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Recent experiments showed that standing acoustic waves could be exploited to induce
self-propulsion of rigid metallic particles in the direction perpendicular to the acous-
tic wave. We propose in this paper a physical mechanism for these observations based
on the interplay between inertial forces in the fluid and the geometrical asymmetry
of the particle shape. We consider an axisymmetric rigid near-sphere oscillating in a
quiescent fluid along a direction perpendicular to its symmetry axis. The kinematics
of oscillations can be either prescribed or can result dynamically from the presence of
an external oscillating velocity field. Steady streaming in the fluid, the inertial recti-
fication of the time-periodic oscillating flow, generates steady stresses on the particle
which, in general, do not average to zero, resulting in a finite propulsion speed along
the axis of the symmetry of the particle and perpendicular to the oscillation direction.
Our derivation of the propulsion speed is obtained at leading order in the Reynolds
number and the deviation of the shape from that of a sphere. The results of our model
are consistent with the experimental measurements, and more generally explains how
time periodic forcing from an acoustic field can be harnessed to generate autonomous
motion. C© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4891446]

I. INTRODUCTION

The transport of synthetic micro- and nano-scale particles is a well-studied field of research,
starting with the first studies on the effect of electric fields on colloidal suspensions in the 1920s. The
topic has recently seen a revival of activity, due in part to the possible biomedical and environmental
use of these devices.1 Indeed, small controlled bodies could be employed to achieve transport of
cargo and drug delivery,2, 3 analytical sensing in biological media.4, 5 Furthermore, their fast motion
could also be efficiently used to perform wastewater treatment.6

While deformable synthetic micro-swimmers7 are of fundamental interest to mimic the loco-
motion of real cellular organisms,8–12 rigid synthetic micro- and nano-swimmers appear to provide
a more practical alternative. A number of different mechanisms have been proposed to achieve
propulsion of small rigid objects, as recently reviewed by Ebbens and Howse13 and Wang et al.14

The propulsion mechanisms can be sorted into two generic categories: external mechanisms, in
which a directional field is used to drive the object, and autonomous mechanisms, where the object
performs a local conversion of the energy from an exterior source field. In the latter case, symmetry
breaking of the particle itself (shape, composition) is usually required to achieve propulsion.

External strategies typically lead to a global motion of the assembly of micro-particles. For
instance, applying an electric field on a suspension of charged spherical colloids in an electrolyte
leads to a collective motion of the assembly parallel to the field lines, a phenomenon known as
electrophoresis.15 Applying a non-uniform electric field on dielectric uncharged spherical parti-
cles in an electrolyte leads as well to an ensemble motion of the colloids parallel to the field
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lines (dielectrophoresis16). Rigid particles can also be propelled by the mean of magnetic fields.
For example, a time-varying magnetic field can be used to actuate in rotation a helical (chiral)
body.17–19

Whereas external control is convenient for targeting and navigation, autonomous strategies are
more suitable for swarming and cleaning tasks. In this case, particles show independent trajectories
able to cover a given region of fluid in a limited amount of time than unidirectional similar trajectories
resulting from external driving. Autonomous motion can be achieved by methods which typically
require a breaking of the symmetry of the particle (not a requirement in the case of external forcing).
Catalytic bimetallic microrods can propel at high velocities (∼ 10 µm s−1) in a liquid medium
by self-generating local electric fields maintained by a local gradient of charged species (self-
electrophoresis).20–22 If the generated species is uncharged, the concentration gradient can also trigger
a net motion of the particle through self-diffusiophoresis.23–25 Similarly, autonomous propulsion can
be achieved by taking advantage of self-thermophoresis effects.26–28 Self-electrophoresis and self-
diffusiophoresis have the important drawbacks to be incompatible with biological media such as
blood, for these processes rely on the use of toxic fuels – e.g., hydrogene peroxide,20, 22 hydrazine21

in the case of self-electrophoresis or norborene in the case of self-diffusiophoresis23 – and are
inefficient in high-ionic strength media. Self-thermophoresis requires temperature differences of a
few Kelvins which makes it difficult to use for medical applications.

As an alternative, acoustic fields are good candidates to enable autonomous propulsion in
biocompatible media, as recently demonstrated experimentally by Wang et al.29 In that work, it was
shown that µm size metallic and bimetallic rods located in the pressure nodal plane of a standing
acoustic wave could undergo planar autonomous motion with speeds of up to 200 µm s−1. In
this paper, we provide a model for these experimental results. Specifically, we propose asymmetric
steady fluid streaming as a generic physical mechanism inducing the propulsion of rigid particles in a
standing acoustic wave. This mechanism requires a shape asymmetry of the particle, does not involve
any other physical process than pure Newtonian hydrodynamics (in particular, no chemical reaction),
and takes its origin in the non-zero net forces induced in the fluid by inertia under time-periodic
forcing.

After drifting towards the pressure nodal plane under the effect of the radiation pressure,30, 31

a rigid particle can be viewed as a body oscillating in a uniform oscillating velocity field - note
that this is does not hold in the general case where the particle is located at an arbitrary X-position
in the resonator (see Sec. V). If K0 and R0 refer, respectively, to the wavenumber of the acoustic
radiation and the typical size of the particle, this assumption of local uniformity of the field is justified
provided that K0 R0 # 1, a limit true in the experiments in Ref. 29. The motion of the particle relative
to the surrounding fluid leads then to an oscillating perturbative flow which can be computed in
the framework of unsteady Stokes flows. Such a viscous flow, when coupled with itself through the
convective term of the Navier-Stokes equation, forces a steady flow (so-called steady streaming),
together with a flow at twice the original pulsation. If the particle has a non-spherical shape, the
force coming from the integration of the corresponding steady streaming stress over the surface of
the particle will generically not cancel out, leading to propulsion. Critically, in the absence of inertia,
no propulsion would be possible since the initial transverse oscillatory motion is time-reversible.
The breaking of symmetry in the geometry is also indispensable and, as originally shown by Riley,32

the net force coming from the integration of steady inertial stress (steady streaming stress) over the
surface of an oscillating sphere is zero.

In order to mathematically model this physical mechanism, we first consider the problem of
an axisymmetric near-sphere oscillating in a prescribed fashion in the transverse direction in a
quiescent fluid. The particle is assumed to be force-free in the direction of its axis of symmetry.
We start by a near sphere of harmonic polar equation (i.e., one whose shape differs from the sphere
by a cosine of small amplitude) before considering an arbitrary axisymmetric shape. The case of
a free particle in an oscillating uniform velocity field is then addressed as it corresponds to the
experimental situation in which the particle is trapped at the pressure node of a standing acoustic
radiation. The problem is governed by two dimensionless parameters: a shape parameter, quantifying
the distance to a perfect sphere, and the Reynolds number. Our calculations will present the derivation
of the propulsion speed at leading order in both, giving rise to a propulsive force on the order of
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shape parameter × Reynolds number. To perform the perturbation analysis, we expand the fields in
Reynolds number and to introduce the shape parameter at each separated order in Reynolds.

The paper is organized as follows. Section II is devoted to the presentation of the problem.
Geometry, governing equations, and boundary conditions are detailed. Section III is dedicated to
the derivation of an integral expression of the first-order (in Reynolds) propulsion speed. Zeroth and
first-order (in Reynolds) problems are successively addressed. The full solution to the zeroth-order
– transverse oscillation of a near-sphere in a purely viscous fluid – is presented first. As we are
interested in the first-order (in Reynolds) propulsion speed rather than in the full first-order flow
field, the latter is not derived explicitly and instead, we use a suitable form of Lorenz’s reciprocal
theorem to establish an integral expression of the propulsion speed.33 Results provided by the
numerical integration of the integral expression of the propulsion speed are presented in Sec. IV.
We then use Sec. V to address the dynamics of an axisymmetric near-sphere free to move in an
uniform oscillating exterior velocity field. We show in particular that the zeroth-order (in Reynolds)
rotational oscillation of the near-sphere is of second-order (in shape perturbation number), so that
the propulsion speed computed in the case of a non-rotating particle (Sec. III) can be used as is. We
conclude the paper by a discuss of the numbers predicted by the model in relation to the original
experiment.29 In Appendix A, we demonstrate that the calculated propulsion speed does not depend
on the choice of the origin of the coordinate system, a technical but important detail. As the integral
form of the propulsion speed involves the expression of the flow field induced by an oscillating
sphere in a purely viscous fluid, we recall its expression in Appendix B. Some further technical
details concerning the zeroth-order problem are given in Appendix C. The use of the reciprocal
theorem requires an auxiliary flow field. The characteristic of such a flow (axial translation of an
axisymmetric solid body at constant speed in a purely viscous fluid) are given in Appendix D.
Finally, in Appendix E we discuss the dipolar forces appearing when the rigid particle is not located
at a pressure node of the acoustic field.

II. PROBLEM FORMULATION

A. Geometry and kinematics

The setup of our calculation in shown in Figure 1. Both cartesian and spherical coordinate
systems are used. Unit vectors of the cartesian (respectively, spherical) coordinate system are
referred to as ex , ey , and ez (respectively, er , eθ , and eφ). The position is denoted by R, and the
spherical coordinates by R, θ , and φ. We use capital letters to refer to dimensional quantities, force,
position, and velocity variables. Corresponding dimensionless quantities are denoted by small letters
(this rule obviously does not apply for constants).

