CHAPTER 1
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The locomotion of microorganisms in fluids is ubiquitous and plays an important role in numer-
ous biological processes. Mammalian spermatozoa undergo a long journey to reach the ovum
during reproduction; bacteria and algae display coordinated movements to locate better nutrient
sources; single-cell eukaryotes such as Paramecium self-propel to escape predators.

The physics of swimming governing life under the microscope is very different from the
one we experience in the macroscopic world, due to the absence of inertia (the low Reynolds
number regime). For a typical microorganism such as Escherichia coli (E. coli), with a size
L~ 10 um and a speed U ~ 30 um/s, swimming in water (density p ~ 1000 kg/m> and shear
viscosity i ~ 1073 Pa-s), the Reynolds number, Re = pUL/, is on the order of Re ~ 3 x 1074,
and 1s thus negligible. Unlike humans, fish, insects, or birds, which accomplish swimming and
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flying by imparting momentum to the fluid, viscous damping is paramount in the microscopic
world and microorganisms need to adopt different swimming strategies. The past decades have
seen a tremendous growth in the number of theoretical and experimental studies of cell motil-
ity, both in the biological and physical communities, due in part to advances in observation
techniques, leading to discovery of many new physical phenomena in the world of microorgan-
isms, especially in hydrodynamics. Comprehensive reviews focusing on the hydrodynamics of
swimming are available '=*. In this chapter, we present a tutorial on mathematical modelling of
swimming at low Reynolds number. Viewing this chapter both as an introduction to the field
and as a pedagogical review on some of the fundamental hydrodynamic issues, we purposely
keep only the essential ingredients of each calculation and readers are referred to the original
papers for mathematical rigor and more details.

1.1 Swimming at Low Reynolds Number

1.1.1 Kinematic reversibility

Locomotion in the incompressible flow of Newtonian fluids at zero Reynolds number is gov-
erned by the Stokes equations

Vp=uVv3v, (1.1a)
V.v=0, (1.1b)

where p and v are, respectively, the pressure and velocity fields. The absence of inertia, math-
ematically manifested by the linearity and time independence of Eq. (1.1), leads to kinematic
reversibility, an important property associated with the motion at zero Reynolds number. In
this regime, time appears only as a parameter through the boundary conditions. Consider, for
example, the motion of a solid body. If we reverse time (r — —¢) in the boundary conditions,
we reverse the prescribed velocity U and rotational rate {2 of the body, which instantaneously
reverses the direction of the velocity and pressure fields (v —+ —v and p — —p) due to the lin-
earity and time-independence of the Stokes equations. The flow streamlines are not modified
but the direction of the flow along these streamlines is reversed. The fluid stresses scale linearly
with the pressure and velocity fields, and hence the force F and torque M on the body undergo
the same reversal, F — —Fand M — —M.

This property of kinematic reversibility, combined with mirror reflection symmetry, often
allows to deduce useful dynamic properties of a given problem without performing any calcu-
lation. We will illustrate using three examples. The first example considers a translating sphere
of velocity U parallel to an infinite wall Fig. 1.2a). The question of interest is whether or not
the presence of a wall would induce a force (lift) normal to the wall. If so, is the force acting to-
wards or away from the wall? To answer this using simple physical arguments, we first assume
without loss of generality that there is a perpendicular force acting on the sphere away from
the wall. We then construct the time-reversed kinematics by kinematic reversibility (r — —¢,
v — —v), where both the translational velocity U and the force F are reversed. Meanwhile, we
can also construct a mirror image of the original solution. Such a mirror image also satisfies the
Stokes equations and only the direction of the translation parallel to the wall is reversed in the
mirror image solution. By comparing the time-reversed and mirror image solutions, we observe
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Figure 1.1: Illustrations of kinematic reversibility. (a) The normal force on a sphere translating
parallel to a wall is zero (F = 0). (b) An organism which rotates its straight rigid tail sweeping
out a cone is a non-swimmer (U = 0)°. (c¢) The rotation of two unequal spheres about their line
of centers does not lead to any translation (U = 0).

iii. Mirror Image

that despite the same boundary conditions, the two solutions give opposite predictions on the
direction of the force F, hence the force has to be zero (F = 0), i.e. there is no wall-induced lift.

Similar arguments are also useful to study swimming problems. For example, we can es-
tablish that a microorganism rotating a straight and rigid flagellum at an angle (as shown in
Fig. 1.2b), sweeping out a cone, cannot generate any propulsion”. Again, without loss of gen-
erality, we assume the direction of rotation and propulsion speed to be as shown in Fig. 1.2b.
In the time-reversed solution, both the rotational direction of the flagellum and the swimming
direction reverse. However, in the mirror image solution, the swimming direction is unchanged
but the rotational direction of the flagellum reverses. Here again there are two solutions with
the same boundary conditions but opposite predictions for the swimming direction, and thus no
swimming can occur for a rotating rigid and straight filament (U = 0). The same result is true
for any shape identical under a mirror image symmetry. Should instead the shape of the flag-
ellum be chiral (e.g. a helix), the mirror-imaged geometry is no longer superposable with that
in time-reversed solution, and the arguments above no longer hold. In addition, if the flagellum
is not rigid (with some flexibility), a chiral deformation can develop as a result of the dynamic
balance the bending and viscous forces, leading to propulsion® (see Sec. 1.6.1).

The final example considers the rotation of two unequal spheres connected as a rigid body
(as shown in Fig. 1.2¢). Using similar arguments (left as an exercise for the readers), one
can conclude that no propulsion can be generated upon imposing a rotation about the line of
centers. Of course, this conclusion holds only for Stokes flows (and Newtonian fluids) such that
we enjoy the property of kinematic reversibility. Should we remove this property by considering
a viscoelastic (non-Newtonian) fluid, this rigid body rotation does lead to propulsion along the
line of centers’.

These simple physical arguments illustrate different geometrical constraints on low-Reynolds-
number locomotion, and hence expose different methods to escape from them. We will also see
the use of these arguments in analyzing flagellar synchronization in Sec. 1.5.3.
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Figure 1.2: (a) A mathematical scallop periodically opening and closing its shell is a nonswim-
mer in the Stokesian regime. The sequence of shapes is indistinguishable viewed forward or
backward in time (reciprocal motion). (b) An organism flapping its straight rigid tail (recip-
rocal motion) cannot swim either. (c) Purcell’s three-link swimmer is an example of a body
undergoing non-reciprocal deformation and swimming®.

1.1.2 The scallop theorem

As a direct application of kinematic reversibility, Purcell® put forward an important theorem
for inertialess locomotion called the scallop theorem, stating that any reciprocal motion — the
sequence of shapes of a periodically deforming swimmer identical under a time-reversal trans-
formation — cannot generate net propulsion (or fluid transport). A Stokesian scallop opening
and closing its shell periodically is an example of reciprocal motion, and thus of a non-swimmer
(Fig. 1.2a). Note that the scallop theorem does not concern the rates at which the forward or
backward sequence is performed but only the sequence itself — modulation of the opening and
closing rate is ineffectual. The flapping motion of a rigid flapper, a common propulsion strategy
in the macroscopic scale, is another example of reciprocal motion that is useless in the absence
of inertia (Fig. 1.2b). A detailed mathematical proof of the theorem was given by Ishimoto and
Yamada®.

Microorganisms and artificial micro-swimmers have thus to escape from the constraints of
the scallop theorem in order to generate propulsion'”. Purcell® proposed a simple mechanism,
the three-link swimmer composed of two hinges connecting three rigid links rotating out of
phase with each other, which performs the non-reciprocal motion illustrated in Fig. 1.2¢ for
propulsion. A hydrodynamic analysis of Purcell’s swimmer is given by Becker ez al!'. Other
simple mechanisms were proposed and will be reviewed in Sec. 1.7 while the next section
outlines the strategies employed by microorganisms.

1.1.3 Propulsion of microorganisms

Microorganisms adopt a variety of propulsion mechanisms?. Many of them use one or more ap-
pendages, called flagella and cilia, for propulsion (Fig. 1.3). Eukaryotic flagella and cilia share
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Figure 1.3: (a) A sea-urchin spermatozoon displaying a planar flagellar wave'>. (b) A bac-
terium (Vibrio alginolyticus) swimming by rotating its helical flagellum, propagating an appar-
ent helical flagellar wave . (c) Ciliary motion in Paramecium'’. All images were reprinted
with permission: (a) from Rikmenspoel and Isles . Copyright © 1985 Elsevier; (b) from Ma-
gariyamaa et al. '®. Copyright ©2006 John Wiley and Sons; (¢) from Hinrichsen and Schultz!”
Copyright (¢)1988 Elsevier.

a common structure, usually consisting of a core axoneme of nine doublet microtubules (long
polymeric filaments) arranged around two inner microtubules. Molecular motors (dyneins)
between adjacent doublet microtubules generate shear forces, which cause the sliding of the

microtubules, leading to bending of the axoneme '2.

Some eukaryotic spermatozoa (such as sea-urchin spermatozoa) swim by propagating a
planar travelling wave similar to a sinusoidal wave along the flagellum (Fig. 1.3a). Three-
dimensional helical waves are also observed in some eukaryotic cells !> and bacteria'# (such as
Escherichia coli, Rhodobacter sphaeroides, and Vibrio alginolyticus). While the helical beating
pattern observed in eukaryotic cells is again caused by the internal bending of the flagellum, the
bacterial flagellum has a different structure and actuation mechanism from that of the eukaryotic
flagellum. It is a rigid and passive helical filament with a hook connecting to a rotary motor
embedded in the cell wall, which rotates the flagellum (Fig. 1.3b). Some microorganisms such
as ciliates (Opalina and Paramecium) and multicellular colonies of algae (Volvox) swim by
beating arrays of cilia (short flagella) covering their surfaces (Fig. 1.3¢). The cilia beat in a
coordinated manner to produce a wave-like deformation of the envelope covering the cilia tips
called a metachronal waves, similar to a wave made by people standing then sitting in a stadium.

Despite the diversity of propulsion mechanisms and flagellar waveforms among different
cells, a common feature is the presence of wave propagation that breaks the time-reversal sym-
metry: when time is reversed, so is the direction of wave propagation, the sequence of shapes
is therefore different under time-reversal, making flagellar wave propagation a non-reciprocal
deformation. It should be noted here that breaking the time-reversal symmetry is a necessary
but not sufficient condition for propulsion at low Reynolds number. As a counter example,
consider a configuration formed by two identical flagellated cells arranged head-to-head as
mirror-images from each other. Because of the flagellar wave propagation in both cells, the
deformation of this mechanism is non-reciprocal. However, since the two cells are arranged
head-to-head, their movements oppose each other and clearly they do not swim as a whole by
symmetry.
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Figure 1.4: Geometrical setup for Taylor’s infinite waving sheet. A wave of transverse defor-
mation is propagating with phase speed ¢ along the x-direction inducing swimming at speed U
in the opposite direction.

1.2 Flagellar Swimming

In this section, we will introduce the framework for modelling flagellar swimming of microor-
ganisms. Taylor!® pioneered the hydrodynamic analysis of low-Reynolds-number swimming.
By modelling the flagellum as a two-dimensional infinite waving sheet, Taylor showed that
self-propulsion without inertia was possible as induced by the propagation of a wave of defor-
mation along the sheet. We revisit below this classical calculation (Sec. 1.2.1), which reveals
many fundamental features of flagellar propulsion. Next, we will consider another framework
for analyzing flagellar swimming — slender body theory (Sec. 1.2.2). In contrast to Taylor’s
analysis, slender body theory allows the consideration of finite-size flagella and more complex
geometries. This framework will allow us to revisit the propagation of a planar flagellar wave
and compare with the results derived by Taylor. We will then apply it to helical flagellar waves
as a model for the swimming of bacteria and other helically-propagating eukaryotic cells.

