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Flagellated bacteria exploiting helical propulsion are known to swim along circular
trajectories near surfaces. Fluid dynamics predicts this circular motion to be clock-
wise (CW) above a rigid surface (when viewed from inside the fluid) and counter-
clockwise (CCW) below a free surface. Recent experimental investigations showed
that complex physicochemical processes at the nearby surface could lead to a change
in the direction of rotation, both at solid surfaces absorbing slip-inducing polymers
and interfaces covered with surfactants. Motivated by these results, we use a far-field
hydrodynamic model to predict the kinematics of swimming near three types of in-
terfaces: clean fluid-fluid interface, slipping rigid wall, and a fluid interface covered
by incompressible surfactants. Representing the helical swimmer by a superposition
of hydrodynamic singularities, we first show that in all cases the surfaces reorient the
swimmer parallel to the surface and attract it, both of which are a consequence of
the Stokes dipole component of the swimmer flow field. We then show that circular
motion is induced by a higher-order singularity, namely, a rotlet dipole, and that its
rotation direction (CW vs. CCW) is strongly affected by the boundary conditions at
the interface and the bacteria shape. Our results suggest thus that the hydrodynamics
of complex interfaces provide a mechanism to selectively stir bacteria. © 2014 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4887255]

I. INTRODUCTION

Swimming microorganisms are ubiquitous in nature, and have long been known to play important
roles in marine life ecosystems, animal reproduction, and infectious diseases. In these processes,
cell motility is crucial.! At the small scales relevant to swimming cells, inertial forces are negligible,
and locomotion is constrained by Purcell’s “scallop” theorem stating that any body deformation
reversible in time yields zero net motion.” Fluid-based cellular motility relies therefore on non-time
reversible deformation, for instance by propagating waves along cilia or flagella.’?

Among the various types of locomotion seen in nature, one commonly observed for bacteria
is that of helical propulsion, where a flagellum (or a bundle of flagella) rotates as a helix, inducing
forward propulsion. A typical example of an organism employing helical propulsion is the bacterium
Escherichia coli (E. coli).* This bacterium alternates “run” and “tumble” periods: in the former,
flagella are synchronized in a coherent bundle and propel the cell forward, whereas in the latter
flagella are disorganized, changing the cell orientation and subsequent swimming direction. During
run periods, when E. coli cells are isolated in a bulk flow, they swim in straight (noisy) lines.

However, cell locomotion is strongly affected by nearby boundaries. Swimming microorganisms
often evolve in confined environments, be it by solid boundaries, free surfaces, or liquid interfaces.
In some cases, confinement results from channel boundaries, for example, along the mammalian
female reproductive tract.’ Surfaces can also be a key element in the microorganism function, as in
the case of surface associated infection or biofilm formation.*¢ Since such problems are dominated
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FIG. 1. Experimental evidence of clockwise motion for bacteria near a solid wall (left panel) [Reprinted with permission
from Lauga et al.,'® Biophys. I. 90, 400—412 (2006). Copyright (2006) Biophysical Society], and counter-clockwise motion
at a free surface (right panel) [Reprinted figure with permission from Di Leonardo ef al.,’® Phys. Rev. Lett. 106, 038101
(2011). Copyright (2011) American Physical Society].

by viscous dissipation, long-range hydrodynamic interactions have been argued to play important
roles, resulting in a significant alteration of the locomotion of microorganisms.? Over the past years,
intensive theoretical, numerical, and experimental work has helped uncover the kinematics and
dynamics modifications of swimming properties by boundaries.” !

For bacteria employing helical propulsion (such as E. coli), two different effects induced by
boundaries have been discovered and quantified. These organisms swim in the forward direction
(cell body forward) and are being propelled from the back. They thus push on the surrounding fluid
forward and backward, and such swimmers are referred to as “pushers.” In the presence of a nearby
solid wall, E. coli tends to aggregate close to walls.'? This is in fact observed for any kind of pusher,
not necessarily one exploiting helical propulsion.'3~'® A second property, observed solely for helical
swimmers, is a circular motion of the cells in a plane parallel to the surface. This was accounted for
both experimentally and theoretically in the case of a solid wall'”-!® and a free surface.'®?° Notably,
the circular motion occurs in an opposite direction in the presence of a solid wall (clockwise, CW,
when viewed from inside the fluid) or a free surface (counterclockwise, CCW, see Fig. 1). This
change in rotation direction is qualitatively similar to the drag increase or decrease observed for
the motion of a colloidal particle near a rigid wall and a free surface.?! Indeed, a solid wall and a
free surface induce opposite effects, no-slip for a rigid boundary vs. free slip in the case of a free
interface.

Past experimental results have been explained theoretically considering Newtonian fluids and
perfect interfaces, meaning either a no-slip wall or a shear-free surface. Theoretical models do
predict a single circular direction, CW in the presence of a solid wall vs. CCW in the presence of
a free surface, and are consistent with the results illustrated in Fig. 1. However, recent experiments
on E. coli swimming near glass plates and free surfaces show that the distinction in the direction
of the circular motion is not straightforward, and both CW and CCW rotations are observed under
seemingly similar experimental conditions.'®?>23 In the initial study of Lemelle et al. (2010),'” only
CW motion was observed above a glass plate, but both CW and CCW at a free surface, suggesting that
particles and surfactants could alter the free slip boundary condition. This hypothesis was further
investigated by changing the concentration of a particular polymer that can aggregate at a free
surface.?® The authors confirmed this qualitative change of behavior, observing a clear dependence
on the polymer concentration of the fraction of cells undergoing CCW motion. A similar change
in rotation direction was recently highlighted experimentally at a solid wall, when the solution
contains polymers.?? Using a special surface treatment, the polymer concentration at the solid wall
was modified, generating possible slip, and resulting in CCW motion. These recent experiments
demonstrate that the presence of polymers or surfactants could have a dramatic effect on motility of
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nearby cells. In this paper, we present a modeling approach to quantify the dynamics of swimming
bacteria near complex interfaces.

When polymers are present in the solution, their concentration close to surfaces is reduced due
to higher shear and confinement.>*2> This wall depletion results in the formation of a thin fluid layer
of lower viscosity at the wall, thereby modifying significantly the no-slip condition. On scales larger
than this thin layer, the equivalent behavior at the wall is an apparent partial slip, characterized by its
slip length ¢ ranging from ¢ ~ 10 nm to 10 pum.?%2426:27 Similarly, a liquid interface covered with
surfactants acts as a thin two-dimensional fluid layer separating the liquid phases. This layer has its
own rheological properties, and modifies the stress and velocity jumps between the two fluids.?3-3°
As a consequence, the presence of surfactants can affect significantly the boundary conditions and
resulting flow.?!32

In the present work, we address the role of altered boundary conditions on swimming mi-
croorganisms, focusing on interface-induced reorientation, attraction vs. repulsion by the surface,
and the impact on circular motion. Using an analytical framework based on multipole expan-
sions for describing the hydrodynamic interactions between a swimming microorganism and an
interface, we show how complex interfaces affect hydrodynamic interactions, providing possible
explanations to past experimental results. Whereas interface alignment and attraction are seen
to be universal properties, the direction of the circular motion turns out to strongly depends
on the properties of the fluid, on the bacterium shape and, in some cases, the distance to the
interface.

In Sec. II, we present the modeling approach used throughout the paper. We first introduce the
different interfaces considered, and then our solution method quantifying the leading-order effect
of hydrodynamic singularities. In Sec. III, we recall some existing results for the flow generated
by a point force near boundaries and derive in particular the solution in the case of a surfactant-
covered interface. Section IV is devoted to the main results of the paper, quantifying the impact of
complex boundary conditions on swimming bacteria, first on reorientation and attraction, and then
on circular motion. We finally conclude in Sec. V, while some of the technical details are given in
Appendices A—C.