We first consider an axisymmetric homogeneous solid body, the axis of which is in the z-
direction (in Sec. V, the particle will be free to rotate). The body oscillates in a Newtonian fluid
(density ρ, viscosity µ) along the transverse x-direction at frequency ω. The amplitude of its
oscillations relative to the quiescent fluid is denoted a such that the relative velocity of any point of
the body is V⊥ = V̂⊥ e−iωT , where V̂⊥ = a ω ex .

In order to allow an analytical solution, the solid body is assumed to take the form of a slightly
deformed, axisymmetric sphere. We thus write its shape as

R = R0[1 + ε ξ (θ )], (1)

where R0 is the radius of the reference sphere, ε # 1 is the dimensionless small shape parameter,
and ξ is a dimensionless function of order one. The surface of the axisymmetric near-sphere is
referred to as S and its volume is denoted by Vp. In our calculations, we first assume that ξ is of the
form cos (nθ ), with n = 2k + 1 (k ≥ 1). The value n = 1 is not considered since the corresponding
body is equivalent to a sphere at order O(ε) (see Appendix A) and odd values of n would lead
to no propulsion by symmetry. The case of an arbitrary (axisymmetric) shape is dealt with in
Sec. III D, but we first perform the analysis for one of the terms of the Fourier expansion of the
shape function susceptible to provide a finite propulsion speed of the body along the direction of its
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FIG. 1. Geometry of the system (a). The shapes of solid bodies with symmetry n = 3 and n = 5 are displayed in figures
(b) and (c), respectively.

axis of symmetry (z). Note that the function ξ (θ ) = cos (nθ ) with n = 2k + 1 satisfies the condition
∫

S0

ξ dS = 0, (2)

where S0 is the surface of sphere of radius R0. Consequently, the sphere of radius R0 is the equivalent-
volume sphere and Vp = (4/3)π R3

0 . Note also that the origin of the spherical coordinate system used
in the paper is in general not the center of mass of the body (except in Sec. V), and we have thus
that the equality

∫

S0

ξ n dS = 0 (3)

is not satisfied. This fact will be important when we address the translation/rotation coupled problem
of the dynamics of a near-sphere in a uniform exterior oscillating velocity field (Sec. V).

B. Governing equations and boundary conditions

The solid particle is moving in the laboratory reference frame and we choose to work in the frame
of reference of the body. The dimensional velocity and pressure fields satisfy the incompressible
Navier-Stokes equations

∂U
∂T

+ (U · ∇)U = − 1
ρ

∇P + ν∇2U, (4)

∇ · U = 0, (5)

where ν = µ/ρ is the kinematic viscosity of the fluid. In Eq. (4), the additional inertial force field
−ρ*O = i ρω2a e−iωt ex due to the acceleration *O of the origin of the (non-Galilean) reference
frame has been incorporated in the pressure term (since this force field is the gradient of the linear
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pressure field i ρω2a e−i ωt x). These equations can be made dimensionless by choosing R0, V̂ ⊥ = a ω,
ω−1, and µV̂ ⊥/R0 as typical length, velocity, time, and pressure scales, and one gets

λ2 ∂u
∂t

+ Re(u · ∇)u = −∇ p + ∇2u, (6)

∇ · u = 0. (7)

In Eq. (6), λ−1 = (ωR2
0 /ν)−1/2 quantifies the dimensionless distance over which the vorticity diffuses,

and Re = R0V̂ ⊥/ν = a R0ω/ν is the Reynolds number. In the following, λ will be referred to as the
viscous parameter. Due to the assumption a # R0, the Reynolds number is smaller than λ2 by a
factor a/R0. Considering our choice of nondimensionalization, the polar equation of the surface is
now written as

r = 1 + ε ξ (θ ). (8)

Equations (6) and (7) have to be supplemented by a suitable set of boundary conditions. We
assume that, due to inertial effects, the force-free body will propel in the z-direction (the only one
allowed by symmetry) and the corresponding dimensionless propulsion speed is denoted v‖. As the
analysis is performed in the reference frame of the particle, the boundary condition for the velocity
field then takes the following form:

u = 0 on S, (9)

u → −v‖ − v⊥ = −v‖ ez − e−it ex , for |r| → ∞. (10)

With the aim of applying the reciprocal theorem (Sec. III C), we write the difference u′ = u + v‖,
transforming equations (6) and (7) into new equations as

λ2 ∂u′

∂t
+ Re[(u′ · ∇)u′ − (v‖ · ∇)u′] = −∇ p′ + ∇2u′, (11)

∇ · u′ = 0, (12)

where p′ = p since no additional pressure (stress) is associated with the uniform field v‖. The new
set of boundary condition is

u′ = v‖ on S, (13)

u′ → −v⊥ = −e−it ex for |r| → ∞. (14)

For notation convenience, we drop the primes in the rest of the paper.

III. INERTIAL PROPULSION SPEED

In this section, we consider the effects of inertia in the case of a near-sphere oscillating in the
transverse direction in a prescribed way. We first expand the velocity and pressure fields in powers
of the Reynolds number. The perturbation in shape is introduced once the governing equations
are obtained at each order in Reynolds. We first consider in Sec. III A, the Stokes problem of an
oscillating near-sphere (zeroth-order in Reynolds). In Sec. III B, we introduce the first-order (in
Reynolds) problem. We then use a suitable form of the reciprocal theorem in Sec. III C in order
to obtain the axial propulsion speed at leading order in an integral form, thereby bypassing the
calculation of the full flow at first order in Reynolds. The case of an arbitrary axisymmetric shape is
finally presented in Sec. III D.

We first expand the velocity, pressure, and stress fields in powers of the Reynolds number as
follows:

u = u(0) + Re u(1) + O(Re2), (15)

p = p(0) + Re p(1) + O(Re2), (16)
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σ = σ (0) + Re σ (1) + O(Re2). (17)

The stress expansion is a consequence of the velocity and pressure expansions since at each order,

σ (i) = −p(i) δ + [∇u(i) + ∇u(i)†], (18)

where the superscript † refers to the transposed tensor and δ is the unit tensor. Introducing Eqs. (15)–
(17) in the Navier-Stokes equations, Eqs. (11) and (12), leads to the two sets of similar equations
satisfied by the zeroth and first order velocity/pressure fields. We consider them successively below.

A. Zeroth-order solution in Reynolds

The zeroth-order flow field satifies the Stokes equations

λ2 ∂u(0)

∂t
= −∇ p(0) + ∇2u(0), (19)

∇ · u(0) = 0, (20)

with the boundary conditions

u(0) = 0 on S, (21)

u(0) → −v⊥ = −e−it ex for |r| → ∞. (22)

Note that the oscillating transverse velocity is entirely taken into account in the zeroth-order boundary
conditions. Note also that no axial propulsion speed is expected at that order since the kinematics
corresponding to the transverse oscillation of the body cannot lead to any net force in the axial
direction (reversibility). From here, we make the additional assumption that

λ2 # 1. (23)

This condition means that the viscous penetration scale is much larger than the typical size R0 of the
body. The flow is therefore approximately Stokesian in the entire space, enabling us to use Lorenz’s
reciprocal theorem. In the opposite limit (λ2 + 1), the viscous flow would be confined to a thin layer
of thickness λ−1, and the flow would be irrotational outside the viscous layer.32

In order to obtain the right order in the final propulsion speed, we have to expand the zeroth-
order (in Reynolds) velocity and pressure fields to the first order in shape parameter, ε. We thus
write

u(0) = u0 + ε uε + O(ε2), (24)

p(0) = p0 + ε pε + O(ε2), (25)

where u0 and p0 are the velocity and pressure fields corresponding to the oscillations of the equivalent-
volume sphere in a purely viscous fluid, and uε and pε are the first corrections due to the difference
in shape between the particle and the equivalent-volume sphere.

Working in Fourier space and denoting Fourier transforms with a hat, the Fourier components
of the velocity and pressure fields, û0 and p̂0, satisfy the Stokes equations

−iλ2û0 = −∇ p̂0 + ∇2û0, (26)

∇ · û0 = 0, (27)

together with the boundary conditions

û0 = 0 on S0, (28)

û0 → −v̂⊥ = −ex for |r| → ∞. (29)
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The Stokes flow induced by the oscillation of a sphere in a viscous fluid has been derived by Lamb34 –
see also of Refs. 32 and 35. This is a classical result and we recall its characteristics in Appendix B.