1.2.1 Taylor’s swimming sheet

Geometrical setup

In Taylor’s original model, the flagellum is approximated as a two-dimensional infinite waving
sheet, which propagates a sinusoidal travelling wave in the positive x-direction (see notation in
Fig. 1.4). From this waving action, a propulsion speed U may develop, and the focus of this
calculation is to compute its value. We assume the sheet swims in the direction opposite to the
wave propagation, namely, the negative x-direction. Hence we denote the swimming velocity
as —Ue, (Fig. 1.4).

Furthermore, we approach this problem by observing the motion in a frame moving with
the (unknown) swimming velocity of the sheet (—Uey). In this frame, the vertical displacement
of the material points is expressed as

y = asin(kx — ot), (1.2)

where the wave has an amplitude a, wavenumber k, angular frequency @, and hence phase
speed ¢ = @ /k.
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Non-dimensionalization

We first non-dimensionalize times by 1/, lengths by 1/k, and hence speeds by ¢. The dimen-
sionless position of material points on the sheet is therefore given by

y =egsin(x* —r"), (1.3)

where € = ak is the dimensionless wave amplitude compared with the wavelength. From the
Stokes equations (Eq. 1.1), we then see that pressure scales as pw, giving the dimensionless
Stokes equations as

Vip* = V2, (1.4a)
Vi .v=0. (1.4b)

The stars represent dimensionless variables and are dropped hereafter for simplicity. All vari-
ables below are therefore dimensionless unless otherwise stated.

Stream function formulation

Since the problem is two-dimensional, it will be convenient to define the stream function
y(x,y,t) for the velocity field v = ue, + ve, such that u = dy/dy and v = —dy//dx thereby
identically satisfying the continuity equation (Eq. 1.4b). We eliminate the pressure in Stokes
equations by taking the curl of Eq. (1.4a) (since V x Vp = 0), resulting in the equation

0=V2w, (1.5)
where w is the vorticity field. For two-dimensional flows, vorticity is related to the stream
function as w = —V?ye,. The stream function formulation of the Stokes equations is hence
given by

Viy =0, (1.6)

which is the usual biharmonic equation for W with analytical solutions readily available °.

Boundary conditions

Since we live in a frame moving at the swimming velocity of the sheet (—Ue,), the velocity field
far from the sheet asymptotes to Ue,, opposite to the swimming velocity of the sheet, leading
to the boundary conditions

d
|t y—se0 = a_‘lf =U, (1.7a)
y X,y—00
d
i a—‘i’ ~0. (1.7b)
xX,y—oo
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On the sheet, the velocity is given by a time derivative of the vertical displacement, leading to
boundary conditions

0
u|x7y:85m(x—f) = a_l)l)/ esin(x—) =0, (1.8a)
x,y=€sin(x—
0
V|x,y=£sin(x7t) = _a_l)lcl esin(x—) = _SCOS(X_Z)- (1.8b)
xX,y=_€sin(x—

In Eq. (1.8) we see a typical technical difficulty of Stokesian locomotion: although the Stokes
equations are linear, the geometry of the boundary conditions can lead to nonlinearities. These
nonlinearities are usually addressed numerically or asymptotically.

Asymptotic expansions

To make analytical progress with the nonlinear boundary conditions (i.e. the fact that it is ap-
plied at y = €sin(x —t)), the asymptotic limit € < 1 is considered here. Geometrically, we
consider the scenario when the wave amplitude is much smaller than the wavelength. Regular
perturbation expansions in powers of € for both the stream function and the swimming speed in
the form

v=cy+eym+ .., (1.92)
U=¢eU +€eUy+..., (1.9b)

are sought. Substituting these expansions into the boundary conditions in the far field (Eq. 1.7),
we have

0 0

ad 222 Yo =eU + e+ ..., (1.10a)
0 liyoseo Y Lyseo
0 0

2N 2% L (1.10b)
OX |y sen 0X |y s00

The boundary conditions for y; and y» in the far field can then be obtained by balancing terms
of the same order (Egs. 1.12a, 1.12b, 1.13a, and 1.13b).

For the boundary conditions on the sheet (Eq. 1.8), since € < 1, the derivatives of the
velocities on y = €sin(x — ) may be Taylor expanded about y = 0 as: dY /9|, \—¢gin(x—r) =
Y /9y|xy—0+€sin(x—1)d*y/dy?|;y—o+ ..., and oY/ 0x|sy—gsin(x—r) = OW/0x|xy—0+€sin(x—
t)0?y/dydx|yy—o+ ... Substituting these expansions together with the expansion of the stream
function (Eq. 1.9a) into Eq. (1.8), the boundary conditions become

2
ay y=0 ay y=0 ay y=0
2
g% —|—82M +825in(x—t)a Vi +...=€cos(x—1). (1.11b)
ox y=0 ox y=0 dyox y=0
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Grouping terms of the same order, we summarize the O(€) boundary conditions as

%;g'xy%w::lh’ (1.12a)
ggg.xyﬁwzzg, (1.12b)
%%g_xy_ozzo, (1.12¢)
ad el (1.12d)

Similarly, the O(&?) boundary conditions are given by

%%?xyﬁwzzyz (1.13a)

%%?xyﬁmzzo, (1.13b)

%? 0——mw—ﬂ§y K (1.13¢)
Xy= xy=

v e sin(x—t)% - (1.13d)

Note that U; and U, here are, respectively, the first-order and second-order swimming speeds,
whose values are still to be determined.

First-order solution

Substituting the expansion of y into the governing equation (Eq. 1.6), the O(g) governing
equation is given by

Vi, =0, (1.14)

which is a biharmonic equation subject to the O(€) boundary conditions in Eq. (1.12). This can
be solved by a repeated application of the method of separation of variables'®. Analyzing the
boundary conditions, the solutions are given by

Y| =Ax+By+ (Ce >+ Dye ) sin(x — 1), (1.15)

where A,B,C,D are constants to be determined from the boundary conditions, Eq. (1.12).
Specifically, Eq. (1.12b) gives A = 0; Eq. (1.12d) gives C = 1; Eq. (1.12¢) gives D =C =1
and B = 0; finally, Eq. (1.12a) gives that B = U = 0. Therefore, the first-order solution is given
by

Y = (1+y)e Vsin(x—1), (1.16)

and swimming does not occur at this order (U; = 0). We then proceed to the second-order
calculation.
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Second-order solution

The governing equation at this order is again the biharmonic equation
Vi, =0, (1.17)

subject to the O(£?) boundary conditions in Eq. (1.13). With the first-order solution y; deter-
mined, the boundary conditions now read explicitly as

d
b3 — U, (1.18a)
9Y |yson
d
¥e —0, (1.18b)
0X |y oo
0 1 2(x—t
W2l Gnd(r—g) = L S0S2X 1) (1.18¢)
9y |iy=0 2 2
0
WV . (1.18d)
dx x,y=0
The solution in this case is given by
V) = Ax+By+ (Ce™® + Dye ) cos2(x —1). (1.19)

Eq. (1.18b) gives A = 0; Eq. (1.18d) gives C = 0; Eq. (1.18¢c) gives D = —1/2 and B = 1/2;
finally, Eq. (1.18a) gives B = U, = 1/2. Therefore, the second-order solution reads

—2y
_y ye
Wz—z

cos2(x—1), (1.20)

and the swimming speed is given by

U, = (1.21)

1
2
The leading-order swimming speed is hence given by U = £2/2 4 o(£?), with a dimensional
form

1
U~ Eazk%. (1.22)

Since U > 0, the swimming sheet propels in the direction opposite to the wave propagation. The
propulsion speed scales quadratically as £2, due to a € — —¢& symmetry: the swimming speed
should be invariant upon reversing the sign of the amplitude, which is equivalent to a phase shift
of 7 (the next term should therefore be of order £*). We will see in the next section that results
using slender body theory reproduce similar conclusions.
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A=2n/k
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Figure 1.5: Tllustration of resistive force theory. (a) Relating the local viscous force f to the local
filament velocity v relative to the fluid in terms of the resistive coefficients (§,&, ). Geometrical
setups for (b) a planar sinusoidal flagellar wave and (c) a helical flagellar wave.

1.2.2 Slender body theory

Taylor’s infinite waving sheet analysis uncovers interesting features of flagellar swimming.
However, flagella are slender filaments and flagellar wave amplitudes are finite. These aspects
may be handled by the use of slender body theory for Stokes flows, which is the focus of this
section.

The main idea of slender body theory is to represent the flow induced by a deforming flag-
ellum by a line of singular solutions to Stokes flow of appropriate strength (see Lighthill!,
Leal?°, or Lauga and Powers* for an intuitive presentation). This procedure is accurate in the
limit where the flagellum is slender, which is the case for real biological flagella (typical aspect
ratio of one to a few hundreds). Interested readers are referred to detailed theoretical analy-
ses?1726. Here we take the results for granted and apply them to model flagellar swimming by
planar and helical waves.

Slender body theory relates the force acting on the flagellum to its distribution of velocity
relative to that of the fluid. The leading-order result of slender body theory (in an asymptotic
expansion in the filament aspect ratio?!) is a local theory stating that the viscous force on the
body at a point scales linearly, in a tensorial fashion, with the local velocity of the flagellum
relative to the fluid. This local drag model, called resistive force theory, ignores hydrodynamic
interactions between distinct parts of the curved flagellum, and is expected to work well for
simple geometries where different parts of the body are sufficiently well separated >’ 30,

The local velocity of the flagellum, v, relative to the background fluid can be decomposed
along components parallel (v|) and perpendicular (v ) to its local tangent, as illustrated in
Fig. 1.5a. Resistive force theory states that the drag force is anisotropic with two distinct drag
coefficients for motion parallel and perpendicular to the local flagellum orientation. Specifi-
cally, the local force density (per unit length), f,;s, acting in the directions parallel to the local
tangent is expressed as f| = —éHVH while the perpendicular one is given by | = —& v . The
resistive coefficients, §H and &, have units of viscosity, contain all the leading-order resistive
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hydrodynamics, and are approximately given by
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where L and r are, respectively, the length and radius of the filament, and u is the dynamic
viscosity of the fluid. These resistive coefficients are valid when the filament is slender (r < L),
and the ratio &, /§| — 2 as L/r — . Clearly we have &, # §: it is this property of drag
anisotropy that allows the resultant drag force to be in a direction different from that of the
deformation velocity, inducing net propulsion. This is schematically illustrated in Fig. 1.5a,
where we show how drag anisotropy allows a horizontal thrust to be generated by a vertical
deformation velocity. The importance of this property will be discussed further below. Note
that the resistive coefficients may be refined to give more accurate results depending on the
shape of the body as a whole?!:23:24.27.31

Within the context of resistive force theory, the viscous force density acting on the filament
can be written in a mathematically compact form as

fois = — [Eonn+§tt] v =—[E, (I—tt) +&tt] -v=—[E, v+ (§—&L)t(t-v)], (1.24)

where t and n are, respectively, the local tangent and normal vectors along the filament. The
local velocity distribution along the swimmer, relative to any background flow vy, is given
by v=v;+ U+ Q X r— vy, where vq is the deformation velocity of the filament, U and (2
the unknown swimming and rotational velocities of the swimmer, and r(s) the instantaneous
position vector describing the flagellum shape as a function of the arclength s. Given the shape
and deformation of the flagellum, the viscous force distribution along the flagellum can be
computed according to Eq. (1.24), up to the unknown translational and rotational velocities,
(U, 2), which will be determined by imposing the overall force-free and torque-free conditions
in Stokes flows. To illustrate these steps, we will revisit below the classical use of resistive
force theory in studying the propulsion of spermatozoa by Gray and Hancock?’ and bacteria by
Chwang and Wu*2.

