation

In the main text, we considered squirmers with a purely tangential deformation. In this appendix, we complement
these results by addressing the case of squirmers also undergoing radial deformation. The results here might also
be useful for modeling jet-driven microscopic swimmers, for instance, the locomotion of bacteria expelling slime.

For the axisymmetric case without the restriction to purely tangential deformations, Eq. (19), the solution to the
pumping problem reads

ur =
∞∑

n=1

(n + 1)Pn

2(2n − 1)ηrn+2

[
A0nr2 − 2B0n(2n − 1)η

]
, (145)
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uθ =
∞∑

n=1

sin θ P ′
n

2rn

[
n − 2

n(2n − 1)η
A0n − 2

r2 B0n

]

, (146)

uφ =
∞∑

n=1

sin θ P ′
n

rn+1 C0n, (147)

with the surface velocities

ur (r = a) =
∞∑

n=1

[
(n + 1)A0n

2(2n − 1)ηan
− B0n

an+2

]

Pn, (148)

uθ (r = a) =
∞∑

n=1

[
n − 2

2n(2n − 1)anη
A0n − 1

an+2 B0n

]

sin θ P ′
n, (149)

uφ(r = a) =
∞∑

n=1

sin θ P ′
n

an+1 C0n . (150)

Without the azimuthal modes C0n , the preceding surface velocities reduce to the form in Lighthill [40] and Blake
[41]. However, notice that the coefficients A0n and B0n do not correspond directly to the coefficients An and Bn used
in Lighthill [40] and Blake [41], which represent directly the radial and polar modes, respectively. With Lamb’s
general solution, the radial and polar modes are represented by a combination of the A0n and B0n modes. The
relation between the two sets of coefficients is given by

A0n = ann(2n − 1)η

n + 1
An − 2an(2n − 1)η

n + 1
Bn, (151)

B0n = an+2(n − 2)

2(n + 1)
An − an+2

n + 1
Bn . (152)

The translational and rotational velocities are computed similarly to Sect. 3.1. Without the restriction to tangential
deformation, Eq. (19), the propulsion velocity becomes

U = 2

3ηa
∇ [r (P1 A01)] = − 2

3aη
A01ez, (153)

while the computation of the rotational velocity is unaffected (Eq. 32).
The flow field around an axisymmetric swimming squirmer is thus given by

vr =
(

a2

3η
A01 − 2B01

)
cos θ

r3 +
∞∑

n=2

(n + 1)Pn

rn+2

[
A0nr2

2(2n − 1)η
− B0n

]

, (154)

vθ =
(

a2

6η
A01 − B01

)
sin θ

r3 +
∞∑

n=2

sin θ P ′
n

rn+2

[
(n − 2)r2

2n(2n − 1)η
A0n − B0n

]

, (155)

vφ =
∞∑

n=2

sin θ P ′
n

rn+1 C0n . (156)

The computation of the propulsion speed of a nonaxisymmetric squirmer with radial deformation follows the
same procedures as in Sect. 4.1, but without the restriction to tangential deformation, Eq. (19). The propulsion
speed is given by

U = 2

3ηa
∇

[
r
(

P1 A01 + P1
1 cos φ A11 + P1

1 sin φ Ã11

)]

= 2

3aη

(
A11ex + Ã11ey − A01ez

)
, (157)

while the expression for the rotational speed remains the same, Eq. (61).
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To obtain the overall swimming flow field, we follow the same procedures as in the axisymmetric case. Super-
imposing Lamb’s general solution in the pumping problem, Eqs. (16)–(17), with the flow fields due to the induced
translation and rotation at the velocities determined earlier, we arrive at the flow field surrounding a general swim-
ming squirmer without the assumption of purely tangential deformation:

vr = 1

r3

[(

2B11 − a2

3η
A11

)

sin θ cos φ +
(

2B̃11 − a2

3η
Ã11

)

sin θ sin φ −
(

2B01 − a2

3η
A01

)

cos θ

]

+
∞∑

n=2

n∑

m=0

(n + 1)Pm
n

rn+2

{[
Amnr2

2(2n − 1)η
− Bmn

]

cos mφ +
[

Ãmnr2

2(2n − 1)η
− B̃mn

]

sin mφ

}

, (158)

vθ = − 1

r3

[(

B11 − a2

6η
A11

)

cos θ cos φ +
(

B̃11 − a2

6η
Ã11

)

cos θ sin φ +
(

B01 − a2

6η
A01

)

sin θ

]

+
∞∑

n=2

n∑

m=0

sin θ Pm′
n

rn+2

{[
(n − 2)r2

2n(2n − 1)η
Amn − Bmn

]

cos mφ +
[

(n − 2)r2

2n(2n − 1)η
Ãmn − B̃mn

]

sin mφ

}

+
∞∑

n=2

n∑

m=0

m Pm
n

rn+1 sin θ

(
C̃mn cos mφ − Cmn sin mφ

)
, (159)

vφ = 1

r3

[(

B11 − a2

6η
A11

)

sin φ −
(

B̃11 − a2

6η
Ã11

)

cos φ

]