Due to the linear nature of the problem at zeroth-order in Reynolds, the corrective quantities ûε

and p̂ε also satisfies the unsteady Stokes equations

−iλ2ûε = −∇ p̂ε + ∇2ûε, (30)

∇ · ûε = 0. (31)

The fist boundary condition satisfied by the corrective flow ûε is found by Taylor expanding the
boundary condition (21) to the first order in ε. Using Eqs. (8) and (24), one then obtains the expression
of the correction in shape on the spherical surface S0 (i.e., at r = 1) as

ûε |r=1 = −ξ (θ )
∂ û0

∂r

∣∣∣∣
r=1

. (32)

As is recalled in Appendix B, the radial derivative of the velocity field, û0, is given at the spherical
surface S0 by

∂ û0

∂r

∣∣∣∣
r=1

= −3
2

v̂⊥ · (1 + e−iπ/4λ)(δ − nn), (33)

where n is the unit vector normal to S0 which points towards the fluid (here n = er ). Given that
v̂⊥ = ex , the explicit form of the first boundary condition, expressed in the basis (er , eθ , eφ) of the
spherical coordinate system is thus

ûε |r=1 = K cos(nθ )




0

cos φ cos θ

− sin φ



 , (34)

with K = (3/2)(1 + e−iπ /4λ). As the corrective velocity flow (due to the difference in shape from that
of the sphere) must vanish at large distances from the particle, the following condition takes place:

ûε → 0 for |r| → ∞. (35)

The general form of the solution to the system formed by Eqs. (30)–(31) has been derived by
Chandrasekhar36 as a sum of spherical harmonics. Taking the curl of Eq. (30) leads to the equation
which governs the vorticity. After projecting the latter on the radial direction, one gets

(iλ2 + ∇2)(r χ̂ ε) = 0, (36)

where χ̂ ε is the radial component of the vorticity. Similarly, an equation for the radial component of
the velocity uε

r is obtained by taking the radial component of the curl of the vorticity equation and
we obtain

∇2(iλ2 + ∇2)(r ûε
r ) = 0. (37)

The objective is now to derive explicit expressions for the radial components ûε
r and χ̂ ε of the

velocity and vorticity fields. In principle, the three components of the velocity must satisfy the
boundary condition (34). Unfortunately, only the radial components of velocity and vorticity are
involved in the governing equations (36) and (37). As is classically done in such situations,37 we
keep the condition of continuity of the radial component of the velocity

ûε
r = 0 at r = 1, (38)

and build two alternative boundary conditions involving the surface divergence and the radial
component of the surface curl of the velocity, by recombining the velocity components (and their
derivative) given by (34). These new boundary conditions are then used below instead of the
continuity conditions on the polar and azimuthal velocity components. The advantage of such
an approach is that ∂r ûε

r |r=1 and χ̂ ε are the only quantities involved in the new set of boundary
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conditions. The surface divergence and the radial component of the surface curl of the velocity at r
= 1 are given by35

−r ∇s · ûε = r
∂ ûε

r

∂r
= −2ûε

r − 1
sin θ

∂

∂θ
(ûε

θ sin θ ) − 1
sin θ

∂ ûε
φ

∂φ
, (39)

r er · ∇s × ûε = r χ̂ ε = 1
sin θ

∂

∂θ
(ûε

φ sin θ ) − 1
sin θ

∂ ûε
θ

∂φ
, (40)

where ∇s = ∇ − er∂r is the surface gradient operator. After introducing the polar and azimuthal
components of ûε at the surface S0 given by Eq. (34) in Eqs. (39) and (40), we obtain, for r = 1,

−∇s · ûε = K cos φ [n sin(nθ ) cos θ + 2 cos(nθ ) sin θ ], (41)

er · ∇s × ûε = K sin φ n sin(nθ ). (42)

We further show in Appendix C that expressions (41) and (42) of the surface divergence and curl can
be rewritten as sums of associated Legendre functions of order 1. Thus, the previous equations can
be put in the form

−∇s · ûε = K cos φ

k∑

q=0

B2(q+1) P 1
2(q+1)(cos θ ), (43)

er · ∇s × ûε = K sin φ

k∑

q=0

B2q+1 P 1
2q+1(cos θ ), (44)

where the constants B2q+1 and B2(q+1) are also given in Appendix C. Consequently, we can search for
the radial components of velocity and vorticity in the form

r ûε
r =

k∑

q=0

r ûε
2(q+1), with r ûε

2(q+1) = K U2(q+1)(r ) P 1
2(q+1)(cos θ ) cos φ, (45)

r χ̂ ε =
k∑

q=0

r χ̂ ε
2q+1, with r χ̂ ε

2q+1 = K X2q+1(r ) P 1
2q+1(cos θ ) sin φ. (46)

Introducing equations (45) and (46) into (36) and (37), and solving the resulting equations in r, one
obtains the general forms of U2(q+1) and X2q+1 as

U2(q+1)(r ) = α0
2(q+1)r

2(q+1) + β0
2(q+1)

(
πe−iπ/4

2λr

)1/2

J2q+ 5
2
(eiπ/4λr )

+ α∞
2(q+1)r

−(2q+3) + β∞
2(q+1)

(
πe−iπ/4

2λr

)1/2

H (1)

2q+ 5
2
(eiπ/4λr ), (47)

X2q+1(r ) = γ 0
2q+1

(
πe−iπ/4

2λr

)1/2

J2q+ 3
2
(eiπ/4λr )

+ γ ∞
2q+1

(
πe−iπ/4

2λr

)1/2

H (1)

2q+ 3
2
(eiπ/4λr ). (48)

In the previous expressions, Jl and H (1)

l are Bessel functions and Hanckel functions of the first kind,
respectively. Boundary condition (35) imposes α0

2(q+1) = β0
2(q+1) = γ 0

2q+1 = 0 allowing us to drop the
superscript ∞ in the following. The coefficients α2(q+1), β2(q+1), and γ2q+1 are then to be determined using
the boundary conditions at the surface. After using Eqs. (47) and (48) in the continuity conditions
for the radial components of the velocity, Eq. (38), surface divergence, Eq. (43), and surface curl,
Eq. (44), we obtain

α2(q+1) + β2(q+1)

(
πe−iπ/4

2λ

)1/2

H (1)

2q+ 5
2
(eiπ/4λ) = 0, (49)
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−α2(q+1)(2q + 4) + β2(q+1)

(
πe−iπ/4

2λ

)1/2 [
(2q + 1) H (1)

2q+ 5
2
(eiπ/4λ)

−(eiπ/4λ) H (1)

2q+ 7
2
(eiπ/4λ)

]
= B2(q+1), (50)

γ2q+1

(
πe−iπ/4

2λ

)1/2

H (1)

2q+ 3
2
(eiπ/4λ) = B2q+1. (51)

When solved, the system of Eqs. (49)–(50) gives the values of α2(q+1) and β2(q+1), while the last equation
gives directly the value of γ2q+1,

α2(q+1) = B2(q+1)

[

eiπ/4λ
H (1)

2q+ 7
2
(eiπ/4λ)

H (1)

2q+ 5
2
(eiπ/4λ)

− (4q + 5)

]−1

, (52)

β2(q+1) = −
√

2
π

B2(q+1)

[
(eiπ/4λ)1/2 H (1)

2q+ 7
2
(eiπ/4λ) − (4q + 5)(eiπ/4λ)−1/2 H (1)

2q+ 5
2
(eiπ/4λ)

]−1
, (53)

γ2q+1 = B2q+1

[(
πe−iπ/4

2λ

)1/2

H (1)

2q+ 3
2
(eiπ/4λ)

]−1

. (54)

As shown in Ref. 38, the complete velocity field ûε can be reconstructed from the radial velocity
and vorticity components as

ûε = ûε
r er + r2

2(q + 1)




k∑

q=0

∇sDûε
2(q+1)

(2q + 3)
−

er × ∇s χ̂
ε
2q+1

(2q + 1)



 , (55)

where the operator D is defined as

D[...] = 1
r2

∂

∂r

[
r2...

]
. (56)

The expressions we then obtain for the components ûε
r , ûε

θ , ûε
φ of the flow field ûε are given in

Appendix C.

B. First-order solution

We now consider the derivation for the first-order solution (in Reynolds) u(1). That flow field
contains terms of different frequencies, but we are here only interested in the steady part of the flow.
For the sake of simplicity, we use u(1) to denote to the steady component of this first-order flow. The
latter satisfies the following set of equations:

∇ · σ (1) = 1
4

[(û(0) · ∇) û(0) + (û(0) · ∇) û(0)], (57)

∇ · u(1) = 0, (58)

where complex conjugate quantities are underlined. In the first-order governing equations, the term
(v‖ · ∇)u(0) has been dropped since this term is time-dependent (dimensionless frequency 1) and we
are only interested in steady flows. Equations (57) and (58) have to be completed by the boundary
conditions

u(1) = v(1) on S, (59)

u(1) → 0 at infinity, (60)

where the unknown quantity v(1) is linked to v‖ by the relationship

v‖ = Re v(1). (61)
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In order to obtain the first-order translation speed, we could try to derive the full velocity and
stress fields u(1) and σ (1), and integrate the stress over the particle surface to obtain the propulsive
force. However, it is more convenient to use a suitable version of the reciprocal theorem, as suggested
by Ho and Leal33 (the standard version of the Lorentz reciprocal theorem can be found in Ref. 35).

C. Reciprocal theorem and propulsion speed

For the same geometry, we consider now an auxiliary Stokes velocity and stress fields (ū, σ̄ )
satisfying

∇ · σ̄ = 0, (62)

∇ · ū = 0, (63)

with suitable boundary conditions to be specified below. Subtracting the inner product of Eq. (57)
with ū and the inner product of Eq. (62) with u(1), and integrating over the volume of fluid V leads
to the equality of virtual powers as

∫

V
[ū · (∇ · σ (1)) − u(1) · (∇ · σ̄ )] dV =

1
4

∫

V
ū · [(û(0) · ∇) û(0) + (û(0) · ∇) û(0)] dV. (64)

Then, using the general vector identity

ū · (∇ · σ (1)) − u(1) · (∇ · σ̄ ) =

∇ · (ū · σ (1) − u(1) · σ̄ ) + (∇u(1) : σ̄ − ∇ū : σ (1)), (65)

and realizing that the second term in the right-hand side of Eq. (65) vanishes for a Newtonian fluid,
we can rewrite Eq. (64) as

∫

V
∇ · (ū · σ (1) − u(1) · σ̄ ) dV = 1

4

∫

V
ū · [(û(0) · ∇) û(0) + (û(0) · ∇) û(0)] dV. (66)

Using the divergence theorem allows to simplify the left-hand side term and obtain
∫

S
n · (ū · σ (1) − u(1) · σ̄ ) dS = −1

4

∫

V
ū · [(û(0) · ∇) û(0) + (û(0) · ∇) û(0)] dV. (67)