Il. MODELING
A. Interfaces and boundary conditions

Throughout the paper, we use the word interface to refer to any boundary separating two
phases. We denote phase 1 the fluid where the swimming bacterium is located, while the second
phase can either be a solid, a liquid, or a gas. The presence of a nearby interface affects bacteria
locomotion in different ways depending on its flow boundary conditions. In this work, we consider
three types of interfaces, sketched in Fig. 2(a): (i) a clean interface, i.e., a fluid-fluid interface with
no surfactant, (ii) a flat surface with a partial slip condition as a model for a polymer depletion layer,
and (iii) a liquid interface covered with incompressible surfactants. In the case of flow generated by
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FIG. 2. Schematic representation of a swimming bacterium close to a liquid interface: (a) three different interfaces considered
in this work and sketch for their flow profiles; (b) notations for the calculations in this paper.
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swimming microorganisms, the typical capillary number, scaling the flow-induced stress with surface
tension, is very small, typically lower than 107>, As a consequence we will neglect any interfacial
deformation induced by the microorganisms, and focus therefore on planar interfaces with normal e,
(Fig. 2(a)).

1. Clean interface

The first type of interface we will consider is a clean interface between two fluids. This problem
is characterized by the viscosity ratio between the two fluids,

A= (1)

m
where the reference viscosity 7, is the viscosity of the fluid where the bacterium is located. If the
viscosity of the second fluid vanishes, A = 0, the interface behaves as a free surface, whereas if
the second fluid viscosity tends to infinity, we have A — oo, and the interface becomes equivalent
to a rigid wall. A clean liquid interface imposes impermeability and the continuity of tangential
velocities and stresses.>* The corresponding boundary conditions written at z = 0 are

O _ @2 (€ )] ) _ 2) _

Uy’ =u",  uy =uy, =0, u”=0, 2)
n _ 2 n _ 2

Ex,z - )‘Ex,z’ Ey,z - )‘Ey.,z’ (3)

where E = %(Vu + VuT) is the symmetric rate of strain tensor, and where we have used the
superscript (i) to denote fluid (7). In the case of a free surface (A = 0), these equations reduce to a
free slip condition, whereas in the limit of a rigid wall (A — 00), the boundary imposes a no-slip
condition, u(z = 0) = 0.

2. Slip surface

The second type of interfaces that we will consider models a rigid wall when the fluid contains
polymers, and therefore is subjected to wall depletion. For simplicity, we focus solely on the
modification of the boundary conditions and assume no change in the fluid rheology. The model
problem will therefore become that of a bacterium swimming in a Newtonian fluid close to a
partial-slip boundary, meaning that the wall velocity is proportional to the normal velocity gradient.
Defining £ the slip length, the boundary conditions read

uy =L£—, u, = O, (4)

where u| = u,ex + uyey is the flow velocity in the plane of the interface.

3. Surfactant-covered interface

The last type of interface we are interested in characterizing are those covered with surfactants.
This type of interface behaves as an impermeable, bi-dimensional fluid layer separating the two
phases, and the bulk stress jump in the absence of surface forces is given by

d
E(CS”H) - V.1, = e, [tV — 1(2)], ®))

where ¢, is the surfactant concentration, u is the surface velocity, V| is the in-plane gradient
operator, and T (resp. T,) is the bulk (resp. surface) stress tensor.”’ In the present analysis, it is
appropriate to focus on the stationary limit on the length scales of swimming bacteria. Additionally,
we assume that the concentration of surfactant on the surface is large enough so that the relative
change in surface tension is of order 1. In that case, as the capillary number is very small (typically
lower than 107>), the surfactant concentration can be considered to be uniform on the surface.’!
Under this assumption, the interface is incompressible, V| - u; = 0, and the surface stress tensor
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reads
T =O'I[X+2775EH, (6)

where o is the surface tension and E | is the in-plane rate of strain tensor.*'-3 The resulting boundary
conditions at z = 0 state continuity of in-plane velocity, no flow perpendicular to the surface, in-
plane incompressibility, and balance between shear stresses from the outside flows, surface viscous
stresses and Marangoni stresses

MSCI) — uiZ)’ u;l) — u(yZ)’ Mil) =0, MEZ) =0, (7
au®  ud
_x Y —0, 8
ox + dy ®)
@ ) >y _ 190
20E, — 2K, — BhViju,’ — —— =0, ©)
' ’ n 0x
RE® —2ED — prveu® — L7 (10)
¥z V.2 4y m oy -
where B is the non-dimensional surface viscosity,
UR
p=—1. (11)
mh

h being a flow length scale, chosen here to be the bacterium distance to the wall.’! The parameter

B is often referred to as Boussinesq number, comparing surface to bulk stresses.”’ Note that the
condition for incompressibility prevents the limit of a clean interface to be reached by simply applying
B — 0, and only the case of a no-slip boundary can be recovered in the limit 8§ — oo.

B. Impact of interface on swimming dynamics

In order to analyze the effect of an interface on the swimming microorganism, we decompose
the flow into two contributions, one being the flow generated by the same organism in the absence
of interface, U, and a contribution due solely to the interface, u*, so that u = U + u*. The effect
of the interface on the swimming microorganism is then determined using Faxén’s law, modeling
the bacterium shape as that of a prolate ellipsoid swimming along an intrinsic direction e. Noting
y the aspect ratio of the entire organism (i.e., cell body and flagellar bundle), the interface-induced

velocity, u™ and rotation rate, 2", of the microorganism are given by
u"™ = u*(x = xo), (12)
QY= (x=x ):leu*(x )+Eex[IE*(x ).€] (13)
0 > 0 N 0)-€f,

where x is the location of the bacterium?! (Fig. 2(b)). The fact that the interface effect is evaluated
only at the location of the swimmer is a key point here — we do not seek to describe the entire flow
field in the presence of the aforementioned interfaces, but only the flow at a specific location.

C. Flow singularities

The Reynolds numbers associated with swimming microorganisms are very small.>> In this
limit, the flow generated by a swimming microorganism satisfies the linear Stokes equations,>!
which allow for a multipole expansion of any flow.>> In the present work, we will represent the
flow induced by a swimming microorganism using flow singularities. General flow singularities and
notation are presented below, while in Sec. IV we will focus on the specific singularity model used
for microorganisms using helical propulsion.
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Flow singularities are derived from the Green’s function for Stokes flows, G s, which gives the
flow at position x generated by a point force flocated at x( and oriented along the direction a as

a ar

u(x) = LGs(x —xo;a), Gs(ria)=—+ —r, (14)
87y roorn

where r = x — x, and r = |r|. This solution is called the Stokeslet, and higher-order singularities

are then derived from this fundamental singularity.*> We introduce here the Stokeslet dipole, Gsp,

and quadrupole, Gsg,

Gsp(ria.b) = (b.Vo)Gs(r;a), (15)
Gso(r;a, b, c) = (c.Vo)Gsp(r;a,b), (16)
and the (potential) source dipole, G p, and quadrupole, G ¢,
Gp(ria) = —%v(%Gs(r;a), (17
Gg(r;a,b) = (b.Vy)Gp(r;a), (18)

where the notation V) is used to denote a gradient taken with respect to the singularity location, x.
A useful combination of Stokes dipoles is the rotlet,? which is the anti-symmetric part of a Stokeslet
dipole, and models the flow generated by a point torque

| cxr
Gg(r;c) = E[GSD(";b, a) — Gsp(r;a, b)] = r3

19)

where ¢ =a x b. The symmetric part of a Stokeslet dipole is called a stresslet, Ggs(a, b)
= %[G sp(a,b)+ Ggsp(b, a)]. Note that all these singularities are n-linear functions of their n
orientation vectors. A singularity oriented along arbitrary directions can thus be expressed as a
combination of similar singularities along the different basis vectors.