Planar flagellar waves

Gray and Hancock?’ applied resistive force theory to model the propulsion of sea-urchin sper-
matozoa and obtained remarkable agreement with experimental data. A general analysis for
any arbitrary flagellar waveform was given in their original work?’. Here we will consider
a specific example with kinematics similar to that of Taylor’s swimming sheet, as shown in
Fig. 1.5b. The filament is assumed to undulate vertically and sinusoidally in a plane with a po-
sition vector y(x,¢) = asin(kx — ot), where a and k = 27t/ A denote the wave amplitude and the
wavenumber (A: wavelength) respectively. In the spirit of Gray and Hancock, we will further
assume the swimmer propels unidirectionally (in the x-direction) without any rotation. Such an
assumption is valid when the swimmer is infinite (Taylor’s swimming sheet, Sec. 1.2.1), but is
still a good approximation when the number of wavelengths is large. A full three-dimensional
study was offered in Keller and Rubinow33. With the unidirectional swimming assumption,
the local velocity distribution in a quiescent background flow is v = v4 + U since there is no
rotation €2 = 0. We therefore have a combination of the deformation velocity of the filament,
vq = [0,dy/dt] = [0,—awcos(kx — wr)], with the unknown swimming velocity, U = [-U, 0.
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The minus sign in U arises because we expect swimming to occur in the opposite direction of
the wave propagation (see Fig. 1.5b), a lesson learned from Taylor’s analysis (Sec. 1.2.1). The
local velocity distribution is therefore given by v = [—U, dy/dt].

In order to further simplify the analysis, we again consider the small-amplitude limit ak < 1,
where the wave amplitude a is small compared with the wavelength A =27 /k. The local tangent

vector is then given by
1 1
t—( ) L. (a> (1.25)
o) V1+0y/9x)?  \G

to leading order, because 1//1+(9dy/dx)? ~ 1+ O(a*k?). The leading-order viscous force
acting on the whole filament is then given by

—/ fVISdSN—/OM FJ—(&;) (& —¢L) (é) <—U+%%)]dx, (1.26)

noting that ds ~ dx for the small-amplitude wave assumption, and N is the number of wave-
lengths. We next consider the total force balance in the x-direction in order to compute the
swimming speed U. The x-component of the total viscous force acting on the filament, Fy; - e,,
together with the viscous drag acting on the organism head, assumed to be characterized by a
resistive coefficient Ry, Fheag = —(—R,U) = R,U, should add up to be zero due to the overall
force-free condition in Stokes flows

Fyis - €x + Fhead = 0, (1.27a)
0
= - / { EU+ (& — Q) oy y} dx+RyU =0, (1.27b)
ZNTR
= EUNA+ (§ — &L )a’ko /0 cos? (kx — @t)dx+ RyU = 0, (1.27¢)
&L ) 1

U= 1| —|" (1.27d)

2 (5 I+ v

Since &, > <§|| , and as expected from Taylor’s analysis, the propulsion speed occurs in the direc-
tion opposite to the wave propagation (U > 0). We see that the speed decreases monotonically
with the size of the organism head — this it to be contrasted with the behaviour obtained in the
case of helical swimming, see Sec. 1.2.2. When a sperm head is absent (R, = 0), Eq. (1.27d)
reduces to U = a*k*c(&,/ &) —1)/2. If we assume an infinitely slender filament, we have
2 k2

&1/&) — 2, and the propulsion speed becomes U = a“k”c/2, a result identical to that derived

by Taylor for a waving sheet (Eq. 1.22) and a waving cylindrical tail'®3*. Furthermore, we
see the importance of drag anisotropy &, # §: under isotropic drag, &, = &, the propulsion
speed vanishes in all cases. Note that beyond this small-amplitude approach, finite-amplitude
calculations can also be computed>’-33. We now present such a calculation in the case of helical
kinematics.
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Helical flagellar waves

In this section we consider another common flagellar geometry — a helical structure. Differ-
ent from planar flagellar waves discussed in the previous section, helical flagellar waves are
spatially three-dimensional structure (see notation in Fig. 1.5¢). Helical flagellar waves are ob-
served in both prokaryotic and eukaryotic cells (see Sec. 1.1.3). Prokaryotic cells propagate
these waves by rotating rigid helical flagella, and eukaryotic cells generate them by bending.
While their actuation mechanisms are different, the kinematics of the centerline of the flagellum
in both cases are exactly the same: a helical wave (Eq. 1.29 below). A subtle difference lies in
the contribution of torques due to spinning about the local centerline of the flagellum, which we
ignore in the analysis below but comment on at the end of the section.

Due to the lesson learned in previous sections, we assume the swimming occurs along the
z-direction. With the coordinate system shown in Fig. 1.5¢, a regular helix can be parametrized
in terms of the z-coordinate with the position vector h

h(z) = [Acos(kz),Asin(kz),z]. (1.28)
A regular, right-handed helical wave with angular frequency  is then given by
r(z,t) = [Acos(kz — wt),Asin(kz — wr), 7], (1.29)

which propagates in the positive z-direction. It is in general more convenient to parametrize
a helix in terms of the arclength s along the helix, which is linearly proportional to the z-
coordinate as z = as. The constant o is such that the local tangent dr/ds is of unit length

orl|? 1
ds V1+A2k2 (1.50)

Note that we do not assume we have small amplitudes in this section in order to illustrate the
steps involved in calculations for finite-amplitude shapes. Under the arclength parametrization,
the local unit tangent vector t is simply given by a derivative with respect to the arclength
parameter s

d
t= a_r — [—Akasin(kois — of ), Aka cos(kots — ot ), . (1.31)
s
Similar to the analysis in the case of planar undulating waves, the velocity distribution along
the swimmer is given by v = v, + U+ €2 x r, where the deformation velocity has the form

Vg = % = [Awsin(kas — ot ), —Aw cos(kas — wt), 0], (1.32)
with U and €2 are the unknown translational and rotational swimming velocities respectively.
For simplicity, here we follow Chwang and Wu’s analysis3? and assume unidirectional swim-
ming and rotation in the z-direction. A full three-dimensional analysis can be found in Keller
and Rubinow 3. With this assumption, we therefore have U = [0,0, —U] and © = [0,0, Q] where
again we have assumed that swimming occurs in the opposite direction as wave propagation.
Note that the propagation of the helical wave above can be seen as a rotation about the negative
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z-direction (Fig. 1.5¢), and we expect the rotational velocity induced by hydrodynamics to be
in the opposite direction (the positive z-direction) to satisfy the torque-free condition. The total
velocity distribution hence reads

v=[A(0—Q)sin(kas — ot),—A(® — Q) cos(kas — ot ), —U]. (1.33)

The overall viscous force acting along the helical flagellum is given by

2N®

L T
Fis= [ fads=— [ [Ev+ (g =€) t(tv)] ds. (134)
with its z-component equal to

_ 2Nm(§)+E1A%K7) U 2N7(8) — 5\|)A2Q 2Nm(EL A’

F,i-e, = 1.35)
" kv/T+A2K2 V1A V1+AZ2 (
Similarly, the overall viscous torque about the origin reads
L
M, = / r % fyisdls, (1.36)
0
and has a z-component given by
ONm(E| —&)A?  2Nm(E| +§A%K)A%  2Nm(E) + & A%K*)A?
M. e — (EL—¢)) U (EL+&A%K") O (EL+&A°K") 0. (137)

V1+A2k? kv 1+ A%k? kv 1+ A2k?

We now consider the overall force and torque balances in the z-direction. The z-component
of the overall viscous force together with the viscous drag on a spherical sperm head of radius

apy Fheag = —(—RyU) = 61Ma,U, should sum up to be zero due to the overall force-free condi-
tion. Similarly, the z-component of the overall viscous torque together with the viscous torque
on the head, Myeqq = —(R}{Q) = —Snnale, should sum up to be zero due to the torque-free
condition. Mathematically, we thus have
Fyis - €;+ Fhead = 0, (1.38a)
My - €;+Mhead = 0, (1.38b)

which leads to the system

INm(§ +E1A’K?) - 2Nm(EL —§A% - 2Nm(E, —§))A?

+ ®+6xna,U =0, (1.39a)
k11 AZR2 VI 1A VITAZR héth
INT(E —&)AT  2Nm(E +&A%K*)A?  2Nm(E| 4§ A%K)A? ;
— U— Q+ o —38nna,Q = 0.
V1+A2k2 kvV1+ A2k2 kv/1+ A2k2
(1.39b)
Solving these equations for U and Q yields the solution
U 4Na3(y—1)A*2V/1+A%2
U _ 4Na(y=1) A (1.40a)
c €
Q NAZ|NE(14+47)2 430 VT+A7 (y+472) | .

0} & ’
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Figure 1.6: Helical flagellar swimming. Non-monotonic variation of the dimensionless swim-
ming speed, U /c, as a function of the dimensionless head radius, a,k, with N = 5 and an aspect
ratio of the filament L/r = 500.

where
A" =Ak, ap=apk, y=81/§, ST =¢E1/n, § =& /n, (1.41a)
€ =N ETA(1+ A2 + Naj/ 1+ A2 BA2 (y+A*?) +4a; (1 + yA*?)]
+12a;H (14+A72) /& (1.41b)

A few remarks should be made about these results. First, and similarly to the case of planar
flagellar waves, we see in Eq. (1.40a) that propulsion by a helical flagellum also relies on drag
anisotropy (U/c =0wheny=¢&, / Z;H = 1). In contrast, while increasing the size of the cell body
monotonically decreases the swimming speed for planar waves (Eq. 1.27d), it is interesting to
notice from Eq. (1.40a) that, in the case of helical propulsion, the swimming speed vanishes
if a cell body is absent (a; = 0). A cell body is therefore necessary for helical swimming 33,
This surprising result arises because of the balance of moments. Without a cell body, the wave
propagation is equivalent to a rotating rigid helix, which exerts a net torque on the fluid. In order
to satisfy the zero net-torque condition, the fluid forces cause the rotating helix to counter-rotate
at exactly the same rate, resulting in no apparent rotation and hence zero propulsion velocity.
Swimming can only occur when a cell body is present so that the fluid forces induce a counter-
rotation of the helix at a smaller rate due to the additional contribution of the cell body to the
torque balance. On the other hand, the viscous drag acting on the cell body increases with its
size, hampering the swimming performance. We therefore expect a non-monotonic variation of
swimming speed with the cell head size, and hence an optimal, intermediate size of sperm head
for the greatest swimming speed. This is illustrated in Fig. 1.6 where we plot the dependence
of the dimensionless swimming speed, U /¢, with the dimensionless sperm head radius, ayk, for
a helical flagellum with N = 5 and an aspect ratio of the filament L/r = 500.

Note that for a right-handed helix, a helical wave propagation in the positive z-direction
(considered in this example) can be seen as a rotation of the helix about the negative z-direction
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(Fig. 1.6¢). We further find, by inspecting Eq. (1.40b), that the hydrodynamically induced
rotational rate of the cell body €2 is positive, meaning that the induced rotation occurs about the
positive z-direction, which is opposite to that of the helical wave. The apparent rotation of the
flagellum is a competition between the two. As the ratio /@ can be shown to be smaller than
unity?, the apparent rotational rate of the helical flagellum, reduced to @ — Q, still occurs in
the negative z-direction. As a result, the head and flagellum of a helical swimmer such as E.
coli would be experimentally observed to rotate in opposite directions.