We now define the boundary conditions for the auxiliary problem, ū. We assume that it represents a
solid-body motion with translational and angular velocities v̄ and ω̄, so that the auxiliary velocity at
the surface S of the body is given by

ū = v̄ + ω̄ × r, (68)

where r is the position vector. Since v(1) is the first-order propulsion speed, we can introduce
Eqs. (59) and (68) into Eq. (67), leading to the equality

v̄ ·
∫

S
n · σ (1) dS+ω̄ ·

∫

S
r × (n · σ (1)) dS − v(1) ·

∫

S
n · σ̄ dS

= −1
4

∫

V
ū · [(û(0) · ∇) û(0) + (û(0) · ∇) û(0)] dV. (69)

In Eq. (69), the first term on the left-hand side is nothing but the inner product of the auxiliary
translational velocity of the solid body with the hydrodynamic force, f (1), in the main problem. The
second term is the inner product of the auxiliary angular velocity with the torque, t (1), applied on the
solid body by the main flow. The third term is of similar nature to the first one with the role of the
flows reversed. Denoting by f̄ the force applied by the auxiliary flow on the solid body, we obtain
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a convenient form of Eq. (69) as

v̄ · f (1) + ω̄ · t (1) − v(1) · f̄ = −1
4

∫

V
ū · [(û(0) · ∇) û(0) + (û(0) · ∇) û(0)] dV. (70)

For the problem of oscillation of the near sphere considered in this paper, only two quantities
are important to compute in Eq. (70). Either the particle is free to move and we want to calculate
v(1) or the particle is tethered and we wish to compute the hydrodynamics force applied by the fluid,
balancing the external force tethering it. In both cases, we can therefore pick ω̄ = 0 and v̄ arbitrary.
The flow with these boundary conditions has been calculated in the very general case of an arbitrary
near-sphere.39 The particular case of an axisymmetric near-sphere in axial translation is presented
in Appendix D. As ω̄ = 0, Eq. (70) becomes

v(1) · f̄ = 1
4

∫

V
ū · [(û(0) · ∇) û(0) + (û(0) · ∇) û(0)] dV, (71)

in the case of the force-free near-sphere ( f (1) = 0), and

v̄ · f (1) = −1
4

∫

V
ū · [(û(0) · ∇) û(0) + (û(0) · ∇) û(0)] dV (72)

in the case of a tethered oscillating near-sphere (v(1) = 0). Note that in these two equations, the
magnitude of the solid body motion in the auxiliary problem is arbitrary, since the hydrodynamic
force scales linearly with the magnitude of the imposed velocity.

Focusing on the force-free swimming case, we now consider the expansion of the right-hand
side of (71) to order O(ε). We first write the auxiliary flow as ū = ū0 + εūε , where ū0 is the field
generated by an equivalent-volume sphere translating at a velocity v̄ and ūε are the perturbative field
due to the non-sphericity of the particle. We also expand the steady drag as f̄ = f̄ 0 + ε f̄ ε , where
f̄ 0 is the steady drag of the sphere (of magnitude −6π ) and f̄ ε is the corrective drag due to the
non-sphericity of the particle. The expressions of ū0 and ūε are both given in Appendix D. Noticing
that

V = V0 +
∑

i

V i
+ +

∑

i

V i
−, (73)

where V0 is the volume of fluid outside the equivalent-volume sphere, and V i
+ and V i

− are defined in
Figure 1, and recalling that û(0) can also be written as û0 + εûε , Eq. (71) can be expanded to order
O(ε) to get formally

v(1) ·
(

f̄ 0 + ε f̄ ε) = 1
4

∫

V0

ū0 · [(û0 · ∇) û0 + (û0 · ∇) û0] dV

− 1
4

∑

i

∫

V i
+

ū0 · [(û0 · ∇) û0 + (û0 · ∇) û0] dV

+ 1
4

∑

i

∫

V i
−

ū0 · [(û0 · ∇) û0 + (û0 · ∇) û0] dV

+ ε

4

[ ∫

V
ūε · [(û0 · ∇) û0 + (û0 · ∇) û0] dV

+
∫

V
ū0 · [(û0 · ∇) ûε + (û0 · ∇) ûε + (ûε · ∇) û0 + (ûε · ∇) û0] dV

]
. (74)

The first term of the right-hand side of (74) vanishes since it corresponds to the translational speed
of a sphere oscillating in a viscous fluid (which is zero by symmetry32). Furthermore, since the
particle is nearly spherical, volume integrals in the second and third terms can be replaced by surface
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integrals for
∫

V i
±

ū0 · [(û0 · ∇) û0 + (û0 · ∇) û0] dV =

ε

∫

S i
±

ξ
[
ū0 · [(û0 · ∇) û0 + (û0 · ∇) û0]

]
S0

dS + O(ε2), (75)

where the surfaces S i
+ and S i

− are defined in Figure 1. Since û0 is identically zero on the unit sphere,
the integral on the right in Eq. (75) is zero. Consequently, the second and third terms of the right-hand
side of Eq. (74) can also be neglected at order O(ε). Furthermore, integrating the last two terms
of the right-hand side of (74) over V0 instead of V induces no change at order O(ε) since the error
introduced by doing this is of order O(ε2). As a consequence, the corrective drag, f̄ ε , does not need
to be computed since it only involves correction of O(ε2) in the final result. Finally, one then obtains
an order ε swimming velocity

v(1) = ε v(1,1), (76)

where

v(1,1) = 1
4

∣∣ f̄ 0∣∣−1 ez

[ ∫

V0

ūε · [(û0 · ∇) û0 + (û0 · ∇) û0] dV

+
∫

V0

ū0 · [(û0 · ∇) ûε + (û0 · ∇) ûε + (ûε · ∇) û0 + (ûε · ∇) û0] dV
]

(77)

and is an O(1) quantity. The superscript (1, 1) is used to remind us that the leading-order dimensionless
propulsion speed, v‖, scales as the first power of the shape parameter and the Reynolds number.

The expressions for the fields û0, ûε , and ūε necessary to compute Eq. (77) are given in
Appendixes B, C, and D, respectively. With these solutions known, the gradients ∇ûε and ∇û0

can be formally computed (their lengthy expressions are not reproduced here to spare the reader).
In the following, the quantity v(1,1) given by Eq. (77) will be denoted by v(1,1)

k , with the subscript k
simply used to remind that this expression has been derived for a shape function of the form cos (nθ )
with n = 2k + 1. Once v(1,1)

k is known, the dimensional velocity V ‖
k for the mode k can be deduced

immediately as

V ‖
k = εRe V̂ ⊥ v(1,1)

k . (78)

As a concluding note, we point out that the propulsion speed does not depend on the choice made
for the origin of the coordinate system, as demonstrated in Appendix A. Similarly, the propulsion
speed does not depend on the precise definition of R0 either, since a change of R0 of order O(εR0)
would also lead to corrections of order O(ε2) in Eq. (77).

D. Case of an arbitrary axisymmetric shape

We now consider the case of a particle of arbitrary axisymmetric shape. The polar equation of
the particle is still given by Eq. (1), where ξ is an arbitrary order one function of θ defined on the
interval [0, π ]. The Fourier-cosine series for this function can be written down as

ξ (θ ) =
∞∑

n=0

ζn cos(nθ ). (79)

Equation (77) denotes the propulsion speed, v(1,1)

k , for a shape function of the form cos (nθ ) with n
= 2k + 1, and the propulsion speed is exactly zero for even values of n by symmetry. Since the
perturbed fields ūε and uε have no quadratic contribution in the integrands involved in (77), we can
write the propulsion speed for any axisymmetric arbitrary shape as a linear superposition

v(1,1) =
∞∑

k=1

ζ2k+1 v(1,1)

k , (80)
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FIG. 2. Velocity magnitude, |v(1,1)
k |, as a function of the parameter λ2 for the first five modes (k = 1 → 5) in the range λ2 ∈

[6.28 × 10−3, 6.28 × 10−1]. The propulsion speed is oriented along +z for the mode k = 1 and along −z for the other four
modes, as schematically shown on the right with a white arrow (the double black arrow stands for the direction of oscillation).

allowing to compute the dimensional propulsion speed

V ‖ = εRe V̂ ⊥ v(1,1), (81)

of any axisymmetric arbitrary near-sphere oscillating in the transverse direction once the v(1,1)

k and the
Fourier coefficients of ξ are known. By replacing the typical velocity V̂ ⊥ and the Reynolds number
by their expression in terms of physical parameters of the problem, we obtain the final form of the
propulsion speed as

V ‖ = ε
a2ω2 R0

ν
v(1,1). (82)

IV. COMPUTATION OF THE PROPULSION SPEED

In order to enable the calculation of the propulsion speed in the case of arbitrary shapes, the
quantity v(1,1)

k has been computed numerically for the first five modes (k = 1–5). The numerical
integration of Eq. (77) has been performed in the (r, θ , φ) space using Matlab. The space occupied
by the fluid corresponds to the interval [1, ∞] × [0, π ] × [0, 2π ], but we limited the integration in
the radial direction to the value r = 10. We discretized the range [1, 10], [0, π ], and [0, 2π ] into
500, 180, and 360 intervals, respectively. The computation was done by means of Legendre-Gauss
Quadratures. We computed the results for values of the dimensionless frequency parameter λ2 in the
range [6.28 × 10−3, 6.28 × 10−1], corresponding, for a particle of size R0 = 1 µm in water, to the
relevant range of frequency of 1–100 kHz. In Figure 2, we plot the velocity magnitude, |v(1,1)

k |, as a
function of the dimensionless parameter, λ2. The quantity |v(1,1)

k | is a decreasing function of k and a
slowly increasing function of λ2 on the considered interval. The direction of propulsion (oriented
along the z-axis) is observed to be positive for k = 1 and negative for k = 2, 3, 4, and 5. As an
example, if we consider the case of a nearly spherical particle with k = 1, ε = 0.1, with radius
R0 = 1 µm, oscillating in water with a pulsation ω = 100 kHz and an amplitude a = 0.1 µm, we
obtain numerically V ‖