D. Solution method

The mathematical method used for solving the problem of a point singularity located close to a
boundary with specific conditions is Blake’s method, presented first for the problem of a Stokeslet
close to a rigid wall.>® The effect of the interface is mathematically equivalent to an additional flow
generated by a system of hydrodynamic image singularities located on the other side of the interface.
For complex boundary conditions, the image system is a spatial distribution of singularities.

The problem can be significantly simplified by guessing part of the image system. Noting Im{U'}
the image system, the flow is decomposed as

uV) = U + Im{U}, withIm{U} =V + w, (20)

u? = Im®{U), (21

where U is the bulk solution due to the singularity itself, V is a guess in the image system, and w
and u® are the unknowns. For example, in the case of a Stokeslet close to a free surface, a good
guess for V is a Stokeslet symmetric with respect to the interface, which is enough to enforce both
the impermeability condition and that of zero shear stress, resulting in w = 0. The major advantage
of this decomposition is that the forcing term due to the singularity in the flow equation is solved by
the bulk flow term U. As a result, w and u® satisfy Stokes equations in the absence of forcing terms

Vau=0, nViu=Vp, (22)

where u is the velocity field and p is the pressure, 1 being the fluid viscosity. That problem can be
more easily solved in Fourier space,’®3” using a two-dimensional (2D) Fourier transform, defined
as

fki ko, 2) = FIf1= % / f fx,y, etk dxdy. (23)
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Some useful Fourier transforms are referenced in Appendix A. The solution of Stokes equations in
a 2D Fourier space is straightforward, and reads for @ and a?,

1 Ax+ileZ 1 Cx+ileZ
i = (8 ) Ay + ileZ e*kl’ fl(z) — (8—> Cy + ileZ Ekz. (24)
TS\ AL+ kBz T/ \ ¢, —kBz

The unknown coefficients in this solution are determined using the continuity equation
i(kiAx +kaAy) = k(B — A), i(kiCy + ko Cy) = k(C; — D), (25

together with the relevant boundary conditions.

Once the solution is obtained for the Stokeslet, it is then possible to derive the solution for higher-
order singularities from the Stokeslet solution. This is achieved by applying the same operator acting
on the singularity position, (b.Vy), where b is the direction where the derivative is taken. Note that
this can be done more easily in Fourier space, as

. . 0
Flex.Vol = iki, Fley.Vo| =iks, Fle,.Vol = R (26)
However, it is also possible to directly apply Blake’s method to any singularity, which can be more
convenient if a good guess of V is found.

lll. STOKESLET CLOSE TO A COMPLEX INTERFACE

As a singularity is a linear function of its orientation vectors, one only needs to solve the
problem for the Stokeslet along the directions parallel and perpendicular to the interface. The flow
generated by higher-order singularities can then be derived from these projections. By symmetry
reasons, all orientations in the plane parallel to the interface are equivalent, we therefore choose
(ex, e;) to be the singularity plane. We review below some solutions of the flow generated by
parallel and perpendicular Stokeslets close to a fluid boundary, and then use the method described in
Sec. II D for determining the flow in the presence of a surface covered with incompressible surfactant,
providing an alternative to the derivation by Btawzdziewicz et al. (1999).>' The solution in the case
of slip is given in Lauga and Squires (2005)*” along the same lines.

A. Stokeslet near a clean fluid-fluid interface

The case of parallel and perpendicular Stokeslets were derived by Blake in the case of a solid
wall, a free surface, and a fluid-fluid interface.’*3¢ In the presence of a clean fluid-fluid interface,
the image system is made of a finite number of point singularities located at the image position x
in fluid 2 (see notation in Fig. 2(b)). The image system is composed of a Stokeslet, a Stokes dipole,
and a source dipole, whose intensities vary with the viscosity ratio A = 1,/n; and the distance 4 to
the interface. For Stokeslets parallel, Gg(ex), and perpendicular to the surface, Gs(e,), the image
system is given by

20h 2Ah?

1—A
Im{Gs(ex)} = mGE(ex) + )»_HGED(eZ’ ex) — )»_-I-lG;)(eX)’ 27)

2
A+1

where we use Gg(e) = Gg(r; e) in order to simplify the notations, and where the superscript* implies
that the singularity is located at the image position, xj. These singularities give the flow in fluid
1, where the singularity is located. The flow in fluid 2 is given by a second set of singularities,
given by

2)1h
Im{G5(e,)} = —Gs(e,) — mGED(ez, e,)+ Gpl(ey), (28)

2
Im®{Gs(ey)} = m[6s<ex) + hGspl(e,, ex) + h*Gp(ey)], (29)
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@ _ 2h
Im“{Gs(e,)} = m[Gsp(ez, e,) +hGple,)]. (30)

This second set of images is located at the singularity position x, in fluid 1 (see Fig. 2(b)). The
solutions are therefore obtained fully analytically, and higher-order solutions can be obtained by
taking derivatives with respect to the singularity position (a.Vj). Note that since the image strengths
are functions of the singularity distance to the interface h, taking derivatives of the image system
along e, generates additional singularities.*®

In the presence of a solid wall, the second set of images vanishes since there is no flow in the
solid region. This was the no-slip solution originally presented by Blake.>® As we are interested
in this work only on the effect of the interface on the swimming bacterium, we will focus only on
the first set of images, Eqgs. (27) and (28), giving the flow field in the region where the swimming
microorganism is located.

The no-slip and no-shear solutions have been used in the past to explain different swimming
behaviors of bacteria observed experimentally, such as wall attraction, alignment, and circular
motion.'> 820 The particular case of no-slip boundary (A = 00) is noteworthy, and will be used in
the following as a reference solution:

Im{Gs(ex)}imo0 = —G(ex) + 2hG (e, €x) — 207 Gy(ey), (€29

Im{Gs(e)}i00 = —Gise,) — 2hGsp(ey, €,) + 21 Gy e,). (32)

In the presence of slip or surfactants, the image system is no longer a set of point singularities.
The solution to the problem of a Stokeslet close to a partial slip boundary was addressed by Lauga
and Squires,” using Blake’s method. The case of a surfactant-covered interface has been addressed
by Blawzdziewicz et al.,’' using a Batchelor-type decomposition of the flow. In order to use the
same formalism throughout our paper, we derive below the solution of a Stokeslet close to a surface
covered with incompressible surfactants using Blake’s method.

B. Stokeslet close to an interface covered with incompressible surfactant

We consider here the case of a Stokeslet perpendicular and parallel to a surfactant-covered
interface as defined in Sec. IT A. Without loss of generality, the Stokeslet strength is taken to be
1. For this problem, we take V to be the opposite Stokeslet located at the image position xj. This
choice yields at z = 0 for a perpendicular and parallel Stokeslet, respectively,

h 1 h x
(U +V](e,) = —4——3(X8x +yey), [U+V]le)=————75¢€;, (33)
T} drem 1y,

where 72 = x? + y? + h?. The problem is then solved in Fourier space.