At this point the subtle differences between a rotating prokaryotic helical flagellum and an
eukaryotic flagellum propagating a bending helical wave should be noted. Bacteria propagate
apparent helical waves due to the rotation of their rigid helical flagella. In this case, in the ab-
sence of a head, the fluid forces induce a (passive) rigid body counter-rotation of the flagellum
at exactly the same magnitude but in opposite direction to satisfy the overall torque-free condi-
tion. This results in zero apparent rotation and leads to strictly zero propulsion. On the other
hand, for an eukaryotic flagellum propagating a bending helical wave, the torque-free condition
cannot be satisfied by simply counter-rotating the flagellum at the same rotational rate, because
the torque due to the rotation about the local centerline of the flagellum is absent in the active
propagation of the bending helical wave. The overall torque-free condition in this case is sat-
isfied with a non-zero apparent rotational rate. Therefore, theoretically an eukaryotic cell can
swim without a sperm head by propagating a bending helical wave. However, because the flag-
ellum is very thin compared to the helical pitch or radius, the rotation and resulting swimming
speed are very small and typically always neglected. The contribution from this spinning torque
was discussed by Chwang and Wu?3? .

1.3 Ciliary Propulsion

In this section, we move to another mode of locomotion by microorganisms, namely ciliary
propulsion. Certain ciliates (e.g. Opalina) and colonies of flagellates (e.g. Volvox) swim by
beating arrays of cilia (short flagella) covering their surfaces. The tips of cilia are closely
packed during beating and form a continuously deforming surface refereed to as an “envelope”.
Assuming for simplicity a spherical geometry, Lighthill®* first considered this envelope model,
an analysis which was later completed by Blake3%. To leading order, the surface distortion may
be approximated by small-amplitude radial and tangential motion on the spherical surface —
squirming motion. In recent years, such a squirmer model has been adopted widely to study
hydrodynamic interactions of swimmers>7-38, suspension dynamics3*°, nutrient transport and

uptake by microorganisms*' =3, and optimal locomotion**.

Several common assumptions have been made in the literature in order to simplify the math-
ematical analysis. First, the radial motion of the envelope is usually neglected and the squirmer
propels only by tangential motion on the surface. Second, the tangential squirming motion is
assumed to be axisymmetric. Finally, the tangential velocity profile prescribed on the sphere
is assumed steady in time. While the squirming motion of ciliates is clearly time-dependent,
it is common to consider an average motion over many beat cycles, so that a time-independent
tangential squirming motion can be prescribed on the spherical surface. We will follow these
assumptions below to present the derivation for squirmer dynamics.
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Figure 1.7: Spherical coordinate system for the study of a spherical squirmer of radius r = a.

1.3.1 Lamb’s general solution

There are different manners to derive the propulsion speed and velocity field of a swimming
squirmer given a prescribed tangential velocity on the squirmer’s surface. We present here
a formulation taking advantage of the general solution for Stokes flows outlined by Lamb®
ideally suited for problems with spherical or nearly spherical*® geometries. This is different
from the original analysis by Lighthill>> and Blake?®, and the interested reader is referred to
these studies for an alternative method (see also below for the link between both approaches).
A detailed description of Lamb’s general solution and its applications can be found in Happel
and Brenner?’ and Kim and Karrila*®

Assuming that the problem is axisymmetric and the flow field decays at infinity, Lamb’s
general solution in spherical coordinates (Fig. 1.7) reads

i _(n—2)r2Vp_n_1 (n+1)rp_,_

v(n6) = 2un(2n—1) un(2n—1)

+) Vo_, 4, (1.42)
n=1

n=1

where the pressure field p and the function & are both harmonic functions with

Pn—t1=r"""P(1)An, (1.43a)
&, =r""'P,(n)B,, (1.43b)

P, (N = cos 0) is the n-th degree Legendre polynomial, and A, and B,, arbitrary constants. The
total pressure field is given by p =3 " | p_,—1. After performing the differential operations in
spherical coordinates, Lamb’s general solution for axisymmetric Stokes flows, v =v,e, 4+ vgeg,
has the explicit form

> (n+1)P, [A.r? = sinOF, —2)A, 2B,
= —2(2n—1)B
v(r6) Z 22n—1)rmt2 | u (2n Z’ 25 2n— 1),LL r2 €o;

n=1

(1.44)

where the prime denotes differentiation with respect to 17. The values of A, and B,, are to be
determined using the boundary conditions.
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We now make the assumption that a squirmer swims by a purely tangential velocity profile
on the surface. The value of the radial velocity on the surface of a spherical squirmer of radius
a is given by

>  (n+1)B, [Ad?
v(r=a6)=), 22n— a2 | p

The condition of purely tangential squirming motion is v,(r = a,0) = 0, leading therefore to

—2(2n—1)B,|. (1.45)

2(2n—1)p

A, =
n az

B,. (1.46)

Substituting this condition into Eq. (1.44), the velocity field due to purely tangential squirming
motion becomes

> (nt+1)P, (2 > sinfF, (n—2 1
Z e ( - 1) Bye, + Z] e ( o 72) Byeg, (1.47)
n=1 n—
with the boundary values
= 2sinOP,
V(l’ =a, 9) = — Z WJFZ’/[B,/,GQ. (148)

n=1

Given the assumed axisymmetry, the swimming velocity, U = [0,0,U], will be directed
along the z-direction. When studying the swimming of a squirmer, is it then convenient to
consider the problem in two separate steps. In the first step, we consider the above solution
(Eq. 1.47) and boundary conditions (Eq. 1.48) as the case when the squirmer is fixed in space,
held by an external force, and not allowed to move — this is usually referred to as the pumping
problem. In the second step, we allow the squirmer to move freely and compute the induced
swimming velocity (U) given the boundary actuation, Eq. (1.48), in the pumping problem. This
allows the separation of the boundary values due to the squirming actuation from that due to the
induced swimming.

To obtain the overall flow field of a swimming squirmer, v, we thus superimpose the solution
of the pumping problem, v, with the flow field, vr, due to a rigid sphere translating at the
induced swimming speed U and given by

3¢ o 3a a’
VT:UCOSG(Z—ﬁ) Usm@( 2 3)69 (1.49)
The overall flow field due to a swimming squirmer, Vv = v,e, + Vgeg, is finally given by
B 3a & > (n+1)P, (r?
vr(r,0) =Ucos O (Z_ﬁ) nz::l r”“ ( — 1) By, (1.50a)
_ 3a > sin GP n—2 1
vg(r,0) = —Usin 6 ( 4r3> +n§'1 ( o _r_z) B, (1.50b)

with the value of U still to be determined.
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Swimming velocity

We now compute the swimming speed, U, as a function of the imposed coefficients B, from
the surface squirming motion (Eq. 1.48). We calculate the total hydrodynamic force acting on
the squirmer and solve for the value of U which enforces the overall force-free condition. The
hydrodynamic force on the squirmer has two components: the net force acting on the sphere due
to the surface squirming motion in the pumping problem (Fyquirm) and the drag force acting on
the squirmer due to the induced swimming motion (Fgyin). By axisymmetry, both forces only
act in the z-direction. Using Lamb’s general solution, the net force in the pumping problem
can be computed easily according to the formula®’48 Fsquirm = —47nV (r3 p_z). The force due
to the swimming motion is simply the Stokes drag Fyyim = —67naU. The overall force-free
condition reads therefore

quuirm + stim - 07 (1.5121)
— —61nale, — 47V [rP,(1)A;] =0, (1.51b)
2A4 4B,
SU=—F—=—27% 1.51
3na 3a3’ (1.51¢)

in which we have employed the no-radial surface velocity condition, Eq. (1.46), to relate A; to
Bj. Substituting the calculated swimming velocity, Eq. (1.51c), into Eq. (1.50), we find the flow
field due to a swimming squirmer in the laboratory frame is given by

) 4cos 6 > (n+1)B, [ 1?
0)=— B ———\|—=-1|B 1.52
Vr(r7 ) 3}"3 1+n;2 rn+2 <a2 ns ( a)
_ 2sin 0 < sinOP, (n—2 1
Vg (r,0) = — 3,3 B+ ZZ r ’ ( na? _r_z) Bn. (1.52b)
n=

Note that the result in Eq. (1.51c) could alternatively been found by requiring the value of U
to cancel the 1/r terms in Eq. (1.50a) or (1.50b) as they are the signature of a net force on the
sphere.

Structure of the flow field

It is interesting to notice that among all modes of boundary actuation, B,’s, in Eq. (1.48), only
the By mode contributes to swimming (Eq. 1.51c). This swimming mode generates a flow field
decaying as 1/r3

2
Vg, = —ﬁ(Zcos Oe, +sinBeg) By, (1.53)

which physically corresponds to a (potential) source dipole. The flow field due to that mode,
for By = —1, is illustrated in Fig. 1.8a.

From Eq. (1.52), we see that the slowest spatially decaying flow field however is due to the
B> mode, and is given by

3B;

_ 3B .
Vg, = W(l +3cos260)e, — 4—; [(143cos26)e,+2sin20ey)]. (1.54)
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Figure 1.8: Flow fields in squirming motion shown in the laboratory frame. (a) Velocity field
due solely to the swimming mode with By = —1 (swimming upward), corresponding to a (po-
tential) source dipole. (b) Velocity field due solely to the B, mode with B, = 1 (left panel)
and By = —1 (right panel). Both correspond to Stokes dipoles (stresslet) in the far field and
show no swimming; only half of the domain is shown in each case due to axisymmetry. (c)
Total velocity field around two upward swimming squirmers (both with By = —1). Left panel:
Pusher with B, = 4; Right panel: Puller with B, = —4. The black dotted arrow indicates the
swimming direction of the squirmer, and the two pairs of solid arrows indicate the configuration
of the Stokes dipoles.

We plot in Fig. 1.8b the velocity fields due to positive (left panel) and negative (right panel) B,
modes. Note that in Fig. 1.8b, we plot only the flow induced by the B, mode in order to illustrate
the features of this particular mode. This B, mode leads to a flow field decaying as 1/r%, which
is purely radial and physically corresponds to a Stokes (force) dipole. A positive (resp. nega-
tive) Stokes dipole represents two equal and opposite forces acting away from (resp. towards)
each other (Fig. 1.8b). These force dipoles exert zero net force on the surrounding fluid and
can represent two different propulsion mechanisms of swimmers: so-called “pushers” (B, > 0,
Fig 1.8b left panel) and “pullers” (B, < 0, Fig 1.8b right panel). A pusher obtains thrust from
the rear part of the body, such as all peritrichous bacteria (including E. coli) or flagellated sper-
matozoa. As a result, a pusher repels fluid along, and behind, its swimming direction and draws
fluid in from the sides. In contrast, for a puller, the thrust comes from its front, such as for
the breaststroke swimming of algae Chlamydomonas. Thus, a puller draws fluid in along its
swimming direction, and repels fluid from the sides.

Finally, the other component decaying as 1/7* in the B, mode (Eq. 1.54) corresponds to a
source quadrupole, which decays faster than the Stokes dipole in the far field but is more notice-
able close to the squirmer, as can be appreciated visually by the tangential velocity component
in close proximity to the squirmer (Fig. 1.8b). Further discussion on the far-field hydrodynamic
description of swimming organisms will be presented in Sec. 1.4.