1 = 0.456 µm s−1.
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V. NEAR-SPHERE IN A UNIFORM OSCILLATING VELOCITY FIELD

In Secs. II–IV, we considered the axial motion of an axisymmetric body in a quiescent fluid.
The body was assumed to be force-free in the axial z-direction and its transverse harmonic motion
(along x) was fully prescribed. Here we turn to the problem of the dynamic response of the same
axisymmetric body in a uniform oscillating exterior velocity field, Ue = Ûe e−iωT . This situation
occurs, for instance, after a solid particle drifted and is trapped at a pressure node of a standing
sound wave.30 Specifically, in the low frequencies regime, λ2 # 1, such drifting occurs for particles
of density ρp less than twice the fluid density (ρp < 2ρ), and for particles of density ρp > (2/5)ρ in
the high frequency limit, λ2 + 1. We assume that the axis of symmetry of the body is on average
perpendicular to the external flow direction, Ûe and if this was not the case, hydrodynamic torques
would rotate the particle into that configuration by symmetry.

One important point needs to be noted here. Considering the particle as oscillating in a locally
uniform oscillatory velocity field is not a good approximation if it is located at an arbitrary position
in the acoustic field. Specifically, if the particle is far from a pressure node (velocity loop), the
surrounding incident velocity field contains a linear component leading to a dipolar streaming flow
parallel to the wave vector.40, 41 This is further discussed in Appendix E. The calculations in our
paper focus on the dynamics after the particle has been trapped at the pressure node.

In order to compute the swimming speed, we first have to characterize the unsteady Stokes
problem (Re = 0) with the mass of the body now taken into account. The oscillating particle
experiences time-dependent hydrodynamics torques or forces. Consequently, it will not only translate
along the transverse x-direction, but will also rotate around the y-direction, and the body is now
neither torque-free in the y-direction nor force-free in the transverse x-direction since its own inertia
is not neglected.

We consider again an homogeneous solid particle (density ρp), the shape of which is again
defined by its polar equation R = R0[1 + ε ξ (θ )]. The radius R0 and the position of the origin of
the coordinate system are however chosen so that Eqs. (2) and (3) are satisfied. This means that
the volume of the near sphere is Vp = (4/3)π R3

0 and the origin of the coordinate system coincides
with the center of gravity of the particle. This choice does not modify Eq. (77) derived in Sec. III
(Appendix A) and allows a convenient application of the theorem of angular momentum free from
additional inertial terms.

A. Prescribed rotational and translational motion in a quiescent fluid

We first detail the case in which the transverse translational and rotational motions of the
body are prescribed. A particle translating with velocity V = V̂ e−iωT and rotating with angular
velocity $ = $̂ e−iωT in a quiescent fluid will experience a hydrodynamic force F = F̂ e−iωT and
a hydrodynamic torque L = L̂ e−iωT where F̂ and L̂ are linearly related to V̂ and $̂ as42

(
F̂

L̂/R0

)
= −6πµR0

(
A B
BT 4

3 C

)
·
(

V̂
R0$̂

)
, (83)

where the tensors A and C can be expanded to order O(ε2) in the form

A = 10 δ + ε Aε + ε2 Aεε + O(ε3), (84)

C = 20 δ + ε Cε + ε2Cεε + O(ε3). (85)

The O(1) and O(ε) terms of these tensors have been calculated analytically by Zhang and Stone42

using an appropriate version of the reciprocal theorem. They obtained explicitly

10 = 1 + e−iπ/4λ − i
λ2

9
, (86)

20 = 1
3

(
iλ2

e−iπ/4λ + 1
+ 3

)
, (87)
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and

Aε = 9
24π

(e−iπ/4λ + 1)
∫

S
ξ nn dS, (88)

Cε = 1
8π

[(
iλ2

e−iπ/4λ + 1
+ 3

)2

− iλ2

] ∫

S
ξ nn dS. (89)

Furthermore, provided that the torque is calculated at the center of mass (so that Eq. (3) is satisfied),
the coupling tensor B is of order O(ε2) at most.42 Since by symmetry, an axisymmetric body
oscillating in a transverse direction (X-direction) relative to its axis of symmetry (Z-direction), does
not experience any axial oscillating force, Eq. (83) can be written in the (ex , ey) basis in the simpler
form

(
F̂

L̂/R0

)
= −6πµR0

(
A ε2 Bεε

ε2 Bεε 4
3 C

)
·
(

V̂
R03̂

)
+ O(ε3), (90)

where all terms, namely, F̂ , L̂ , V̂ , 3̂, A = 10 + ε Aε + ε2 Aεε + O(ε3), Bεε , C = 20 + ε Cε +
ε2Cεε + O(ε3), are now scalar quantities.

B. Dynamic response at zero Reynolds number

We now address the main problem of the dynamic response of the particle in the uniform oscil-
lating exterior field, Ue = Ûe e−iωT ex . Under the effect of the exterior field, the particle oscillates
in the x-direction with velocity V = V̂ e−iωT ex in the laboratory frame and rotates about the y-axis
with angular velocity $ = 3̂ e−iωT ey . In order to derive the dynamics for the particle at leading
order, we begin by considering the force experienced by a particle oscillating in a uniform oscillating
Stokes flow field. Working in the reference frame of the oscillating fluid (the reference frame in
which the fluid is motionless at large distances from the particle) the perturbed flow resulting from
the presence of the particle is governed by the unsteady Stokes equations written in the Fourier space
as

−iωÛ = − 1
ρ

∇ P̂ + ν2Û, (91)

∇ · Û = 0, (92)

where Û and P̂ are the Fourier component of the velocity and pressure fields. Note that the inertial
force density due to the acceleration of the reference frame, ρ%̂e = iρ ωÛeex , can be incorporated
in the pressure gradient term, since it can be written as minus the gradient of the pressure P̂e =
−iρ ωÛe X . The boundary conditions satisfied by the flow field Û are

Û = (V̂ − Ûe) ex on S, (93)

Û = 0 for r → ∞. (94)

The problem is formally the same as that of a particle oscillating with velocity (V̂ − Ûe) ex in
a quiescent fluid considered above. The integration over the particle surface of the stress tensor
corresponding to the fields Û and P̂ leads then to expressions for the force and torques F̂

′ = F̂ ′ ex

and L̂
′ = L̂ ′ ey given by

(
F̂ ′

L̂ ′/R0

)
= −6πµR0

(
A ε2 Bεε

ε2 Bεε 4
3 C

)
·
(

V̂ − Ûe

R03̂

)
+ O(ε3). (95)

In the present situation, this force has little physical meaning since the frame of reference we work
in is not Galilean. To obtain the expression of the actual force experienced by the particle (which
should, of course, not be depending on the reference frame), we must subtract the effect of the
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inertial pressure P̂e. Integrating the latter over the particle surface leads to an additional force

F̂e =
∫

S
P̂e n dS = F̂eex = −i ρ ωÛe Vp ex , (96)

but there is no contribution to the torque.43 The final expression for the total hydrodynamic force
experienced by the particle is given by

(
F̂

L̂/R0

)
= −6πµR0

(
A ε2 Bεε

ε2 Bεε 4
3 C

)
·
(

V̂ − Ûe

R03̂

)
+

(
F̂e

0

)
+ O(ε3). (97)

We now apply the momentum theorems (translational and angular) to the particle, keeping in
mind that the angular momentum theorem applied at the center of gravity of a solid body has the
same form in any Galilean reference frame. The governing equations for the dynamics of the particle
are then given, at order O(ε2), by

−iρpVp V̂ = −6πµR0 A (V̂ − Ûe) + F̂e − ε2 6πµR2
0 Bεε 3̂, (98)

−iIp 3̂ = −ε2 6πµR2
0 Bεε (V̂ − Ûe) − 8πµ R3

0 C 3̂, (99)

where the moment of inertia of the particle, Ip, can be written to order O(ε2) as

Ip = I0(1 + εηε + ε2ηεε) + O(ε3), (100)

with I0 = (8/15)πρp R5
0 the moment of inertia of the equivalent-volume sphere about the y-axis.

From these equations, we then obtain 3̂ and V̂ at leading order in ε,

V̂ = 9βi 1e

2λ2 + 9iβ10

Ûe + O(ε), (101)

R03̂ = iε2 90βBεελ2(1 − β)
(2λ2 + 9iβ10)(4λ2 + 60iβ20)

Ûe + O(ε3), (102)

where

1e = 1 + e−iπ/4λ − i
λ2

3
, (103)

β = ρ/ρp and 10 and 20 are given by Eqs. (86) and (87), respectively. From Eq. (102), we can deduce
that the rotational motion leads to a Stokes flow of order ε2 and consequently, does not change the
analysis presented in Secs. II and III. Finally, the relative amplitude of the particle oscillations is
obtained as

V̂
⊥ = V̂ − Û e = (β − 1)

2λ2

2λ2 + 9iβ10

Ûe ex . (104)

A particle taking the shape of an axisymmetric near-sphere whose transverse motion is forced
by an oscillating uniform velocity field is thus propelled with dimensional swimming speed given
by Eq. (81), with a Reynolds number in which V̂ ⊥ is given by the norm of Eq. (104). Note that
from Eq. (104), we observe that the density of the particle must be different from the density of the
surrounding fluid (β -= 1) for the relative velocity, and consequently the Reynolds number, to be
non-zero.