1. Solution for a perpendicular Stokeslet

In the case of a perpendicular Stokeslet, the boundary conditions read in Fourier space

h o ik
wa - ﬁg) = 4—176_1(]1, LT)Z = O, ﬁ?) = 0, (34)
TN

kh

—ika ) + koiho) = - e, (35)
TN

da? ) Wy ) hny h
m & kid® ) =y | == — ik, | 4+ K20yl + iked = ——ikgke ", (36)
9z : 9z 4mm

for « = 1 and 2, where index 1 (resp. 2) is associated with the x (resp. y) coordinate. This set of
equations is satisfied by #® = 0, which corresponds to a solid wall. We recover therefore a known
result: because of surface incompressibility, the flow generated by a Stokeslet perpendicular to an
interface covered with incompressible surfactants is identical to that in the presence of a solid wall.’!
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2. Solution for a parallel Stokeslet

In this case, the boundary conditions are given in Fourier space by

h ik
Do =i, W= ——Le AP =0, ik + ko) = 0, (37)
4 k
aa? ow; o K\
2 (8_; - lk1u§2)> —m (B_Z - lklwz) + k*niy + k& = 7 (1 — ?]h) ek (38)
iy dw, o h kiky
72 —ikit” )| —m | — — ik, | + k" nsily + iko6 = ————e . (39)
0z 9z 2wk

Introducing the coefficients A, B, C, and D from Sec. II D, this system can be solved directly,
leading to & = ik, (kh — 1)e %" /(27k?), and

4 1 (k2 4 1 [ —kik
Ay=—————(Z2e™), A, = — 172 ki) | (40)
1+ A+ Bhk k2 \ k L+ A+ Bhkk2\ &k
ik
Ci=A,, C,=A,, AZ:B=2hl71e_kh, C.=D=0. 41)

It is interesting to note that the coefficients in the no-slip problem read

X

1 ke
AV=0. A4S =0, Al=2h—te™ B0 =2nTle 42)

Hence, introducing Wk, ka, 2) = [Ac(ky, ko)ex + Ay(ky, kz)ey]e’kz/(Snm), the flow field w can
be written as

w=uw"+W, (43)

where w® is the known solution of the problem in the presence of a no-slip boundary, w® =
2hGgp ey, ex) — 2h2G;,(ex). After an inverse Fourier transform of W, one can identify two differ-
ential equations satisfied by W, and W, in real space, which can be written as a single vectorial
differential equation on W,

3\ a*w .
(1 =+ A— ﬂh&) 8_Z2 = 4GRD(eZ’ ey), (44)
where G% ) (e,, ey) is a dipole along ey of rotlets along e, located at xj. The rotlet dipole involved
in this flow corresponds to two vertical counter-rotating point vortices, merging at x. Note that this
singularity can also be written in a way similar to that of Ref. 31 as G% (e, ey) = e, A Gy (ey).
The flow in the second fluid satisfies a similar problem,

3\ 9%u®
(1 . ﬁh£> S =46 ey) (45)
with the rotlet dipole being located at x¢. As a result, the total flow generated by a Stokeslet parallel
to an interface covered with surfactants can be written as

us(ex) = u(ex) + W, (46)

where ug(ex) is the flow generated by a Stokeslet along ey in the presence of a no-slip boundary.
We recover therefore the result of Ref. 31 where the flow is the sum of the no-slip contribution and
a “surface-solenoidal” flow, i.e., a 2D flow decaying in z.

In order to obtain the exact expression for the flow at the position of the singularity, one still
needs to integrate a third order differential equation, Eq. (44). Since our goal is not to derive the
entire flow but only the effect of the boundary on the swimming microorganism, we can simplify
in the following way. The singularity is located at x = y = 0 and since the differential equations
giving the flow are equations in z, it is possible to set x = y = 0 before integrating. As a result, the
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additional flow induced on the singularity is given by Wind(Z = 2h)e, + Wi“d(Z = 2h)ey, where Z
=z+ hand '

d\dwnr 1 1] d aewy
(1+A ﬂh—) L= — <+x ﬁh—) = 0. @7

dz) dzz "~ 2ag 23’ dz ) dz2

The latter equation yields W;"d = 0, which could have been anticipated by symmetry. The former
equation can be integrated analytically, as detailed in Sec. I'V.

IV. SWIMMING MICROORGANISMS AND INTERFACES
A. Bacteria modeled as point singularities

In this work, we model a swimming bacterium in the far field and thus assume that it is small
compared to any flow length scale. In particular, the distance between the cell and the interface, &,
must remain larger than the bacterium size. This far-field approach allows for a representation of a
swimming microorganism as a combination of point singularities, while the organism size and shape
play a role only through the aspect ratio y involved in Faxén’s law, Eq. (13).

We focus here on microorganisms using helical propulsion, like E. coli, as illustrated schemat-
ically in Fig. 3(a). Such micro-swimmers are force- and torque-free, and can be considered as
axisymmetric in average. We choose as a convention that the microorganism swims in the (ey, e,)
plane, along direction e = cos feyx + sinfe,. At leading order (spatial decay /%), the far-field flow
generated by a swimming bacterium is well captured by an axisymmetric Stokeslet dipole, Gsp(e, e),
as sketched in Fig. 3(b).? This singularity is force- and torque-free, and accounts for the spatial dis-
tribution of thrust and drag on a flagellated swimming cell.® This representation is commonly used
for describing far-field hydrodynamic interactions, both to quantify collective dynamics**? and
wall effects.!? 1438

However, by symmetry, this leading-order singularity cannot be responsible for the observed
circular rotation along the normal to the interface since (ey, e,) is a symmetry plane of the Stokes
dipole. It is thus necessary to add higher-order singularities decaying as 1//° to capture circular
swimming. Those singularities could be: (i) a Stokes quadrupole, related to the length asymmetry
between the flagella and the body, (ii) a potential source dipole accounting for the finite size of
the bacterium, and (iii) a rotlet dipole capturing the counter-rotation between the flagella and the
body. By symmetry, it is straightforward to see that the only singularity that could potentially lead
to nonzero rotation along e, is the rotlet dipole G gp(e, e), illustrated in Fig. 3(c).

We are interested in three effects induced by a nearby boundary: (a) reorientation in the swim-
ming plane, given by rotation rate Qi)‘,‘d; (b) attraction or repulsion by the wall, quantified by
wall-induced velocity uiZ"d; and (c) circular motion, measured by the out-of-plane rotation rate QiZ"d.
Reorientation and attraction can both be accounted for by the leading-order Stokes dipole, as ana-
lyzed in Sec. IV B. In contrast, the circular swimming which is due to the rotlet dipole is addressed
in Sec. IV C.

(@) (b)

~~Agrr— —

(c)
—) O.QL}

FIG. 3. (a) The forces generated by a swimming bacterium such as E. coli include two flow singularities which impact the
wall dynamics: (b) a force dipole due to thrust from the flagella and drag on the body and (c) a rotlet dipole arising from the
counter-rotation between body and flagella.




071902-11 D. Lopez and E. Lauga Phys. Fluids 26, 071902 (2014)

B. Leading order: Stokes dipole close to a complex interface

We consider here the leading order singularity representing a swimming microorganism, a
Stokes dipole, and focus on two effects. We first address the issue of reorientation in the (ex, e,) plane
induced by a boundary on a tilted micro-swimmer moving along the direction e = cos fe, + sinfe,.
With the stable wall-induced orientations derived, 6, we then address the attractive vs. repulsive
nature of the interface.

A Stokes dipole tilted along the angle 6 is a combination of parallel and perpendicular Stokes
dipoles as

usp(e, €) = cos” Ousp(ey, ex) + sin* Ousp(e,, e,) + sin(20) uss(ey, e,). (48)

The wall-induced rotation rate is dependent on the orientation of the microorganism and the local
strain rate, see Eq. (13). In the following, the strength of the Stokes dipole is taken to be 1, modeling a
“pusher” swimmer as relevant to any flagellated bacteria moving cell body first (a puller corresponds
to a negative strength).