Since the B; and B, modes capture the essential and dominant features of free swimming
microorganisms, it iS common in many studies to retain only these two modes and formally
take B, = 0 for n > 3 as a simplified swimmer. The squirming profile on the swimmer surface,
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Eq. (1.48), then reduces to

2 3
v(ir=a,0) = —‘?siHGBl—ﬂsinZGBz ey, (1.55)

which generates the flow field found by superimposing Egs. (1.53) and (1.54). The sign of By
determines the swimming direction, Eq. (1.51c), as illustrated with By = —1 in Fig. 1.8a with
upward swimming. The sign of B, determines the configuration of the Stokes dipole and hence
the basic propulsion mechanism of the microorganism and its far-field signature. Depending
on the chosen parameters in the squirming profile, a squirmer can either be a pusher or puller,
making it a useful idealized model for studying general features of motility for different cells.
Superimposing the By and B, modes, we plot in Fig. 1.8c the flow field around a squirmer
swimming upward (B = —1) with a pusher (B, =4) and puller (B, = —4) on the left and right
panels respectively.

As a final remark, in this alternative formulation, the squirming profile on the boundary
(Eq. 1.48) is expressed in terms of the natural basis employed in Lamb’s general solution. It
has a form different from, but equivalent to, that adopted by Lighthill®> and Blake 3, which is
given by

> 2sin@P,
V(r = a,e) = Z 7l<n—_|_1’)1Bne6, (156)

n=1

where B,,’s are the coefficients used in their studies. Comparing Eq. (1.48) with Eq. (1.56),
the relation between the two sets of coefficients is given simply by B, = —a" 2B, /(n+ 1).
Transforming our results in terms of Lighthill and Blake’s notation33-3%, the swimming speed
of a squirmer, Eq. (1.51c), is given by U = —4B/(3a®) = 2B, /3.

1.3.2 Reciprocal theorem

Stone and Samuel*’ exploited the reciprocal theorem of low-Reynolds-number hydrodynam-

ics*7 to analyze the motion of a squirmer. They were able to derive analytical expressions relat-
ing the translational and rotational velocities of the swimmer to its arbitrary surface squirming
profile without having to solve for the entire flow field. The use of the reciprocal theorem in this
fashion is handy in scenarios where only the swimming kinematics, but not the detailed flow
field, is of interest. It is also shown useful in the study of non-Newtonian and inertial effects 50,
Here, we introduce this technique by following Stone and Samuel’s calculation®.

Let (v, o) be the velocity and stress fields of the original squirming problem discussed in the
previous section (Sec. 1.3.1), subject to an arbitrary, prescribed, squirming profile v(r = a) = v/
on the surface. Let us then consider an appropriate auxiliary problem with the same geometry
in a Stokes flow (¥,4). In this case, the auxiliary problem is the translation of a rigid sphere at
a velocity U due to an external force F for reasons explained below. We have the original and
auxiliary problems both satisfying the incompressible Stokes equations:

V-o=0, (1.57a)
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and

V.6 =0, (1.58a)
V-v=0. (1.58b)
We take the inner product of Eq. (1.57a) with the velocity field of the auxiliary problem ¥ minus,

reciprocally, the inner product of Eq. (1.58a) with the velocity field of the original problem v to
obtain the relation

V- (V.o)—v-(V-6)=0. (1.59)
By a general vector identify
v.V.o—-v.-V-6=V-V.-0-v-66)+(Vv:6—-VV:0o), (1.60)
we rewrite Eq. (1.59) as
V- (V-o—-v-6)+(Vv:6—-VVv:0)=0. (1.61)

The advantage of such a construction is that it renders the second bracket in Eq. (1.61) identi-
cally zero since

Vv:6-VVv:o
=Vv: [-pl+p (VI+ V)] = Vo [—pI+u (Vv+ V)] (1.62a)
= —pV v+ (Vv:VI+ Vv V) 4+ pV -9 - (VI Vv+ Ve V) =0,  (1.62b)

due to the continuity equation (V-v = V- ¥ = 0), and the identities A: B=B:A and A : BT =
AT : B, which are true for any tensors A and B and follow trivially from the definition of the
double-dot product. Integrating Eq. (1.61) over the entire fluid domain V external to the sphere,
we then obtain

/V-(V-a—v-&)dV:O. (1.63)

1%

Using the divergence theorem, we convert the volume integral to the following surface integrals
/ (m-6-v—n-o-9) dS—/(n-é'-v—n-a-f/) ds =0, (1.64)
Seo S

where n is the outer normal from the body into the fluid, S is the spherical surface, and S. is the
surface enclosing the sphere at infinity. Denoting r as the distance from the origin and assuming
the velocity fields (v and ¥) decay as ! or faster, and the pressure fields (p and p) decay as r—>
or faster, we see that the integrand of the integral over S.. decays at least as 7> as r — oo. Since
the surface area grows as 2, the integral over S., decays at least as 7~ ! and therefore vanishes
at infinity, leaving us with

/n-6'~vdS:/n~a-€7dS. (1.65)
S S
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Because of our choice of the auxiliary problem — a translating sphere — we have a constant
boundary condition ¥ = U on the spherical surface S. Moving the constant U out of the integral

we get
/nﬁ-vdsz(/n.adS).U (1.66)
S S

Since free swimming occurs with no net force, the right hand side of that equation should
vanish, [¢n-odS = 0. Under this choice of auxiliary problem, Eq. (1.66) then becomes simply

/n-&-vdSzo. (1.67)
S

Next, one decomposes the surface velocity of the original problem into the unknown transla-
tional swimming velocity, U, and the arbitrary surface squirming motion, v, i.e. v(S) = U+V'.
With these boundary conditions, Eq. (1.67) can be split in two integrals to become

(/n-é'dS)-U:—/n-é'-v'dS. (1.68)
S S

The unknown swimming velocity U can be determined if all the integrals in Eq. (1.68) are eval-
uated. This requires knowledge of the stress field of the auxiliary problem. For the translation
of a rigid sphere, we have the Stokes’ law, [¢n-6&dS = —6mual, and a useful fact that the
surface traction is constant®, n-& = —3u/ 2aU. As a result, Eq. (1.68) becomes

r 3U - / 1 /
6mual U=t __ , 1
omual-U =220 [vas » U= [vas (1.69)

We have now obtained the swimming speed of a squirmer, U, as a simple surface integral of
its surface motion, v/, without actually solving for the flow field around the swimmer. We do
however require the stress field of the auxiliary problem, which means that at some point a flow
calculation had to be carried out. Note that the Stokes equations being steady, the analysis above
also holds for the time-dependent case with Eq. (1.69) being understood as an instantaneous
identity.

Furthermore, similarly to the calculations above, the angular velocity, €2, of a spherical
squirmer can be related to its surface deformation using the reciprocal theorem as well and one
gets®

3
Q=— /nxv'ds, (1.70)
8mad Js
with details left as an exercise for the readers.
As a verification of the final result, we use Eq 1.69 to compute the swimming speed of
a squirmer subject to the general squirming profile expressed in terms of the basis given by
Eq. (1.48):

1 2 o 2sin6Pp
U:_4na2/gv - 47w2/ / < nan+z”Bnee>as1n9d9d¢ (1.71)
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Expressing the unit vector eg in terms of the basis vectors in Cartesian coordinates we have

2 sin’ QP,,
=5 / / —— By, (cos O cos pe, +cos Osinpe, —sinOe;)d0dp,  (1.72)

only the z-component survives due to axisymmetry, leaving the integrals

or
Z sin” T np.d0 e, (1.73)

By a change of variable from 6 to 1 = cos 0, the evaluation of the integral can be computed
using properties of Legendre polynomials as

0P PP 4
/Zsm nB.dn e, = / B dn e = —<B1, (174

verifying the result obtained analytically in the previous section (Eq. 1.51c). The reciprocal
theorem is therefore a useful tool for determining the swimming kinematics, bypassing detailed
calculation of the flow field provided the swimmer geometry is one for which the stress profile
in the auxiliary problem has been determined. It provides however (obviously) no information
on the flow around the squirmer, which is required for problems such as nutrient transport and
uptake by microorganisms*!=43.

1.4 Far-field Description of a Swimmer

In this section, we introduce the mathematical framework necessary to quantify the swimming
hydrodynamics in the far-field>!. This concept is useful for cases in which the flow field in
close proximity of a swimmer is not of interest but the far-field behaviour is, for example to
determine the influence of a nearby boundary, or of another swimmer nearby. Physically, it is
equivalent to zooming-out and observing the swimmer over length scales much larger than its
intrinsic length. Under this far-field approximation, the geometrical details of the swimmer are
therefore unimportant and some generic features of low-Reynolds-number swimming may be
obtained.

Stokeslet

To formulate such a perspective, it is useful to first introduce the Green’s function for the Stokes
equations. This is obtained by placing a point force fed(x) at the origin in an otherwise qui-
escent infinite fluid, where §(x) is the Dirac delta function centered at x = 0!, e a unit vector
represents the direction of the point force, and f the magnitude of the force. The forced Stokes
equations are given by

Vp=uVv+ fes, (1.75a)
V.v=0. (1.75b)

"Without loss of generality, in this section we present the results for a point force located at the origin for
convenience. Results for a point force at other locations X can be readily obtained by a simple translation of
coordinates by replacing X as X — Xg.
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Figure 1.9: Flow singularities. (a) Velocity field due to a Stokeslet at the origin, the fundamental
singular solution in Stokes flows due to a point force, and a model for the far-field approximation
of a translating sphere. (b) Velocity field due to a positive Stokes dipole at the origin. The
vectors represent local fluid velocity and the lines represent streamlines. The flow field of a
negative Stokes dipole (two point forces acting towards each other) has the same streamline
pattern with the sign of the velocity field reversed. A positive (resp. negative) Stokes dipole is
the far-field approximation of for a pusher (resp. puller) swimmer. The arrows on the swimmers
indicate local forces exerted on the fluid.

The solution v(x) can be obtained by a variety of methods, such as Fourier transformation and
superposition of vector harmonic functions?%>2, and is given by

(1.76)

v(x) = fG(x;e) = 87];/4 FJF (E-x)xl |

r r3

where r = |x| is the distance from the singularity. This fundamental singular solution in viscous
flows is called a Stokeslet®!. It decays as 1/r and is therefore long-ranged>3. The flow field of
a Stokeslet is shown in Fig. 1.9a in the laboratory frame, and is the one given by a translating
sphere in the far field as in both cases a net force is exerted on the fluid. Physically, as we
increasingly zoom-out from a translating sphere, it becomes sufficiently small that it can be
regarded as a point acted on by a force, and thus a Stokeslet may be physically understood as
the far-field approximation of a translating sphere. Since a swimmer does not exert a net force
on the surrounding fluid, only force dipoles and above will be allowed, as we now detail.

Stokes dipole

Since the Stokes equations are linear, a derivative of any order of a Stokeslet is also a solution,
forming higher-order singular solutions. By taking one derivative of an e-directed Stokeslet



27 Chapter 1

along the d direction, one obtains a Stokes dipole

Go(x:d,e) = —d-VG(x:e) = — {(ed_de)'XJrF(ed+de)—(e.d)1] g} (1.77)

8 r3 2 r
_ 1 [f(dxe)xx [(e-d)x (e-x)(dx)x
-~ 8mu { r3 [ r3 3 r ] } ’ (1.78)

which is the most useful singular solution in the study of swimming microorganisms (see also
discussion in Sec. 1.3 for the flow field around a squirmer). The flow due to the symmetric part
of the Stokes dipole tensor is termed a stresslet>*

1 d x)(d-
Stod.e) = ¢ {— (er3 LG X)r(s X)X], (1.79)

physically representing straining motion of the fluid, whereas the flow due to the antisymmetric
part is termed a rotlet

(dxe)xx

R(x;d,e) = S

, (1.80)
physically representing the flow due to a point torque. Other higher-order singularities such as
Stokes quadrupole, potential source dipole, and source quadrupole can be obtained by taking
derivatives of the corresponding lower-order singularities. These singularities will be useful
later when we investigate the effects of a boundary on swimming cells (Sec. 1.5.2).