VI. DISCUSSION

In this paper, we presented a mechanism of propulsion for solid particles based on steady
streaming. We showed how the transverse oscillations of an asymmetric shape gives rise, in general,
to a non-zero time average propulsive force in the direction perpendicular to that of the imposed
oscillations. The calculations were made under the assumption of near-sphericity (ε # 1) and small
Reynolds number (Re # 1), leading to a free-swimming speed of a particle, V ‖, scaling as

V ‖ = εRe V̂ ⊥ v(1,1), (105)
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FIG. 3. Sketch of the experimental setup in Ref. 29. The thickness of the sample is H = 180 µm, and the first acoustic
resonance is found at ω/2π = 3.7 MHz. Typical size of the cylindrical rods (respectively, spheres) is 3 µm length × 300 nm
diameter (respectively, 2 µm diameter).

where V̂ ⊥ denotes the amplitude of the transverse oscillations and v(1,1) is of order one and given by
Eq. (77).

Using our mathematical model, we can give an order of magnitude of the propulsion speed for
this mechanism in the experimental configuration of Ref. 29, whose setup is recalled in Figure 3.
The µm size spherical and cylindrical particles are positioned acoustically (radiation pressure) in
the center of a water cell of thickness H = 180 µm, corresponding to a first acoustic resonance of
ω = 3.7 MHz. We note that our theory was derived in the asymptotic limit λ2 # 1. However, in
this experiment, taking a typical size R0 = 1 in water leads to λ2 = 23, so our results should be
understood as providing at best an order of magnitude estimate.

We first consider the case of metallic (gold) rods. The typical size of the cylindrical rods is
3 µm length × 300 nm diameter (slender body). Without further information, we take ε = 0.1
and we consider the mode k = 1. In Wang’s experiments, the power provided to the fluid by the
acoustic forcing is estimated to be lower than 1.25 W cm−2. From the value of this upper bound, and
considering that the power densityP by surface unit in the cell can be estimated usingP ∼ ρ Û 2

e ω3 H ,
the amplitude of the fluid oscillations, Ûe/ω, can be estimated at about 2.35 nm. To compute the
amplitude of oscillations of the particle relative to the fluid, we have to take the inertia of the particle
into account (Eq. (104)). For gold particles in water the density ratio is β = 5.18 × 10−2, such
that, for a frequency parameter λ2 ∼ 23, we obtain a = V̂ ⊥/ω = 2.1 nm. Introducing the values ε

= 0.1, a = 2.1 × 10−9 m, ω = 2π × 3.7 × 106 s−1, R0 = 10−6 m, and ν = 10−6 m2 s−1, and the
computed value v(1,1)

1 = 0.11 in Eq. (81), we obtain V ‖ ∼ 26 µm s−1. This value is lower than the
upper bound of ∼200 µm s−1 measured experimentally in Ref. 29, but at least of the correct order
of magnitude given the unknowns in the experimental fit. In particular, we have assumed our shape
to be roughly spherical, whereas cylinders are known to experience lower viscous drag than their
equivalent spheres. The degree of geometrical asymmetry in the experiment is also unknown. Note
that in Ref. 29 it is mentioned that metallic spheres are sometimes able to swim but no measurements
of the speeds are reported.

If we now consider the case of polymeric rods and spheres, the situation is quite different since
these particles, due to their low density, show a smaller relative velocity. Polystyrene particles have β

= 0.94 and thus almost follow the forcing flow with little relative motion. Using the same parameters
as above for the fit, we now obtain a ∼ 0.11 nm. The propulsion speed is then found to be smaller
than the one calculated for metallic particles by two orders of magnitude, which might explain
the experimental observation that polymeric particles do not swim. Recall from Eq. (104) that the
perturbative flow responsible for the steady streaming and the propulsion vanishes for particles of
density similar to that of the fluid. In order for this acoustic mechanism to be effective, the density
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of the particle must be far from the density of the surrounding fluid to ensure a large relative motion
and therefore an efficient propulsion.

The predictions of our model are thus in qualitative agreement with the experimental obser-
vations. To fully capture the experimentally-relevant limit, a calculation should be carried out in
the limit λ2 + 1. In that case, the expansions would have to be considered differently and the two
relevant small parameters would then be the amplitude-to-size ratio, a/R0, instead of the Reynolds
number,32 and the shape parameter (as in the case λ2 # 1). This limit will be addressed in future
work.
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APPENDIX A: CHOICE OF THE POSITION OF THE ORIGIN

In this Appendix, we investigate how the polar equation r = 1 + ε ξ (θ ) transforms when the
origin of the coordinate system is translated along the z-axis. The answer will enable us to show that
n = 1 corresponds to a sphere at order O(ε) and that, consequently, no propulsion can be achieved
in this case by symmetry. The propulsion speed would thus not depend of the choice made for the
position of the origin on the z-axis.

We consider an axisymmetric body of axis z, the polar equation of which is given by r = 1 +
ε ξ (θ ). The origin of the coordinates system is then translated of a quantity κε ez with κ = O(1). The
new polar coordinates are referred to as r′ and θ ′ (see notation in Figure 4). Knowing that rcos θ −
r′cos θ ′ = κε and rsin θ = r′sin θ ′, we can derive the equality

r = r ′
(

1 + κε

r ′ cos θ ′
)

+ O(ε2). (A1)

On the other hand, knowing that θ = θ ′ − ζ and ζ r′ = −κε sin θ ′ + O(ε2), we can derive a second
equation linking θ and θ ′,

θ = θ ′ − κε

r ′ sin θ ′ + O(ε2). (A2)

Introducing Eqs. (A1) and (A2) into Eq. (8) leads to

r ′ = 1 + ε [ξ (θ ′) − κ cos θ ′] + O(ε2). (A3)

FIG. 4. Translation of the origin of the coordinate system along the z-axis.
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If we consider the case n = 1 (k = 0) (ξ (θ ) = cos θ ), and choose to translate the origin of a quantity
εez (κ = 1), the polar equation of the surface in terms of the new polar coordinates reduces to

r ′ = 1 + O(ε2). (A4)

In other words, the case n = 1 is nothing but a simple translation of vector εez of the equivalent-
volume sphere (the polar equation in terms of new coordinates derived up to O(ε2) shows that the
case n = 1 actually corresponds to an oblate spheroid).

Let us now consider an arbitrary axisymmetric shape written as

ξ (θ ) =
∞∑

n=1

ζn cos(nθ ). (A5)

Introducing this Fourier series in Eq. (A3), one gets

r ′ = 1 + ε

[ ∞∑

n=1

ζn cos(nθ ′) − κ cos θ ′

]

+ O(ε2), (A6)

and only the amplitude of the term n = 1 is affected by the change of origin. Since the total propulsion
speed is linear with respect to the shape function and we saw that the term n = 1, corresponding to
a sphere, has no contribution in the propulsion speed, we conclude that the total propulsion speed
does not depend on the position of the origin along the z axis. Note that new shape function involved
in the polar equation (A3) in terms of new coordinates satisfies also the integral condition from
Eq. (2) provided that the initial shape function does satisfy this condition.

APPENDIX B: OSCILLATIONS OF A SPHERE IN A VISCOUS FLUID

We recall in this Appendix, the expression of the flow produced by a sphere of radius R0

oscillating with a velocity V ⊥ = V̂
⊥
e−iωT in a viscous fluid. The amplitude of the oscillations,

a = |V̂ ⊥|/ω, is assumed to be smaller than the radius R0 by at least one order of magnitude,
a/R0 # 1. The problem is governed by the Navier-Stokes (NS) equations

ρ

[
∂U 0

∂t
+ (U 0 · ∇)U 0

]
= −∇P 0 + µ∇2U 0, (B1)

∇ · U 0 = 0, (B2)

where U 0 and P 0 are the dimensional velocity and pressure fields. Before completing the previous
system by a suitable set of boundary conditions, let us make the NS equations dimensionless. For
sake of simplicity, we adopt a particular choice of non-dimensionalization for distances. Instead of
the radius of the colloid, we choose the quantity α = (iν/ω)1/2, which is the distance over which
the viscosity diffuses. Furthermore, we choose ω−1, V̂ ⊥ = a ω, µαV̂ ⊥ as typical time, velocity, and
pressure. Then, the dimensionless NS equations simplify into the linear unsteady Stokes equations

û0 = −∇̃ p̂0 + ∇̃2
û0, (B3)

∇̃ · û0 = 0, (B4)

where û0 are p̂0 are the dimensionless Fourier components (of dimensionless frequency 1) of the
velocity and pressure fields and ∇̃ is the new gradient operator. In Eq. (B3), the nonlinear term has
been neglected since it is smaller than any other by a factor a/R0. In the following, the position
vector is referred to as r̃ , its norm being denoted by r̃ . The boundary conditions in the frame of
reference of the laboratory are given by

û0 = v̂⊥ on the surface of the sphere, (B5)

û0 → 0 for |r̃| → ∞, (B6)
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where v̂⊥ is the unit vector aligned with the direction of oscillation. Following classical work,35 we
can write the solution in the form