+
∞∑

n=2

n∑

m=0

sin θ Pm′
n

rn+1

(
Cmn cos mφ + C̃mn sin mφ

)

−
∞∑

n=2

n∑

m=0

m Pm
n

rn+2 sin θ

{[
(n − 2)r2

2n(2n − 1)η
Ãmn − B̃mn

]

cos mφ −
[

(n − 2)r2

2n(2n − 1)η
Amn − Bmn

]

sin mφ

}

. (160)

Appendix C: Rate of work with radial deformation

We now compute the rate of work of a swimmer with a radial deformation. Lengthy calculations allow us to compute
the integral from Eq. (76) as

P = 48πη

a5

(
B2

01 + B2
11 + B̃2

11

)
+ 4π

3aη

(
A2

01 + A2
11 + Ã2

11

)
− 16π

a3

(
A01 B01 + A11 B11 + Ã11 B̃11

)

+
∞∑

n=2

4πn(n+1)

2n+1

[
2n3+n2−2n+2

2n2(2n−1)2ηa2n−1 A2
0n − 2(n + 2)

na2n+1 A0n B0n + (10n + 4+4n2)η

na2n+3 B2
0n + (n + 2)η

a2n+1 C2
0n

]

+
∞∑

n=2

n∑

m=1

2πn(n + 1)(n + m)!
(2n + 1)(n − m)!

[
2n3 + n2 − 2n + 2

2n2(2n − 1)2ηa2n−1 (A2
mn + Ã2

mn) − 2(n + 2)

n
(Amn Bmn + Ãmn B̃mn)

+ (10n + 4 + 4n2)η

na2n+3 (B2
mn + B̃2

mn) + (n + 2)η

a2n+1 (C2
mn + C̃2

mn)

]

. (161)

We have again employed Eq. (78) to obtain the preceding result. Despite the presence of cross-terms, it can be shown
by algebraic manipulations that the rate of work is positive definite. Removing all the nonaxisymmetric modes and
transforming the coefficients with Eqs. (151) and (152), the preceding expression agrees with the results in Blake
[41]. For the case of purely tangential deformation, with Eq. (19), the preceding expression reduces to Eq. (77) in
the main text.

Appendix D: Squirming with arbitrary surface velocities and radial deformation

Here we allow in the general squirming profile additional radial velocity components of the form Dm(θ), D̃m(θ),

ur
∣
∣
r=a =

∞∑

m=0

Dm(θ) cos mφ + D̃m(θ) sin mφ, (162)
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uθ

∣
∣
t=a =

∞∑

m=0

Em(θ) cos mφ + Ẽm(θ) sin mφ, (163)

uφ

∣
∣
r=a =

∞∑

m=0

Fm(θ) cos mφ + F̃m(θ) sin mφ, (164)

and follow the same matching conditions, Eqs. (83) and (84), in order to determine the coefficients Amn , Ãmn ,
Bmn , B̃mn , Cmn , and C̃mn in Lamb’s general solution. The only difference is that we no longer have the purely
tangential deformation condition (Eq. 19) and therefore are required to determine Amn, Ãmn, Bmn, B̃mn such that
the radial (Eq. 83) and polar (Eq. 84) matching conditions are satisfied simultaneously. Using the orthogonality of
the associated Legendre polynomials and simultaneously solving the equations, we obtain

Amn = (2n − 1)anη

2

(2n + 1)(n − m)!
(n + 1)(n + m)!

1∫

−1

[

nDm + ∂

∂μ
(Em sin θ) − m F̃m

sin θ

]

Pm
n dμ, (165)

Ãmn = (2n − 1)anη

2

(2n + 1)(n − m)!
(n + 1)(n + m)!

1∫

−1

[

nD̃m + ∂

∂μ

(
Ẽm sin θ

)
+ m Fm

sin θ

]

Pm
n dμ, (166)

Bmn = an+2

4

(2n + 1)(n − m)!
(n + 1)(n + m)!

1∫

−1

[

(n − 2)Dm + ∂

∂μ
(Em sin θ) − m F̃m

sin θ

]

Pm
n dμ, (167)

B̃mn = an+2

4

(2n + 1)(n − m)!
(n + 1)(n + m)!

1∫

−1

[

(n − 2)D̃m + ∂

∂μ

(
Ẽm sin θ

)
+ m Fm

sin θ

]

Pm
n dμ, (168)

Cmn = an+1

2n

(2n + 1)(n − m)!
(n + 1)(n + m)!

1∫

−1

[

− ∂

∂μ
(Fm sin θ) − m Ẽm

sin θ

]

Pm
n dμ, (169)

C̃mn = an+1

2n

(2n + 1)(n − m)!
(n + 1)(n + m)!

1∫

−1

[

− ∂

∂μ

(
F̃m sin θ

)
+ m Em

sin θ

]

Pm
n dμ, (170)

for 0 ≤ m ≤ ∞ and m ≤ n �= 0. When there is no radial deformation, i.e., Dm = D̃m = 0, we recover the results
without radial deformation (Eqs. 90–93 and 19).
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