A Stokes dipole decays as 1/ r2, one order of magnitude faster than a Stokeslet. Physically, a
Stokes dipole can be understood as the limit when the distance between two Stokeslets of equal
magnitudes but opposite directions becomes vanishingly small and the strength is adjusted to
give a finite flow field. Consider a Stokeslet, v* (x), of strength fe acting at a small distance d /2
from the origin along the direction d. By Taylor’s expansion about the origin, we can express
the Stokeslet as

vi(x) = fG(x—dd/2;e) = f {G(x;e) — gd-VG(X,e)—l—...] : (1.81)

Consider another Stokeslet, v~ (x), of opposite strength — fe acting at an opposite position of
—dd /2 from the origin. Again by Taylor’s expansion, we expand this Stokeslet about the origin
to obtain

d
v (x) = fG(x+dd/2;—e)=f {G(x;—e) + Ed-VG(X7 —e)+ } (1.82a)
=f [—G(X;e) — %Zd-VG(x,e) + } : (1.82b)
Superposing the two Stokeslets gives an overall flow field

v(x) =v (x)+v (x) = —dfd-VG(x;e) + ..., (1.83)

where the leading-order contribution d- VG(x;e) is a Stokes dipole. The distance d and strength
f of the Stokeslets can be adjusted so that higher-order terms vanish upon taking the limit,
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leaving only the flow field due to a Stokes dipole. We can thus understand a Stokes dipole
as the leading-order contribution from two point forces acting at a fixed and sufficiently small
separation distance d.

In the case relevant to axisymmetric swimmers, the two point forces in the dipole are aligned
in the same direction as the one along which derivatives are taken (e xd =0, or d = +e). In
other words, it is the case where the rotlet component (Eq. 1.80) of the Stokes dipole vanishes
as there is no net torque on a swimmer, leaving only the symmetric stresslet component. The
stresslet resulting in this case has the general expression

1 (e-d)x _(ex)(d-x)x] « X (e-x)°x
8T r 3 r ~ 8mu r3+3 o]

S(x;d,e) = (1.84)
where o = e-d = +-1 represents the two different opposite configurations. When o = 1, the two
points forces act away from each other (see Fig. 1.9b for a Stokes dipole with e =e; and ot = 1),
pushing fluid away along the direction of the dipole and drawing fluid towards the dipole from
the side. Notice that the streamline pattern remains exactly the same for the other case @ = —1
but the velocity field changes by a sign. Therefore, a Stokes dipole with o¢ = —1 draws fluid
along the direction of the dipole and repels fluid to the side.

With this concept in mind, we can now analyze the motion of self-propelled microorganisms
from a sufficiently large distance that the geometrical details of the swimmer may be ignored.
For many self-propelled microorganisms such as a spermatozoon or an E. coli cell (Fig. 1.9b,
pusher), one can identify two parts, namely the cell body and the flagellum. As the cell moves
through a viscous fluid (to the right in Fig. 1.9b), the cell body experiences a viscous drag acting
to the left. Since a self-propelled swimmer is force-free (for neutrally buoyant cells), the fluid
has to exert (due to the action of the flagellum) a force of equal magnitude acting to the right
to balance the drag force on the cell body, forming a pair of force acting towards each other
on the cell. By Newton’s third law, the swimmer exerts therefore on the fluid a pair of forces
acting away from each other (indicated by red arrows in Fig. 1.9b). Essentially, the force to
the right is the drag while that on the left is the propulsive thrust. Observing the motion of
these swimmers in the far field, to leading order they generate a positive Stokes dipole with
o = 1, and are called pushers. In contrast, the type of swimmers called pullers obtain their
thrust from the front part of the body and hence exerts a pair of force towards each other on the
fluid (Fig. 1.9b, puller), generating a negative Stokes dipole (o = —1). This is, for example,
the case for the algae Chlamydomonas which uses two flagella. The squirmer model introduced
in Sec. 1.3 can model both pushers and pullers — depending on the sign of B, — since the flow
field generated by the squirming motion are asymptotically Stokes dipoles in the far field. The
fact that the flow fields around a pusher and puller differ only by a sign can lead to qualitatively
different types of hydrodynamic interactions, as we will see in Sec. 1.5.

1.5 Hydrodynamic Interactions

In the previous sections we introduced theoretical models for an isolated swimming microor-
ganism in an unbound fluid. Actual biological environments are however more complicated in a
number of ways. Microorganisms do not usually swim alone and a swimming cell experiences
physical effects due to the presence of other co-swimming organisms. Instead of an infinite
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fluid, microorganisms encounter surfaces, for example during the locomotion of spermatozoa
in mammalian cervical mucus®*. Furthermore, during most laboratory experiments, coverslips
impose solid boundaries near the microorganisms. These boundaries and the presence of other
swimmers modify the fluid flow around a given microorganism and has important consequences
on its dynamics. We review in this section classical ideas on hydrodynamic interactions between
cells and boundaries.

1.5.1 Swimming near a boundary: Lubrication theory

Reynolds>? first adopted Taylor’s swimming sheet model to consider locomotion near solid
walls for a prescribed small-amplitude waving motion. He found that the effect of a solid
wall is to increase the swimming speed when the sheet is swimming closer to a wall. Katz>®
subsequently performed a lubrication analysis for a sheet swimming in close proximity to the
wall — another useful tool allowing analytical progress in certain asymptotic regimes. Recently,
this lubrication calculation was reviewed and extended to consider swimming near a wall in
complex fluids>’8. Here we follow the review?’ to reproduce Katz’s results in the Newtonian
case and illustrate the use of lubrication theory for analyzing swimming near a wall.

Formulation

Adopting Taylor’s swimming sheet with a wave propagating in the positive x-direction (Sec. 1.2.1),
the dimensional vertical displacement is given by Y (x,7) = asin(kx — @t), where a, @, and k
are the amplitude, angular frequency, and wave number respectively. The sheet swims at an
average distance & from the wall (see Fig. 1.10a). We consider the lubrication limit, i.e. assume
that 4k < 1 and thus that the distance from the wall, A, is small compared with the wavelength,
A =2m/k, of the sheet. From the results in Sec. 1.2.1, we assume that the sheet swims in the
negative x-direction (the direction opposite to the wave propagation, see Fig. 1.10a). We denote
the swimming velocity as —Ue,, where U is the unknown swimming speed. We approach this
problem by observing the motion in a frame moving with the sheet (at the velocity —Ue,). In
this moving frame (Fig. 1.10b), the wall moves at a velocity Ue,, and the sheet displaces only
vertically with velocity dY (x,t)/dt = Y;. The dimensional boundary conditions in this case are
therefore given by

u(x,y=nh)=U, (1.85a)
u(x,y=Y) =0, (1.85b)
v(x,y=h)=0, (1.85¢)
v(ix,y=Y) =Y, = —awcos(kx — ot). (1.85d)

Non-dimensionalization

Similar to Taylor’s original calculations (Sec. 1.2.1), we non-dimensionalize time by 1/®, the
horizontal length scale by 1/k, and hence horizontal velocity by ¢ = @/k. In lubrication prob-
lems, lengths and velocities in the vertical direction are scaled differently to capture the correct
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a) Laboratory Frame b) Moving Frame (at velocity —Ue,)

Figure 1.10: Geometrical setup and notations for a Taylor’s two-dimensional swimming sheet
model near a rigid wall. (a) Motion observed under the laboratory frame, where the unknown
swimming velocity, —Ue,, is assumed to occur in the negative x-direction. (b) Motion observed
in a frame moving with the sheet at the swimming velocity —Ue,. In this frame, the sheet
undergoes vertical displacements propagating a travelling wave to the right at phase speed ¢
and the solid wall moves with velocity Ue, to the right.

physics of the problem. We scale the vertical length scale by 4, and obtain the scaling for the
vertical velocity v, by considering the continuity equation

c du* v.ov*
ko T hay = (150

which gives v. = ¢d, where we have introduced the dimensionless parameter 6 = hk. Recall
that the lubrication limit is the one for which 8 < 1. The scaling for the pressure is obtained by
considering the two-dimensional Stokes equations as

De ap* B zazu* N azu*
pc/hk dx* =~ dx*2  Jy*2’
Pe ap* _ 62&2‘}* N 32\/*7
tck dy* dx*2  dy*?

(1.87a)

(1.87b)

where p, represents the characteristic pressure. We are interested in the limit 6 = hk < 1 and
by considering the dominant balance in Egs. (1.87a) and (1.87b), the pressure may be scaled
as p. ~ c/h’k or p. ~ pck respectively. Given the boundary conditions, it can be shown
that the consistent balance is given by p. ~ tc/h*k, which is a general feature of lubrication
problems?°. Adopting this pressure scale, we see that the pressure gradient in the y-momentum
equation, Eq. (1.87b), scales as 1/82, much greater than the viscous terms on the right-hand side
in the lubrication limit (6 < 1), and hence vanishes to leading order. Therefore, the leading-
order governing equations in lubrication theory become

gz* + 3;* 0, (1.88a)
a * 82 *
ai* - WZZ’ (1.88b)
N _y (1.88¢)

dy*
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with boundary conditions

uw'(x*,y'=1)=U/c=U", (1.89a)
W,y = Y*) =0, (1.89b)
Vi(x",y"=1)=0, (1.89¢)
Vi (xt, Yyt =Y") = —a"cos(x* — 1), (1.89d)

where the displacement of the sheet is given by
Y = %sin(x* — ") = a sin(x* —1). (1.90)

All variables hereafter are dimensionless and we drop the stars for convenience.