û0 = 3
4
λ0 v̂⊥ · [10 + 11λ

2
0 ∇̃

2
]G(r̃), (B7)

where λ0 = e−iπ/4λ = e−iπ/4(R2
0 ω/ν)1/2, and where 10 and 11 are quantities to be determined using

the boundary conditions. In Eq. (B7), the fundamental solution of the unsteady Stokes equation G
has been used. It is given by

G(r̃) = g(r̃) r̃ r̃ + h(r̃) δ, (B8)

where

g(r̃) = 2
r̃5

[3 − (3 + 3r̃ + r̃2)e−r̃ ], (B9)

h(r̃) = 2
r̃3

[(1 + r̃ + r̃2)e−r̃ − 1], (B10)

and δ is the unit tensor. Using the two identities

∂2

∂ x̃2
k

[ f (r̃ )x̃ i x̃ j ] = x̃ i x̃ j (D̃2 + 4D̃1) f (r̃ ) + 2 f (r̃ ) δi j , (B11)

∂2

∂ x̃2
k

[ f (r̃ )δi j ] = δi j D̃2 f (r̃ ), (B12)

where

D̃1 = 1
r̃

∂

∂ r̃
and D̃2 = 1

r̃2

∂

∂ r̃

(
r̃2 ∂

∂ r̃

)
, (B13)

we can easily derive the unsteady velocity flow produced by the oscillation of a sphere in a viscous
fluid as

û0(r̃) = 3
2
v̂⊥ · λ0

r̃3

[
g0(r̃ )

r̃ r̃
r̃2

+ h0(r̃ )δ
]
, (B14)

where

g0(r̃ ) = 3 10 − (10 + λ2
0 11)(3 + 3r̃ + r̃2)e−r̃ , (B15)

h0(r̃ ) = −10 + (10 + λ2
0 11)(1 + r̃ + r̃2)e−r̃ . (B16)

The boundary condition in Eq. (B5) at the surface of the sphere provides the explicit form of 10 and
11 and we obtain

10 = 1 + λ0 + λ2
0

3
and 11 = λ−2

0 (eλ0 − 10). (B17)

The solution in Eq. (B14) allows to derive the partial derivative of the velocity with respect
to the radial distance at the particle surface. Using the dimensionless variable r = λ−1

0 r̃ , i.e., the
dimensionless variable obtained by choosing R0 as typical length, we obtain

∂ û0

∂r

∣∣∣∣
r=1

= −3
2

(1 + λ0)v̂⊥ · (δ − nn), (B18)

where n is the outwards unit vector normal to the surface of the spherical particle.

APPENDIX C: TRANSVERSE OSCILLATIONS OF A NEAR-SPHERE IN A VISCOUS FLUID

In this Appendix, we first detail the method used to write the boundary conditions on the
surface gradient and surface curl in terms of associated Legendre functions. We then obtain explicit
expressions for the components ûε

r , ûε
θ , ûε

φ of the velocity field ûε .
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1. Boundary conditions in terms of associated Legendre functions

Introducing the polar and azimuthal components of ûε at the surface given by Eq. (34) into the
right-hand side of Eqs. (39) and (40), we obtain

−∇s · ûε = K cos φ [n sin(nθ ) cos θ + 2 cos(nθ ) sin θ ], (C1)

er · ∇s × ûε = K sin φ n sin(nθ ). (C2)

Recalling that n = 2k + 1 (k ≥ 1), one can show that the two previous equations can be put in the
form

−∇s · ûε = K cos φ sin θ

k∑

q=0

A2q+1 cos2q+1 θ, (C3)

er · ∇s × ûε = K sin φ sin θ

k∑

q=0

A2q cos2q θ, (C4)

with

A2q+1 = (−1)k−q
q∑

m=0

[(2k + 1)C 2k+1
2m + 2C 2k+1

2m+1]C
k−m
q−m , (C5)

A2q = (−1)k−q (2k + 1)
q∑

m=0

C 2k+1
2m Ck−m

q−m . (C6)

Now, after noticing that associated Legendre functions of order 1, and of even and odd degree, are
of the form

P 1
2(q+1)(cos θ ) = sin θ

q∑

l=0

a2(q+1)
2l+1 cos2l+1 θ, (C7)

and P 1
2q+1(cos θ ) = sin θ

q∑

l=0

a2q+1
2l cos2l θ, (C8)

one can rewrite −∇s · ûε and er · ∇s × ûε in the form of a sum of associated Legendre functions

−∇s · ûε = K cos φ

k∑

q=0

B2(q+1) P 1
2(q+1)(cos θ ), (C9)

er · ∇s × ûε = K sin φ

k∑

q=0

B2q+1 P 1
2q+1(cos θ ), (C10)

where the coefficients B2(q+1) and B2q+1 are the respective solutions of the two systems

k∑

q=l

B2(q+1)a2(q+1)
2l+1 = A2l+1 (l = 0, · · · , k), (C11)

k∑

q=l

B2q+1a2q+1
2l = A2l (l = 0, · · · , k). (C12)

This derivation allows to use Eqs. (43) and (44) as the suitable forms of the boundary condition at
r = 1.
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2. Expressions of the components of the corrective velocity field ûε

Some algebra leads to

ûε
r = K cos φ

k∑

q=0

U2(q+1)(r )
r

P 1
2(q+1)(cos θ ), (C13)

ûε
θ = K

2
r cos φ

k∑

q=0

1
q + 1

[
1

2q + 3
V2(q+1)(r )

d P 1
2(q+1)(cos θ )

dθ

+ 1
2q + 1

Y2q+1(r )
P 1

2q+1(cos θ )

sin θ

]
, (C14)

ûε
φ = − K

2
r sin φ

k∑

q=0

1
q + 1

[
1

2q + 3
V2(q+1)(r )

P 1
2(q+1)(cos θ )

sin θ

+ 1
2q + 1

Y2q+1(r )
d P 1

2q+1(cos θ )

dθ

]
, (C15)

where

V2(q+1)(r ) = d
dr

(
U2(q+1)

r

)
+ 2U2(q+1)

r2
, (C16)

Y2q+1(r ) = X2q+1

r
, (C17)

and where the quantities d P 1
l (cos θ )/dθ and P 1

l (cos θ )/ sin θ can be calculated using the identities

d P 1
l (cos θ )
dθ

= −l(l + 1)P 0
l + 1

2
cos θ [P 2

l+1 + l(l + 1)P 0
l+1], (C18)

P 1
l (cos θ )
sin θ

= −1
2

cos θ [P 2
l+1 + l(l + 1)P 0

l+1]. (C19)

APPENDIX D: STEADY TRANSLATION OF AN AXISYMMETRIC NEAR-SPHERE IN A
VISCOUS FLUID

The solution to the problem of an axisymmetric near-sphere translating in a purely viscous fluid
at constant speed v̄ along its axis of symmetry (here the z-axis) is known. We remind here some
useful results in the case of a shape function of the form ξ (θ ) = cos nθ with n = 2k + 1. The
pressure-velocity field (ū, p̄) satisfies the dimensionless Stokes equations

−∇ p̄ + ∇2ū = 0, (D1)

∇ · ū = 0. (D2)

Writing the fields ū and p̄ in the form

ū = ū0 + ε ūε + O(ε2), (D3)

p̄ = p̄0 + ε p̄ε + O(ε2), (D4)

where ū0 and p̄0 are the velocity and pressure fields induced by the steady translation of a sphere in
a purely viscous fluid, and where ūε and p̄ε are the corrective fields due to the non-sphericity of the
particle. The fields ū0 and p̄0 are the classical Stokes solution for flow past a sphere. The fields ūε

and p̄ε also satisfy the Stokes equations

−∇ p̄ε + ∇2ūε = 0, (D5)
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∇ · ūε = 0, (D6)

and ūε must vanish at infinity, that is to say

ūε → 0 for |r| → ∞. (D7)

As in the case of a the transverse oscillations of a near-sphere in a viscous fluid, the boundary
condition at the particle surface takes the simple Taylor-expansion form

ūε |r=1 = −ξ (θ )
∂ ū0

∂r

∣∣∣∣
r=1

. (D8)

The derivative of ū0 at r = 1 has a form similar to the steady limit of Eq. (B18),

∂ ū0

∂r

∣∣∣∣
r=1

= −3
2

v̄ · (δ − nn). (D9)

Introducing explicitly the direction of the translation speed v̄ = ez , the boundary condition, Eq.
(D8), becomes

ūε |r=1 = K̄ ξ (θ )




0

− sin θ

0



 , (D10)

where K̄ = 3/2.
The method then used to derive the solution to Eqs. (D5) and (D6) is not different from the

method used in Sec. III A and Appendix C to derive the corrective field ūε . We keep the continuity
condition on the radial component of the velocity as

ūε
r = 0 at r = 1, (D11)

and use continuity conditions on the surface divergence and the surface curl at the particle surface
instead of continuity conditions on the polar and azimuthal component of the velocity. Introducing
Eq. (D10) into Eqs. (39) and (40) lead to the new boundary conditions at r = 1,

−∇s · ūε = K̄ cos φ [−n sin(nθ ) sin θ + 2 cos(nθ ) cos θ ], (D12)

er · ∇s × ūε = 0. (D13)

Recalling that n = 2k + 1 (k ≥ 1), one can show that the first of the previous equations can be written
as

−∇s · ūε = K̄
k+1∑

q=0

Ā2q cos2q θ, (D14)

with

Ā0 = (2k + 1) (−1)k+1, (D15)