1. Clean interface

In the presence of a clean interface, the image system is the set of point singularities listed
above, and the problem can be solved analytically, leading to the wall-induced rate

ind_3cos0sin€|: 1y2—1k+(2+x)sin20j|. 49)

YT edmag b3 2241 1+ A

Notably, the sign of this rotation rate is given by sin (26) as the term in the bracket is always positive.
As aresult, the interface will always tend to align the (pusher) Stokes dipole in the direction parallel
to the interface. This result was previously shown in the case of a solid wall,'® and is thus generalized
here to any fluid-fluid interface.

The stable orientation is therefore a microorganism swimming parallel to the interface, 6y = 0.
In that case, the induced velocity along the vertical axis reads

ind 2+ 3A

——_ T 50
odm (1 + Mh2. (50)

We see thus that a swimming pusher will be attracted by a nearby liquid interface for any value of
the viscosity ratio. In the limits of a free surface (A = 0) and a solid wall (A = 00), standard results
are recovered.'?38

2. Partial slip boundary

In the presence of a partial slip boundary, the flow due to the boundary is equivalent to that
generated by a continuous distribution of singularities along the vertical axis on the other side
of the surface.’” Taking derivatives of higher-order solutions is not straightforward in real space,
but is easily carried out in Fourier space. It is interesting to note that (ey, e,) is a symmetry
plane for the first two singularities of the decomposition shown in Eq. (48), namely, ugsp(ex, €x)
and ugp(e,, e,). As a result, these terms do not contribute to any rotation rate through vortic-
ity, only the stresslet does. However, all terms contribute to the total rotation rate, as the swim-
mer’s orientation breaks the symmetry, acting on the strain contribution to the rotation rate,
Eq. (B1).

The three singularities necessary for describing a tilted Stokes dipole are derived with a particular
choice for the different velocity fields V, so that V corresponds to the solution in the presence of a
free surface. This limit is reached in the partial slip model when £ tends to infinity. For the stresslet
Uss(ex, e,), we choose therefore V = —G'y¢(ey, €,); the no-slip solution reads

w’ = 2G(ex. €,) — 2h G y(e,. €, ) — 2hGh(ey) + 20 Gy(e,, €y). (51)
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Following the procedure outlined above we determine the solution in the presence of a partial slip
boundary in Fourier space

) @° ¢ (kg kyk
w =

2 —k(z+h)

+ —“ey — —= . 52

[+ 20k " dmpl + ed + 200 \ k™™ % ey>g 62
Similarly, we have for the parallel Stokes dipole usp(ex, ex),>’

i Eiklkze—k(z+h) [k

T+2tk 21 + k)1 +20h0k> 2

V =Gjplex, ex), W= ex —kiey], (53)

with the no-slip solution w° = —2G% ) (ex, ex) + 2hGp(e,, ex, €x) — 2h2G*Q(eX, e,). For the per-
pendicular Stokes dipole ugp(e,, €;), we have

o0
V = GSD(eZ, ez), w = H——sz7 (54)
wO =2 [_G:;‘D(ezv ez) + hGTS‘Q(eZv €, ez) + 2hG;)(ez) - th*Q(eza ez)] . (55)

The rotation rate of the cell along ey is then computed in Fourier space for the three singularities,
and the total rotation rate on a tilted Stokes dipole close to a partial slip boundary finally reads

QM = cos? 0y + sin 0Rsp7 + sin(20) Qss, (56)

evaluated at the singularity position, where index SDX stands for parallel Stokes dipole, SDZ for
perpendicular Stokes dipole, and SS for the stresslet contribution. The technical difficulty in this
problem is the inverse Fourier transform of the rotation rate and we refer to Appendixes B and C for
the details related to the inversion problem and solution of the resulting differential equations. The
final solution in real space is given analytically by

qind _ 3cosOsind [ N 2h (LTRT _p [P gl N y?—1 G0
= — —_ — | — — | — — 1
y 647 3 ¢ e e e yr+1

y2—1h
yi+1¢

.5 h 1 [h 1 h h
+(1+3s1n9)<F4Z _EFSZ +§G4Z _GSZ> , (87)

where the functions F,, G,, and H, derive from the exponential integral function of order n, E,,, as

h h
[ -2 sin29F3|:Z] + (3cos’0 — 2 sin29)H4|:Z]

[ee} E t oo ,—xt
Fx) = ¢ E(x), Gix)=e' / t’,ffl)dt, Hx) = & / “Edxndr, (58)
1 1
with
00 ,—xt
Ex) = / —dr. (59)
1

The dependence of the rotation rate 2" induced by a partial slip boundary on a tilted Stokeslet
dipole is shown in Fig. 4(a), as a function of the tilt angle 6, for different values of the slip length.
We see that the slip length, similar to the viscosity ratio in the case of a clean liquid interface, does
not modify qualitatively the reorientation dynamics and alignment rate with the boundary and a
pusher micro-swimmer will always tend to align parallel to the boundary. The limit of infinite slip
length, . — 0in Eq. (49), leads naturally to the free surface limit. Furthermore, using the asymptotic
properties of the exponential integral functions, we have F,(x) ~ 1/x and G, (x) ~ H,(x) ~ 1/x> when
x tends to infinity, which can then be used to recover quantitatively the reorientation dynamics in the
no-slip limit.

We then compute the velocity induced on a micro-swimmer parallel to the boundary, modeled
by a parallel Stokes dipole, Eq. (53). The integration can be done in a similar way as for the rotation
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FIG. 4. (a) Interface-induced rotation rate along, ﬂiv“d, characterizing the alignment of the bacterium with the boundary, as
a function of the orientation angle 6 and for different values of the dimensionless slip length £/h (0.1, 1, and 10, thin solid
lines). Bold dashed lines correspond to the limits of vanishing slip length (no-slip condition) and infinite slip length (no
shear). (b) Qualitative physical picture for interface alignment and attraction; streamlines are thin dashed lines, thin arrows
(dark blue) show local effects, while thick arrows (light red) show global effect on the swimming microorganism.

rate, and using integration by parts we get a simple expression for the vertical velocity as

A 1 h h h h
[ —— 1 24— | Fh/0)) }. 60
¥ 32nn1h2{+4£(+6+€ 3 ) o (60)

A partial slip boundary will always attract a pusher swimmer for any value of the slip length,
generalizing therefore the known results for £ = 0 (no-slip) and £ = oo (no-shear).

3. Surfactant-covered interface

We finally consider the case of a Stokes dipole close to a liquid interface covered with incom-
pressible surfactants. From the Stokeslet solution presented in Sec. III B, it is possible to derive
higher-order solutions. Using Eq. (46), the flow generated by a tilted Stokeslet dipole is therefore
given by

usp(0,0) =ul,(0,0) + cos’d Wp(ex, ex) + cos 0 sind Wsp(ey, e,), (61)
with
ow ow
Wsp(ex, ex) = ——, Wspley, e,) = —. (62)
8x1 oh

Using the same methodology as that described in Sec. IV B 2 and Appendix B, we get that
Qiy"d = [Qi;,’d]() + cos? 0, + cos 6 sin 02, where [Qi;,’d]() is the solution in the presence of a no-
slip boundary, given by Eq. (49) with A — oo, and €2, (resp. €2y;) is the contribution from the flow
Wsp(ex, ex) (resp. Wsp(ex, €,)). The resulting rotation rate is given by

. fsinf (3 1y2— Fs(2bst
qind — SUSITY 20y, Y (1 + sin’6) 00829 / / 5(2bs ) dsdt
Y 8rnhd |8 29241 y +1 B st

1
+ 28 F5(2b) [
where b = (A + 1)/8 and the functions F,, are defined in Egs. (58)and (59). For any value of
the parameters and orientation angle, the sign of the rotation sign is that of the prefactor sin (20).
As a result, a surface covered with incompressible surfactants tends to always align a swimming
microorganism with the surface, similar to the no-slip and no-shear cases.