Lubrication analysis

From the y-momentum equation, Eq. (1.88c), we get that the pressure, p, and hence the pressure
gradient, dp/dx, are independent of y. We exploit this to integrate Eq. (1.88b) twice with
respect to y and obtain an explicit expression for the horizontal velocity component as

1dp
2 ox

y—Y

()’—Y)(y—l)ﬂLUm, (1.91)

u(x,y) =
where the boundary conditions for u, Egs. (1.89a) and (1.89b), have been implemented. Next,
we integrate the continuity equation, Eq. (1.88a), with respect to y from the sheet (y =7Y) to
the wall (y = 1) and apply the boundary conditions for v, Egs. (1.89¢) and (1.89d), in order to
obtain

1o
gy +acos(x—1) = 0. (1.92)
y 0x

In many lubrication problems, after differentiating Eq. (1.91) and carrying out the integral in
Eq. (1.92), one obtains the famed “Reynolds equation™ in lubrication theory allowing to deter-
mine the unknown pressure>®. Here, since our primary interest is to compute the swimming
speed, U, we take a slightly different route bypassing the computation of the pressure. Instead,
we use Leibniz’s rule to interchange the differential and integral operations in Eq. (1.92) as

1
%/ udy+acos(x—t) =0, (1.93)
Y

with the boundary condition u(y =Y) = 0. We then integrate Eq. (1.93) in x to obtain

1
/ udy + asin(x —t) = ¢(t), (1.94)
Y

where ¢(t) represents the mass flux. We substitute the expression for u, Eq. (1.91), into Eq. (1.94)
and evaluate the integral to obtain an explicit expression for the pressure gradient
dp 12(1—gq) n 6(U-2)
ox (1-v)}  (1-1)¥’

(1.95)
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where the two unknowns are ¢ and U. They are determined by enforcing first the periodicity of
the problem

2
a—pdx =0, (1.96)
0o Jdx

and second the dynamic condition requiring the swimmer to be overall force-free. To derive the
latter condition, we compute the total dimensionless force acting on the swimming sheet over
one complete wavelength

2 [ — 29du du 39v
p+206 3 58*—}_5 5 <5Y)
F:/a'-ndSN/ X y X * ) dx, 1.97

s 0 (6—§;+63—§; —p+289 ) \ -1 (97

where o denotes the dimensionless stress (scaled similarly to the pressure with pc/h*k =
1o/8%), n denotes the unit normal vector, n = (8Y, — 1)7/4/1+(8Y,)* , and s the arc-

length along the sheet, s = 1/ 1+ (8Y,)2. Note that the x-component of the normal n is of order
O(6) due to the different scalings in the horizontal and vertical directions. The leading-order
force-free condition in the horizontal (x) direction is then given by

27 au
g

To facilitate the use of this condition for determining the constant in Eq. (1.95), we integrate by
parts (employing the periodicity of pressure and Y') to rewrite the above force-free condition as

/2” dp Jdu

y=-£_==
0 dx dy
We finally have two equations, Eqs. (1.96) and (1.99), allowing to determine the two unknowns
g and U in Eq. (1.95), leading to the dimensionless swimming speed

dx=0. (1.98)
y=Y

dx = 0. (1.99)
y=Y

3a?
U=g=—— 1.100
1= 2211 (1.100)
In dimensional form, the swimming speed reads
3¢
UV=————- 1.101
24 (ha) (1.101)

This lubrication analysis, due to Katz>°, obtained the same conclusion as the small-amplitude
analysis by Reynolds> in that the propulsion speed increases as the swimmer comes closer
to the wall. In addition, since & > a, the propulsion speed is bounded above by the wave
propagation speed. Importantly, the analysis assumes that the prescribed swimming waveform
remains the same and does not depend on the value of 4. Actual organisms however may very
well modify their flagellar waveforms as they approach walls, potentially leading to a decrease
of the swimming speed close to a wall™>.
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Figure 1.11: (a) Geometrical setup for the image system of a singularity (here a force-dipole as
a model swimmer). Hydrodynamic reorientation near a surface of a (b) pusher and a (c¢) puller.

1.5.2 Swimming near a boundary: Far-field approximation

In Sec. 1.4, we have introduced the far-field approximations of swimming cells and shown that
they can be described as Stokes dipoles in an unbounded fluid. The presence of rigid bound-
aries requiring that the no-slip and no-penetration boundary conditions be enforced modifies
the flow around the singularity, and has an impact on the swimmer motion. Similarly to the
method of images in electrostatics — albeit somewhat more involved due to the requirement of
enforcing three scalar boundary conditions — Blake>® showed how to derive the Green’s func-
tion for Stokes flows near a rigid surface by placing a system of image singularities on the other
side of the surface (i.e. inside the wall). Blake’s results are equivalent to those obtained earlier
using an alternative method (a reciprocal theorem approach) by Lorentz®. These results have
subsequently been applied to describe the far-field dynamics of a swimming cell in the pres-
ence of a wall, providing a hydrodynamic explanation for cell concentration at the boundaries
observed in experiments®!. The accuracy of such far-field description of low-Reynolds-number
swimming near a surface has been thoroughly discussed by Spagnolie and Lauga®?.

Image system of a Stokes dipole

The image singularity system of a Stokeslet parallel or perpendicular to a no-slip boundary
can be linearly combined to give the image system of a Stokeslet at an arbitrary angle relative
to the wall®. Care has then to be taken in order to derive the image system for higher-order
singularities (dipoles and higher order) 3. Full vector expressions of these singularities and their
image systems can be found in the literature®?. Let us consider a Stokes dipole of strength o,
Eq. (1.84), oriented at an arbitrary angle 6 and located at an arbitrary distance 4 from the wall,
as illustrated in Fig. 1.11a; note that we assume without loss of generality that the singularity
lies on the x —y plane. Its image system can be obtained by taking appropriate derivatives of
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the Stokeslet image system, leading to

Gh(x—x{; &) = a{sin® @ [~Gp(eyr,e,) +2hGo(ey, ey, €,) — 2h°Q ey, €y)]
+cos” 8 [~Gpl(ey,e,) +4hD(e,) +2hGg(ey, ey, €,) — 2h7Q(ey, €,)]
+sin @ cos 0[Gp(ey,ey) +Gp(ey, e.) —4hD(e;) —4hGp(ex, ey, ey)
+417Q ey, ey)] }, (1.102)

where G is a Stokes quadrupole, D is a potential (source) dipole, and Q is a source quadrupole,
all of which are given by

Go(xic,d,e) = 87r;1r3 -(d~e)c+(c~e)d— (c-d)e— %—F 15(c-x)(‘;x)(e-x)x1 |
) (1.103a)
D(x;e) = 8nLr3 _e+3(er-zx)x , (1.103b)
Q(x:d.e) = 87;:r4 _(d~x)e+(e-rx)d+ (d-e)x B S(e-xzﬁgd-x)x} 7 (1.1030)
g1=|[(d-e)(c-x)+(c-e)(d-x)+ (c-d)(e-x)]x+ (d-x)(e-x)c
+(c-x)(e-x)d— (c-x)(d-x)e. (1.103d)

The flow field generated by the image singularities, G7,, represents the total modification in the
flow field due to the presence of the wall.

Faxén’s law

Faxén’s law provides a way to determine the translational velocity, U, and rotational rate, €2, of
a body due to an arbitrary ambient flow, v*, in Stokes flows. Let us consider a swimmer with
the shape of a prolate spheroid with major and minor axis lengths given by a and b respectively,
and a body aspect ratio defined as y = a/b. Faxén’s law in that case is given by*3

U =v*(xo) + 0(a*V*v']y,), (1.104a)
1 * y2_1 * 2v72
Q= e (x0) + T ex [E*(x0) -]+ 0(a"V-wly,), (1.104b)

where w* = V x v* and E* = (Vv* + Vv*T) /2 denote, respectively, the vorticity and rate of
strain of the flow. In the case of a swimmer modeled as a singularity near a surface, we take
v* to be the image system flow field evaluated at the body centroid, xo. Using the image flow
v*(x) = G}, by substituting Eq. (1.102) into Eq. (1.104), we obtain the wall-induced kinematics

o [3sin26 3(1 —3cos?6

- 8mu | 8h? G ( Sh2 )ey] ) (1.105a)
o 3sin260 7y —1 5

- 8 {_ 1643 |: 2(}/2_,_1)(14_(:05 9)} }exxey, (1.105b)

which we now examine.
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Hydrodynamic attraction/repulsion and re-orientation

The induced velocity component normal to the boundary is given by

3¢

Uy(G,h) :U'ey = _647r—uhz

(1—3cos?8), (1.106)

and allows us to answer the question: does the wall attract or repel the swimming cell? The
effect of wall depends on the type of swimmers, with an opposite effect in the case of pushers
(a > 0) versus pullers (a < 0). For a pusher (o > 0), swimming parallel to the wall (6 = 7/2),
we see that U is negative, meaning that the cell is attracted to the wall. Allowing the cell to be
tilted, we see that the sign of U, becomes positive if the angle 6 < cos~!1/+/3 at which point
the wall repels the swimmer. Due to the linearity of the wall-induced flow with ¢, the opposite
conclusion holds for a puller and in that case swimming parallel to the wall leads to a repulsion.

In addition to inducing attraction or repulsion, the wall also hydrodynamically re-orients the
swimmer. The induced rotational velocity on the swimmer acts in the e, = e, x e, direction (the
direction perpendicular to the page in Fig. 1.11) at a rate

30tcosOsin O -1

= MY

(14cos?0)|e;. (1.107)

The re-orientation depends on the swimming mechanism ¢. The shape of the cell y does not
affect the direction of the induced rotational velocity, since the quantity in the square bracket
in Eq. (1.107) is always positive. To focus on a specific example, E. coli bacteria are pushers
(a > 0) and prolate cells (y > 1). For E. coli, the sign of the rotational velocity is therefore
given by the sign of —cos0sin 6 (see Eq. 1.107). We thus get that an E. coli cell is always re-
oriented in the direction parallel to the wall®! (Fig. 1.11b). When0< 6 <1 /2 (resp. ©/2 <0 <
), the rotational velocity is negative (resp. positive), bringing the cell back to an orientation
parallel to the wall. On the other hand, hydrodynamic interactions are expected to re-orient
a puller in the direction perpendicular to the surface (Fig. 1.11¢). Berke et al.®! investigated
these hydrodynamic interactions and proposed that they are responsible for the experimentally-
observed accumulation of swimming bacteria near surfaces.

Interaction between swimmers

We can use similar calculations to draw conclusions on the hydrodynamic interactions between
two identical swimmers. Consider swimmer A and its mirror-image swimmer B, separated by
a distance 2h (Fig. 1.12). By symmetry, the effect of swimmer A on swimmer B is identical to
that from B on A. The translational and rotational velocities induced on swimmer A by the flow
created by swimmer B are found using Faxén’s law applied to the flow generated by swimmer
B, which is simply the mirror image of a Stokes dipole, leading to

o
U= —W(l—Scosze)ey, (1.108a)

3asin@cos 0 -1 5
Q=—_—"7-|1 . 1.108b
2567 < +}/2+1COS 9) e, (1.108b)
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Figure 1.12: Hydrodynamic interactions between two identical swimmers oriented side-by-side.
(a): Pushers are reoriented to be perpendicular to their line of centers. (b): In contrast pullers
are reoriented to be parallel to their line of centers.

We obtain effects qualitatively similar to the case of swimming near a solid boundary. When two
cells swim side-by-side (0 = 7 /2), the induced migration velocity is given by —a/ 32717/.Lh2ey,
meaning that hydrodynamic interactions acts to attract two pushers (o > 0) and repel two pullers
(a < 0). The opposite holds for the case where two cells swim head on (8 = 0), where the
induced velocity changes sign and becomes a/ 167ruh2ey. Regarding the hydrodynamic re-
orientation, and focusing on prolate cells for simplicity (y > 1), we get that two pushers are
reoriented to be perpendicular to their line of centers, and thus end up swimming parallel to
each other (Fig. 1.12a). On the other hand, two pullers are reoriented so as to be parallel to
their line of centers (Fig. 1.12b). As a final remark, we note that the configuration in Fig. 1.12
is physically equivalent to swimmer A swimming at a distance 4 from a flat stress-free surface,
since in that case the image singularity required to satisfy the surface condition is simply the
mirror image of the Stokes dipole.

1.5.3 Flagellar synchronization

Continuing on topics involving hydrodynamic interactions, we investigate in this section the ex-
perimental observation of flagellar synchronization for cells swimming in close proximity %467
(Fig. 1.13). As a first modelling approach to the problem, Taylor'® studied two swimming
sheets with identical, prescribed, waveforms and showed that the energy dissipated between the
sheets (and equal to the rate of working of the swimmers) is minimized when the two sheets
swim in phase. Recently, Elfring and Lauga%® revisited the dynamics of this problem and
showed that front-back asymmetry of the flagellar waveform is required for synchronization to
dynamically occur.