Ā2q = (−1)k−q+1
q∑

m=0

{[(2C 2k+1
2m+1 + (2k + 1)C 2k+1

2m ]Ck−m
q−m

+(2k + 1)C 2k+1
2m Ck−m

q−m−1} + (−1)k−q+1(2k + 1)C 2k+1
2q

for q = 0 · · · k, (D16)

Ā2(k+1) =
k∑

m=0

[2C 2k+1
2m+1 + (2k + 1)C 2k+1

2m ]. (D17)
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The associated Legendre functions of order 0, and of even degree, are of the form

P 0
2q(cos θ ) =

q∑

l=0

ā2q
2l cos2l θ, (D18)

so that one can rewrite −∇s · ūε as a sum of associated Legendre functions

− ∇s · ūε = K̄
k+1∑

q=1

B̄2q P 0
2q(cos θ ), (D19)

where the constants B̄2q are solutions of the system

k+1∑

q=l

B̄2q ā2q
2l = Ā2l (l = 1 · · · k + 1). (D20)

Note that in Eq. (D19), P 0
0 has no contribution (B̄0 = 0), since, using Eq. (D12), one can demonstrate

that
∫ π

0
∇s · ūε sin θ dθ = 0. (D21)

The general form of the solution to Eqs. (D1)–(D2) has been given in Refs. 34 and 35. With the
boundary conditions in Eqs. (D7) and (D13) taken into account, that solution reduces to

ūε =
k+1∑

q=1

[
(1 − q) r2

2q(4q − 1)
∇ϕ2q + (2q + 1) r

2q(4q − 1)
ϕ2q

]
+

k+1∑

q=1

∇ψ2q, (D22)

where

ϕ2q = K̄ ᾱ2q r−(2q+1) P 0
2q(cos θ ), (D23)

ψ2q = K̄ β̄2q r−(2q+1) P 0
2q(cos θ ). (D24)

Introducing Eqs. (D23) and (D24) into Eq. (D22), and recalling that −∇s · ūε = ∂r ūε , we can
derive explicit expressions of the radial component of the velocity and surface divergence at r = 1
as

ūε = K̄
k+1∑

q=1

[
2q + 1

2(4q − 1)
ᾱ2q − (2q + 1)β̄2q

]
P 0

2q(cos θ ), (D25)

−∇s · ūε = K̄
k+1∑

q=1

[
q(2q + 1)
2(1 − 4q)

ᾱ2q + 2(2q + 1)(q + 1)β̄2q

]
P 0

2q(cos θ ). (D26)

Using Eqs. (D11) and (D19), we then obtain the system

1
2(4q − 1)

ᾱ2q − β̄2q = 0, (D27)

(2q + 1)
[

q
1 − 4q

ᾱ2q + 2(q + 1)β̄2q

]
= B̄2q, (D28)

which gives ᾱ2q and β̄2q explicitly as

ᾱ2q = 4q − 1
2q + 1

B̄2q, (D29)

β̄2q = 1
2(2q + 1)

B̄2q . (D30)
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All three components of the velocity field are finally given by

ūε
r = K̄

k+1∑

q=1

(2q + 1)r−2(q+1)
[

α2q

2(4q − 1)
r2 − β2q

]
P 0

2q(cos θ ), (D31)

ūε
θ = K̄

k+1∑

q=1

r−2(q+1)
[

(1 − q)α2q

2q(4q − 1)
r2 + β2q

]
P 1

2q(cos θ ), (D32)

ūφ = 0. (D33)

APPENDIX E: PROPELLING FLOWS : DIPOLAR AND QUADRIPOLAR CONTRIBUTIONS

In the present work, the transverse propulsion speed (normal to the flow direction) has been
calculated in a setup similar to that of Riley’s32 for a particle immersed in a uniformly oscillating
flow. Because our particles are asymmetric, the inertially-rectified stresses do not in general average
to zero, and a net force can be induced normal to the flow direction. If, however, the particle is
not located at a pressure node (velocity loop) of a standing wave of wave vector K 0 = K0 ex , the
assumption of a uniform forcing velocity field no longer holds. The surrounding velocity field would
then contain a linear component, leading to additional dipolar streaming flows which would have to
be properly quantified. The objective of the present Appendix is (i) to detail the respective origins of
the dipolar and quadrupolar streaming flows and (ii) to explain why the dipolar contribution to the
global streaming vanishes when the average position of the particle gets closer to the pressure node.

Consider a spherical particle (the exact shape is not relevant) at a position X0, in a plane standing
wave of the form U e(X ) = Ue ex = Ûe sin(K0 X ) e−iωT ex , where the wavenumber K0 of the wave
is the ratio between the pulsation, ω, and the speed of sound, c. For the sake of simplicity, we drop
the factor e−iωT in the following. The incident velocity field can be expanded in the vicinity of the
average position X0 of the particle, which yields

Ue(X ) = Ûe [sin(K0 X0) − K0(X − X0) cos(K0 X0)] + O(K0 R2
0 ). (E1)

Using Eq. (104) for the particle velocity (in the laboratory frame), the velocity field seen by the
particle in its own frame of reference becomes

Ue(X ) = 9 Ûe sin(K0 X0) − Ûe K0(X − X0) cos(K0 X0) + O(K0 R2
0 ), (E2)

where

9 = 2
9

β − 1
β

λ2, (E3)

and λ # 1. Note that in order to derive (E2) and (E3), we made the assumption that the particle
displacement was small compared to R0.

By taking R0, 9 Ûe as typical distance and velocity, the field Ue can be written in the following
dimensionless form:

ue(x) = i sin k0x0 − k9 (x − x0) cos k0x0 + O(k2
0 ), (E4)

where k9 = K0 R0/9 and k0 = K0 R0. In the reference frame of the particle, the incident dimen-
sionless field is therefore the sum of a order-one uniform field of amplitude sin k0x0, and a linear
component of amplitude k9 cos k0x0 (see Figures 5(a) and 5(b)).

Let us now consider the Navier-Stokes equations in a dimensionless form. After choosing the
quantities R0, 9 Ûe, ω−1, µ9 Ûe/R0, and ρ09 Ûe R0ω/c2 as typical length, velocity, time, stress and
density magnitude, and writing the density as the sum of a mean value, ρ0 and a deviation, ρ, the
compressible Navier-Stokes equations takes the form

(1 + εk2
0 ρ)λ2

[
∂u
∂t

+ ε (u · ∇)u
]

= ∇ · σ, (E5)
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FIG. 5. (a) Uniform antisymmetric part of the flow; (b) Linear symmetric part of the incident flow; (c) Quadrupolar flow in
the classic situation of a particle oscillating in a fluid at rest, considered by Riley;32 (d) dipolar flow in the case of a particle
displaced from the pressure node.40, 41

k2
0

∂ρ

∂t
+ ∇ · u + εk2

0 ∇ · (ρu) = 0, (E6)

p = ρ, (E7)

where u, p, and σ are the velocity, pressure, and stress fields and ε = 9 Ûe/(ωR0). In the small-ε
limit, we look for a regular expansion of the form

u = u(0) + ε u(1) + O(ε2), (E8)

p = p(0) + ε p(1) + O(ε2), (E9)

ρ = ρ (0) + ε ρ (1) + O(ε2), (E10)

σ = σ (0) + ε σ (1) + O(ε2). (E11)

At order one, the system given by Eqs. (E5)–(E7) yields

λ2 ∂u(0)

∂t
= ∇ · σ (0), (E12)

k2
0

∂ρ (0)

∂t
+ ∇ · u(0) = 0, (E13)

p(0) = ρ (0). (E14)

Due to the symmetry of the incident field, Eq. (E4), the solution u(0) can be written as the sum of an
antisymmetric (uniform) part and a symmetric (linear) part

u(0) = u(0)
A + u(0)

S . (E15)

To order O(ε), Eq. (E5) then yields

λ2
[
ρ (0)k2

0

∂u(0)

∂t
+ ∂u(1)

∂t
+ (u(0) · ∇)u(0)

]
= ∇ · σ (1), (E16)

which, when using Eq. (E13) and taking the average in time, leads to

∇ · 〈σ (1)〉 = λ2∇ · 〈u(0)u(0)〉. (E17)

Using Eq. (E15), we then obtain

∇ · 〈σ (1)〉 = λ2 [∇ · 〈u(0)
A u(0)

A 〉 + ∇ · 〈u(0)
S u(0)

S 〉

+∇ · 〈u(0)
A u(0)

S + u(0)
S u(0)

A 〉]. (E18)
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The first two terms of the right-hand side of Eq. (E18) force a quadrupolar flow (Figure 5(c)).32

In contrast, the last two terms, involving cross products between u(0)
S and u(0)

A , give rise to a dipolar
flow of axis k0 (Figure 5(d)),40, 41 which, in principle, contributes to the global force experienced by
the particle. Considering the respective amplitudes of u(0)

A and u(0)
S , the dipolar term is proportional

to k9 sin 2k0x0, and therefore vanishes for k0x0 = π/2, which is consistent with the symmetry of
the problem of a spherical particle trapped at the nodal pressure plane. In the general case of a
non-spherical particle located at an arbitrary position in the resonator the dipolar flow should of
course be taken into account to derive the transverse drift. In the situation considered in this paper,
the only remaining net flow is quadrupolar. When the particle is located at the pressure nodal plane,
only the product u(0)

A u(0)
A has a non-zero contribution to the quadrupole. The flow u(0)

A being uniform,
this is precisely the term taken into account to assess the transverse velocity of the particle, i.e., the
velocity of the particle in the pressure nodal plane, normal to k0.
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centre of gravity of the solid body and the second one is zero as ∇ × r = 0.
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