Furthermore, since the additional velocity field W does not have a vertical component, we see
immediately that the vertical velocity induced by the interface is the same as that in the presence

3 _ i(sinzé — 00526)i| }, (63)
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of a no-slip boundary, and again a surface covered with surfactants will attract a pusher toward the
interface.

In summary, the leading-order singularity modeling a swimming microorganism allowed us to
generalize results known for both a solid wall and a free surface. The interface, be it a clean fluid-
fluid interface, a partial slip boundary, or surface covered with surfactants always induces alignment
parallel to the nearest surface and attraction toward it. The only common boundary conditions to
these three types of interfaces is impermeability, which strongly confines the fluid in the vertical
direction. This confinement provides a qualitative argument for explaining alignment and attraction
of pushers near any type of boundary, as sketched in Fig. 4(b). When tilted, a pusher will experience
a higher vertical fluid force on the part of the cell closer to the interface, inducing a reorientation in
the parallel direction. When swimming parallel to the interface, fluid is attracted toward the cell on
its side, leading to attraction toward the surface. From a mathematical point of view, impermeability
on the surface is enforced by a symmetric singularity as an image in the second fluid. At leading
order it is therefore as if there were two symmetric micro-swimmers, which tend to align and attract
each other when they are pushers.> '

C. Circular motion: Rotlet dipole close to an interface

We turn now to a higher-order representation of a swimming bacterium in order to account for
its circular motion near interfaces. Given the results above concerning the leading-order effect of the
interfaces, we will assume that the microorganism is swimming parallel to it. The micro-swimmer
is now modeled by a rotlet dipole along the swimming direction, ey, which can be written as a
combination of Stokes quadrupoles,

1
Grplex, ) = 5 [GSQ(eZv ey, ex) — GSQ(eyv €y, ex)] . (64)

As aresult, the flow generated by a rotlet dipole close to a boundary can be obtained from that of the
Stokeslet, one only needs to consider the parallel Stokeslet along ey, rather than ey. In this section, in
order to perform dimensional analysis, we write the strength of the rotlet dipole as ¢ (units of N m?).

1. Clean interface

In the case of a clean fluid-fluid interface, we start by considering the problem using di-
mensional analysis. In a far-field approach, the bacterium geometry plays a role only through the
non-dimensional aspect ratio y appearing in Faxén’s law (13). The dimensional quantities involved
in the rotation rate are then the rotlet dipole strength g, the two viscosities 11 and 7, and the distance
h to the interface. A straightforward dimensional analysis then yields a rotation rate normal to the
interface given by

Qind — #a)(k, ), (65)
where we recall that A = 1,/n. The non-dimensional function w(A, y) needs to be determined
analytically, but we can already see from Eq. (65) that the sign of Qiz“d, and thus the direction of
rotation of the circular motion, will be determined by a comparison between the viscosity ratio and
the swimmer geometry, and will be independent of the distance to the interface 4. Moreover, within
the context of our far-field approach, we observe that this rotation rate decays as 1/4*. The circular
motion is therefore likely to occur very close to the interface.

Starting from the image system of a Stokeslet in the presence of an interface, we derive the
image system for a rotlet dipole along ey, and get

2A
1+A
where G ggp is a stresslet dipole. Recall that the limit of a free surface (resp. no-slip wall) is recovered

in the limit of vanishing (resp. infinite) viscosity ratio.?® The structure of the image system in
Eq. (66) reveals two roles played by the interface: (i) a kinematic role, through the impermeability

Im{GRD(eXy ex)} = _G;{D(em ex) - [ TS‘SD(exa eya ez) - th(eXs ey)]v (66)
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FIG. 5. Interface-induced rotation rate along the normal to the interface, Sliz“d, as a function of the viscosity ratio A = n2/n
divided by the aspect ratio square 2 (for a fixed value of y = 5). Circular motion is predicted to be CW when A/y2 > 1 and
CCW otherwise.

condition, that forces the existence of an opposite rotlet dipole independent of the viscosity ratio,
and (ii) a viscous component, related to the balance of tangential velocity and stress. Interestingly, in
the limit of a free surface (A = 0), the viscous contribution vanishes, and the only remaining image
singularity is the opposite rotlet dipole.*’

The rotation rate induced by a clean interface is then computed from Eq. (13) using the flow
from Eq. (66), leading to the result

. 3 q yi—1 1-—1x
Qind — . 67
: 256nn1h4<y2+1+1+x ©7)

In Eq. (67), we can identify the two different contributions which were apparent in the image system:
(i) a kinematic contribution independent of the viscosity ratio, and (ii) a viscous contribution due to
the rotlet and stresslet dipoles (a potential singularity has no vorticity), independent of the micro-
swimmer geometry. Re-writing Eq. (67), we get another form for the non-dimensional function w
in Eq. (65) as

_vi=r
A+DE2+1)

One can see from this expression that the sign inversion for the rotation rate, and thus the transition
from CCW to CW circles, occurs for A = y? (see Fig. 5). As expected from the dimensional analysis,
we found a condition involving the swimmer geometry and the viscosity ratio for determining the
rotation direction, regardless of the distance to the interface. For spherical swimmers (y = 1), the
transition is predicted to occur exactly at a viscosity ratio of 1, but as the body becomes elongated
this threshold is significantly modified. We would therefore expect a clear differentiation in rotation
depending on the swimmer shape, for an identical viscosity ratio.

In the presence of a clean interface between two given fluids, only the bacterium shape deter-
mines the rotation direction, and not the distance to the interface. When both fluid have comparable
viscosities, the dominant behavior should be that of the free surface limit, a counter-clockwise rota-
tion, as soon as the bacterium is elongated. This is not consistent with experiments, where both CW
and CCW rotations where observed at a free surface or a solid wall.'>?>23 This indicates a more
complex role played by the interface, and motivates Secs. IV C 2 and IV C 3.

w(A, y) x (68)

2. Partial slip boundary

In the presence of a partial slip boundary, an additional length is introduced in the problem. A
dimensional analysis similar to the one carried out above yields

QM = #ww/h, Y. (69)



071902-16 D. Lopez and E. Lauga Phys. Fluids 26, 071902 (2014)

>

FIG. 6. (a) Dependence of the perpendicular rotation rate, Slf,"‘d, induced by a partial slip wall on a parallel rotlet dipole as a
function of the normalized slip length, £/h, for three values of y (1, 3, and 10); (b) Critical value of £/h at which the rotation
sign changes as a function of y. The regions where the circular trajectories are CW and CCW are indicated in the figure.

and thus the sign of the rotation rate should depend on the distance to the wall, as opposed to the
case of a clean fluid interface.

In order to analyze the effect of a partial slip boundary, we derive the solution using
Blake’s method directly for a rotlet dipole. Choosing V = —G%p(ey, €x), we have in Fourier
space

W’ 1tk (ikoex — ikyey)
+
L4+ 2¢k 4y (1 + Ck)(1 + 2¢€k)k

W = e ke, (70)

where w° = —2Gq ) (ex, ey, €,) + 2hG'y(ey, ey). Following an analysis similar to that detailed in

Appendix B, we then obtain the rotation rate induced on the micro-swimmer

Qind=3—q y_z_ﬁ F h +J/2—1F h
© T ednm2+Drt | 2 e |T M\ 2 A\

hT DG h 392 + 1)H. h 71
—Z[(V—)s(z)+(y+)5<z)i|}, (71)

with the functions F,,, G,, and H,, defined in Egs. (58) and (59). From Eq. (71), the known limits of
a free surface ({ — o0) and solid wall (¢ — 0) are easily recovered.

We plot in Fig. 6(a), the perpendicular rotation rate, QiZ"d, as a function of the normalized slip
length, £/h, for different values of y . For small slip lengths compared to the distance of the cell to the
wall, the effect of slip is negligible, and the standard result of a no-slip boundary is recovered (CW
rotation). However, when the swimmer gets close enough to the wall, or when the slip length becomes
large enough, the rotation rate changes sign and takes that due to a free surface (CCW rotation).
Since we argued above that cells are always attracted to interfaces, we thus expect CCW rotations
to be observable in this case, consistently with the recent experimental results in the presence of
slip-inducing polymers.>>

In Fig. 6(b), we further plot the dependence of the critical dimensionless slip length at which
the rotation changes sign on the aspect ratio of the cell. We find numerically that £/h scales approx-
imatively as 1/y at large values of the aspect ratio.

3. Surfactant-covered interface

In this final section, we consider the case of an interface covered with incompressible surfactants.
Using dimensional analysis, we obtain that the rotation perpendicular to the surface is

Qiznd = #w()"a ,35 V), (72)
1
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FIG. 7. Dependence of the rotation rate, SZiz“d, induced by an interface covered with incompressible surfactants on a parallel
rotlet dipole: (a) contour values of Qi"d for a spherical swimmer (y = 1) and (b) for an ellipsoidal swimmer (y = 10). The
dashed line (red online) indicates the location where the rotation rate changes sign. Regions of CW and CCW rotations are
schematically shown.

and therefore the distance to the wall, A, also plays a role as it is included in §, the non-dimensional
surface viscosity,

The flow generated by a rotlet dipole close to a surfactant-covered interface can be derived from
the Stokeslet solution, or computed directly using Blake’s method. We have

1
ugp(ex, &) = upp(ex, €;) — 5 (ex-Vo)(ez. Vo) W(ey). (73)

where W(ey) is the additional flow field generated by a Stokeslet along ey (i.e., Eq. (44) with a
rotation of /2 along e,). The rotation rate along the vertical axis can then be derived directly,
leading to the analytical result

a4 {— +1F(2b)+<E)i[1+b(2b—1)—4b3F(2b)]}
T ekt | 202+ 1) B y2+1)6p : ’
(74)

with the functions F,, defined in Egs. (58) and (59).

The dependence of this rotation rate with the two non-dimensional viscosities, > = 1,/n; and
= ns/hn1, is shown in Fig. 7. For low cell aspect ratio, the sign of the circular rotation is similar to the
no-slip case for a wide range of parameters (CW rotation), and thus opposite to the prediction in the
case of clean interface. The sign of rotation is then changing at low 8 (low surfactant concentration)
and low viscosity ratio A. Furthermore, as the aspect ratio of the cell y increases, the region displaying
CCW rotation becomes larger, allowing for both rotations to be potentially observed experimentally
in cell populations of different sizes or on surfaces with fluctuations in surfactant concentration.

Comparing with other interfacial models, we get that when § tends to infinity, the solid wall limit
is recovered. Furthermore, and despite the fact that the surfactant model is not supposed to recover
exactly the clean-interface limit, we see that the clean-interface threshold for rotation inversion (A
= y?), corresponds to the order of magnitude of the vertical asymptote of the dashed line in Fig. 7.

We then plot in Fig. 8 the critical value of § at which there is a change in sign of the rotation
rate, as a function of the viscosity ratio A for different aspect ratios (Fig. 8(a)), and as a function
of y for different A (Fig. 8(b)). For large cell aspect ratios, we find that 8 scales as y2, similar to
the scaling seen for A. This can be interpreted by noting that this problem is the same as that in the
presence of a clean interface, but for the presence of a third fluid, and thus a third viscosity that
needs to be compared with the viscosity where the swimming microorganism is located. Hence, the
criterion for a change of sign in the rotation direction is similar for both non-dimensional viscosities,
A and S.

There is in general a wide range of surface viscosities, depending on multiple parameters, such
as the type of surfactants or temperature.’® For instance, for a bacterium swimming at a typical
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FIG. 8. Critical value of the dimensionless surface viscosity, B, at which the rotation changes sign, as a function of A for
three values of y (a), and as a function of y for four values of A (b). Regions of CW and CCW rotations are indicated in the
figure.

distance of 1 um from the interface, 8 can be of order 10° when the interface is a monolayer at a
water-air interface.** As a result, CW rotation (as in the no-slip case) is more likely to be observed.
In contrast, in the case of an amphiphilic bilayer,’ the values can be much smaller, 8 = O(1).
As a result, there is likely a wide range of parameters where both CW and CCW rotation could
be observed in a population of cells. Recent experimental results on contaminated free surfaces
showed that both CW and CCW circular motion could be seen.'®?* By considering the presence of
surfactants on the surface, our analysis shows that the high viscosity fluid film at the interface could
indeed alter the natural shear-free rotation direction and lead to CW motion.

V. CONCLUSION

In this paper, we have used a far-field hydrodynamic approach to model the surface swimming
of bacteria employing helical flagella. The motivation for this work was the discrepancy between
theoretical predictions and experimental observations. Specifically, theory predicts that near a rigid
wall the cells should always display CW motion, whereas recent experiments where polymers were
used to induce slip at the wall showed that rotation in the opposite direction was possible. Similarly,
cells should rotate in a CCW direction at a free surface, whereas if surfactants are present experiments
show that CW motion is also observed.

To develop a model we have represented the helical swimmer as a superposition of hydrodynamic
singularities and investigated its hydrodynamic interactions with three types of surfaces: a clean
fluid-fluid interface, a rigid wall with a finite slip length, and an interface covered by incompressible
surfactants. The leading-order singularity in the flow field of the cell is a Stokes dipole (stresslet),
characterized by a 1/#° spatial decay. The interactions between that singularity and all three types of
surfaces systematically lead to a reorientation of the swimming cells parallel to, and an attraction
by, the surface. Circular motion of the cells are due to wall effects on a higher-order singularity,
namely, a rotlet dipole, which decays spatially as 1/¢°. In that case, the specific boundary conditions
at the interface, together with the shape of the cell, play a crucial role in determining the direction
of rotation of the cell, and transitions between CW and CCW are predicted to take place in similar
experimental setups.

Our results indicate thus that the recent experimental finding on transition in rotation direction
can be understood as the consequence of complex boundary conditions on the nature of hydrodynamic
interactions between the swimming cells and the surfaces. The main assumption made in our paper
is that we have only considered the leading-order hydrodynamics effects for all influences of the
interfaces (attraction and rotation). This is, admittedly, a severe assumption which is expected to
break down as soon as the cell is within about one body length from the interface. In order to
obtain more quantitative predictions, one would then need to either include the effect of higher-order
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singularities, or resort to a fully computational approach. The advantage of our approach however
is that it allows us to identify the fundamental physical process at play in setting the direction of
rotation, and that it is expected to remain valid generically for all cells exploiting helical swimming.
Our findings could potentially be exploited in a numbers of ways, for example, surface swimming
could be used as a proxy for determining the rheological properties of the nearby interface or
to selectively stir or sort individual cells from bacterial populations. We hope that our study will
motivate further work along these directions.
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APPENDIX A: KNOWN FOURIER TRANSFORM

We reference here some useful Fourier transforms

1 1 1 1 . X ik
Flo|=ze® Flg|=cet F[5] =tk Al
|:ri| K’ |:r3] z° r3 K¢ (AD

where 2 = x% + x* + 2.

APPENDIX B: REORIENTATION OF A STOKES DIPOLE CLOSE TO A PARTIAL SLIP
BOUNDARY

We present here the details of the derivation for the rotation rate, Qiy“d, induced by a partial
slip boundary on a tilted Stokes dipole. The method is general, and the same procedure is applied
throughout the paper for deriving the rotation rate induced by a complex interface. In Fourier space,
the rotation rate induced by a flow i@ on a prolate spheroid of aspect ratio y, oriented along e, reads

X —ikyii; — 52
Q] = 3 35_7;+ik1ﬁz
ikzlzl - iklﬂz
cos 0 sinO[iky iy + ikyiiy] — sin®6 [42 — ikyil, |
[sin?0 — cos?0][ 52 — ikyii;] — 2cos O sin6 [ikiidy + 5=] | . (B)

cos @ sin@[% — ikoii,] — cos0 [ikyiiy + ikyii1]

y2

12—
+§y2+1

The tilted Stokeslet dipole has three contribution, a stresslet, u gs(ex, €,), and two Stokeslet dipoles,
usp(ex, ex) and ugp(e,, e,).

1. Stresslet contribution

We compute first the stresslet contribution. For a stresslet usg(ex, €,), we have W = W'+ w2,
where

0 2
o= @ ¢ lﬁex - @ey e Kt (B2)
1+ 2¢k 4 (1 + k)1 4 2¢k) \ k k
The coefficients of the no-slip solution read
k —k?h —kik 2ik
AV =2 Rk AQ = 2p 27k A0 =0, B = L1 —kme . (B3)
k < k

We note Q' = Qy [ﬁ)l] and Q* = S~2y [11)2]. From the expression of the rotation rate in Eq. (B1), we
have Q' = Q°/(1 + 2¢k). From Eq. (24), we note that @ = w, + zW;,, and thus Q=Q, +z2%.



071902-20 D. Lopez and E. Lauga Phys. Fluids 26, 071902 (2014)

This decomposition holds in real space,?’ leading to

d d
(1 - 2@8—2) Q=0 <1 - 2@8—Z> Q) =Q). (B4)

The resulting differential equation reads
9 1 0 1
1-20— ) Q2 =Q° —20Q,. (BS)
0z
We decompose then Q! in two terms, Q' = Q%' 4+ Q! so that
a a
<1 — 2@-) Q" =Q°, (1 — 2£—> Q' =29, (B6)
az 0z
This last equation can be rewritten as
2\* 1 0
1-20—) Q" = -2, B7)
0z
The first term, °!, can be computed directly knowing the no-slip solution. However, the second

term is not straightforward, and needs to be determined in Fourier space, as well as Q2. We have
then

2
~ -1
Q) = ZZ gy [(cos?0 — sin®)ikik + sin 6 cos Ok} + k*)] e, (B3)
- 1 L2 ekt 21 ik
O — 2¢ 4 sin’0 — cos>0 + 2 cos sing =1 ) | B9
8w (14 Lk)(1 4 2Lk) y2+1 k

These expressions can be inverted, as all contributions are known Fourier transforms (see
Appendix A). We have therefore Q = Q! + Q'! + Q?, with

9
(1 - 25-) Q% =Q°, (B10)
0z
3\? ¢ y2-1 3 3 (3x2 1
1-2¢0—) Q' =— 1+h—)|2(sin’6 — COSZG)— — - —
0z 4 y2+1 9z RS R

2 82

5
+5in(26) (a_z2 _ @) (%) ] (B11)

9 9 ¢ 2_ 9 (1 3y?
1= L) (1202 ) @2 = 1+ 2" (sin?0 — cos?6) _2
9z 0z 8mn y2+1 3z \R? RS

V4 2_ 92 X
51n(29) <F> : (B12)

8 y2 41

where R? = x* + y*> + Z, with Z = z + h. Since we are looking for the solution at x = y = 0, we
need to integrate the following equations:

d o1 3 1 [2h y2—1 . ) 8h  8h?
1 -20— ) Qgg = — | =—-14+ 2+1(s1n9—cos€) —— 4+ =], B13)

dz 8qnem Z3 | Z y Z VA
d\* _ 34(sin’0 — cos*0) y> — 1 1 4h
1-2— ) Qll = 1-—), (B14)
dz 27y yi+12z4 Z
e (1-20 L ) 2 314 727 e — costey] (B15)
—L— - 26— =— sin“6 — cos —
dz dz )5S 87 y2+1 zZ4

: _ Ul 11 2
The final rotation rate due to w reads Q¢ = Q¢ + Qg + Qg
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2. Parallel Stokes dipole contribution

For the parallel Stokes dipole, usp(ex, ex), we have

V =Gyple. e, w’=-2Gyp(ex. ) +2hGyy(e,. ex, ex) — 2h°Gy(ex. ex),  (BI6)

0 . —k(z+h)
- _ _ 2 ~1 w 2 Lik ke

_ , - __ ke, —kie)].  (B17
wEwtw, w=ron v 21+ k)1 + 200)k2 [kaex —hiey]. BI7)

The corresponding coefficients in Fourier space are given by

0 ’kl 2 2\ —kh 0 ’k2k2 —kh. 0

Al=-—5 (ki(1 — kh) +2k3) e, AY = (1 + kh)e A} =0, (B18)
0 2k% —kh

B = —L(1 — khye ™. (B19)

Following the same procedure, we find that the rotation rate, 2™, induced by a parallel Stokes
dipole usp(ey, ex) is given by Qspx = QU py + Qb + QL + Q3 Where

3cosfsind y2 —1 1
8y )/2—|-IZ37

d o1 3cosfsind y2—1 1 Th  Th?
1 -20— ) Qpx = —(1-=+—=, (B21)

(B20)

Qspx = —

dz drm  y2+12Z3 zZ 72
)4 2 21€cosOsing y2 —1 1 4h
1-20— ) @by =— —(1-=), (B22)
dz 8my y2 4124 Z
o404 Ao,y __3tcosfsing yi-11 (B23)
‘iz dz) dz 2ty yi+ 1275
3. Perpendicular Stokes dipole contribution
For the perpendicular Stokes dipole, usp(e,, €,), we have
V =Gjples,e,), = o’ B® =2(kh — 1)e™*" (B24)
SD\%z> %z)> 1 + 2£k ) )
w’ =2[-Gjple,. e,) + hGyle,, e, e,) + 2hGple,) — B> Gyle,. e,)] . (B25)

The rotation rate, Qi“d induced by a perpendicular Stokes dipole ugsp(e;, e,) is given by Qspz =
Qip, + Q% + QSDZ, with

3cosfsinf y?2—1 1
drn  y24+123%

YL P 3cosOsing y> —1 1 . 6h_|_6h2 B27)
dz ) "SPz 2 yi4+1273 z ' zr)

Qi = (B26)

d\> ., 9cosfsindy>—1 1 4h
1-20— | @l = ——(1-=)- (B28)
dz 2rny y:+12Z7 z
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APPENDIX C: TYPICAL DIFFERENTIAL EQUATIONS AND SOLUTIONS

The differential equations in Z giving the rotation rate and velocities induced by the nearby
boundary are of the three following types:

1-2¢ d = ! Cl1

( - &) fi= 7 (C1)

1-2¢ d )’ = ! C2

( - &) h= Zn (C2)
d d 1

where n is a positive integer. We keep here the coefficients corresponding to the partial slip case,
however similar equations are obtained in the case of a surfactant-covered interface. Knowing that
the solution must vanish at infinity, the solutions for these equations read

| 2/2t
() = 55 EAZ/20), 4
1 22t [ E(71)20)
BD =g [ i (5)
| oZIt (oo g=Zi/2
1D = s | S BAz 20 (C6)
1

where E,, is the exponential integral function of order n defined in Eq. (59).
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