This geometrical requirement can be shown using a combination of symmetry arguments
and kinematic reversibility. Consider two identical sheets swimming using travelling waves
of deformation (the usual Taylor model). Assume that their waveforms have up-down and
front-back symmetry (such as a pure sinewave) and that they are are positioned with respect
to each other so as to have a finite phase difference, as shown in Fig. 1.14a. Without loss of
generality, suppose that a pair of nonzero stabilizing forces, f and — f, act on each swimmer
in the direction to bring the phase difference to zero. One reflection about the vertical axis
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Figure 1.13: Time sequence of the synchronization of two swimming bull spermatozoa. Scale
bar, 25um. Reprinted with permission from Woolley et al. %*. Copyright (©2009 The Company
of Biologists Ltd.

leads to the configuration shown in Fig. 1.14b, and a second reflection about the horizontal axis
leads to the configuration shown in Fig. 1.14¢. By kinematic reversibility (see Sec. 1.1.1), we
can reverse the direction of the wave propagation in each swimmer, which reverses the sign of
the pair of forces to —f and f, leading to the configuration shown in Fig. 1.14d. The setups
in Figs. 1.14a and d are identical but are subject to equal and opposite forces. We therefore
conclude that these forces cannot exist, and thus f = 0 for doubly-symmetric waveforms. Thus,
only waveforms with broken geometrical symmetries have any hope of synchronizing. We
reproduce below the lubrication analysis by Elfring and Lauga®® detailing the synchronization
dynamics.

Formulation

We consider two identical swimming sheets whose waveform is described by the function ag(z),
where a is the wave amplitude and g its dimensionless shape (Fig. 1.15, left). In order to
focus on cells swimming along straight trajectories, we adopt waveforms possessing reflection
symmetry about the horizontal axis g(z+ ) = —g(z) ®, but not front-back symmetry. Suppose
the bottom sheet (# 1) swims with a velocity —U (thus to the left of Fig. 1.15) and the top sheet
(#2) swims with a different velocity —U + U,. In a frame moving with the sheet # 1, its position
is given by Y| = ag(kz — @t), propagating a wave to the right at a phase speed ¢ = @/k. Sheet
# 2, situated at a mean distance & above and parallel to the sheet # 1, moves at a velocity Ux
to the right relative to the bottom sheet. Its instantaneous position is given by Y» = h+ ag(kz —
ot + ¢), where ¢(7) is the phase difference between the two waveforms. Note the explicit time
dependence in this waveform that arises from the difference in swimming velocities of the two
sheets, Ux. Geometrically, the phase is related to the history of the difference in swimming as
¢(t) = @ —k [{Ux(')dt’, where @ is the initial phase difference. The cases ¢ =0 and ¢ =7
are referred as the in-phase and opposite-phase configurations respectively (Fig. 1.15, right).
The key question to address is whether or not the two sheets can attain synchronized states
i.e. if the phase difference, ¢ (¢), dynamically reaches a steady value. The evolution of the phase
difference respects the overall force-free condition. If however the sheets were not allowed
to undergo relative motion, they would be subject to hydrodynamic forces, whose signs and
magnitudes would govern the physics of synchronization. We therefore first focus on the values
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Figure 1.14: Swimmers whose waveforms have two reflection symmetries cannot synchronize

(f=0).

of the hydrodynamic force acting on the sheets. We analyze the problem in the lubrication limit,
where the distance between the two sheets is small compared with the wavelength, 6 = kh < 1.

Non-dimensionalization

As in Sec. 1.5.1, we non-dimensionalize time as t* = r®, the horizontal length as z* = zk, and
the horizontal velocity as u* = u/c. The only difference is that here we scale the vertical length
by the mean separation distance between the two sheets, y* = y/h. The vertical velocity is then
non-dimensionalized as v* = v/(dc¢). The dimensionless instantaneous positions of the sheets
are thus now Y = a*g*(x*) and Y5’ = 1 +a*g" (x* + ¢*), where x* = z* —r* is the wave variable
and ¢* = ¢* — fé* Ux (t,*)dt/*.The stars represent dimensionless variables and are dropped for
convenience hereafter. All the variables below are dimensionless unless otherwise stated. As a
general feature of lubrication theory, forces on the sheet increase as inverse powers of 9, and
dominate the forces from the fluids located on the other side of the sheets. We therefore only
consider the flow between the two sheets and ignore the outer problem in the analysis below.
Similarly to Sec. 1.5.1, the governing equations in this lubrication limit are given by Eq. (1.88)
in dimensionless variables.

Lubrication analysis

The boundary conditions require some thought since we are in a frame moving at a velocity
—U + ¢, where the shape of the bottom sheet appears to be stationary. Under this frame, the
material points on the bottom and top sheets have a horizontal velocity —c and —c + U, respec-
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¢ =0 In-phase

¢ = T Opposite-phase

Figure 1.15: Geometrical setup for the synchronization of two swimming sheets®8.

tively. The boundary conditions in dimensionless variables are therefore given by

ulx,y=Y))=-1, (1.109a)
Y, dy

v(x,y Yl):a_;l:_d_xl’ (1.109b)

u(x,y="Y2) = —1+U,, (1.109¢)
Y. dyY-

v(x,y:Yz):a—::—d—xz- (1.109d)

We then proceed by the standard procedures in lubrication theory (recall Sec. 1.5.1) to obtain
the velocity field u(x,y) by integrating the x-momentum equation, Eq. (1.88b), twice with the
boundary conditions, Egs. (1.109a) and (1.109c)

y—h
Ys— Y

u(y) = 22 (y V) (y— ¥) + U

1. 1.110
2 dx ( )

We then integrate the continuity equation, Eq. (1.88a), in y between the sheets to obtain

Y
/Z@dyw(m—v(yl) 0. (1111)
y, 0x

Applying the Leibniz’s rule and the boundary conditions, Eq. (1.109), we have

d n ay,
— dy | =Up—— 1.112
- (/Y u y) e (1112)
The integral can be evaluated with Eq. (1.110) to give
n 1 dp 3 UA
dy=———nh"—h({1—— 1.113
/yl = T dx ( 2 ) (L113)

where h(x) =Y, —Y;. Substituting Eq. (1.113) into Eq. (1.112), we obtain the Reynolds equation

1 d (dp ; d h
——— | —h | =— |h+Ur| Yo — = 1.114
12dx<dx ) dx[+A(2 2)} (1.114)
which we will solve to obtain the pressure gradient necessary to compute the hydrodynamic
force acting on the sheets.
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Possible synchronized states

Let us focus on possible synchronized states and their stability. A true synchronized state,
¢ = ¢p, should be a fixed point of the dynamics. We should thus get that d¢ /dt = 0, meaning
no relative motion between the sheets, Uy = 0, and zero net force. We enforce the condition
U = 0 and determine the value(s) of ¢ satisfying the overall force-free condition. With Uy =0,
an integration of the Reynolds equation, Eq. (1.114), leads to the pressure gradient

dp q 1
—=-12| 5+ 1.115
dx (h3 + h2> ’ ( )
where ¢ is a numerical constant. We determine this unknown constant g by enforcing the peri-
odicity of the pressure field [ dp/dx dx = 0, which implies g = —I, /I, where I, = [3™ h™"dx.
The pressure gradient is therefore given by

dp 12 1
— =12 5=—-= |- 1.116
dx <h313 h2) (1.116)

Similarly to Eq. (1.99), the leading-order hydrodynamic force on the top sheet is given by

2/ dp du
fx—/o (Yza_a_y>

Substituting the velocity field, Eq. (1.110), and the value for the pressure gradient, Eq. (1.116),
into Eq. (1.117), we arrive at the expression of the hydrodynamic force acting on the top sheet

dx. (1.117)
y=r;

2 I 1
= | (h3—2,3—ﬁ) (g(r+0) +g(x)] dx. (1118)

when there is no relative motion between the sheets (Uy = 0). From Eq. (1.118), we can see
that the force vanishes at ¢ =0 and ¢ = 7. For ¢ = O (in-phase configuration), the separation
distance /& becomes a constant, leading to I/(h*l3) — 1/h*> = 0. For ¢ = & (opposite-phase
configuration), g(x+ ) + g(x) = 0 due to the symmetry required for cells swimming along
straight lines. The two possible synchronized states are therefore the in-phase (¢9 = 0) and
opposite-phase (¢ = 7) configurations.

Stability of synchronized states

We proceed to evaluate the stability of these fixed points by expanding the hydrodynamic force,
Eq. (1.118), about the fixed points as: ¢ = @+ ¢’, where ¢’ < 1 represents a small perturbation.
Expanding about the in-phase fixed point (¢¢9 = 0), we obtain the force

2m
for —72a%¢" A g(x)g' (x)3dx. (1.119)

Similarly, expanding the force about the opposite-phase fixed point (¢9 = 7) and assuming a
small amplitude wave (a < 1), the force is given by

2n
fr=T2a*0" [ g(x)g (x)*dx. (1.120)
0
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Figure 1.16: The synchronization of two identical swimming sheets. (a): Skewed sinusoidal
waveforms corresponding to A > 0 (red dashed line) and A < O (blue dotted line). The black
line corresponds to an un-skewed sinewave. (b) Evolution of the phase difference, ¢(z), for
different flagellar waveforms.

We can see that the integral

2
A:/ g(x)g' (x)3dx (1.121)
0

in Egs. 1.119 and 1.120, which depends only on the geometry of the waveform, solely dictates
the stability of the fixed points. Furthermore, for a given waveform, the two fixed points have
always opposite stability as shown by the difference in sign between Eq. (1.119) and Eq. (1.120).
If A <0 (resp. A > 0), then the in-phase (resp. opposite-phase) configuration is stable while the
other one is unstable.

Evolution of the phase difference

Although the synchronized states have been determined, we have yet to solve for the dynamic
evolution of the phase difference, ¢(¢), towards the synchronized state. This requires relaxing
the condition Ux = 0 and instead solving for the value of Uy leading to free swimming. We then
geometrically integrate d¢@(¢)/dt = —Up in a quasi-static fashion. To proceed, we integrate
Eq. (1.114) to obtain the pressure gradient as

dp_ 6UA—12 12UAY2—|—C
dx  h? o
where C is an integration constant. By enforcing the periodicity of the pressure field, the con-
stant is determined to be C = [6Ux(l» —2K) — 121] /I5, where K = f02” Y,h~3dx. Substituting
the new expression of the pressure gradient, Eq. (1.122), and the velocity field, Eq. (1.110), into

Eq. (1.117) to compute the leading-order horizontal hydrodynamic force on the top sheet, we
have

(1.122)

27 6UA—12 12UpY> +C
=1 5

)(Yz—f—Yl)—%] dx. (1.123)
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Finally, by enforcing the force-free condition, f = 0, we can solve Eq. (1.123) for Uy as

do 2z b 1 2z 1 2YoI3 + 1, — 2K
Up=-2 =6 2 )d Y Y +1)| dx.
AT T /0 (h313 h2) x//o h o\ L3 (V1 +1)| dx

(1.124)

Notice that, as expected, Eq. (1.124) reduces to Eq. (1.118) in steady state (Ux = 0). Sup-
plying an initial phase difference ¢(t = 0) = ¢, Eq. (1.124) can be computed to obtain the
time-evolution of the phase difference ¢(¢). For illustration, Elfring and Lauga%® considered
two skewed sinusoidal waveforms shown in Fig. 1.16a, which correspond to opposite signs for
the constant A (Eq. 1.121). By numerically integrating Eq. (1.124) with the initial condition
¢ = /2, the phase ¢(¢) is shown in Fig. 1.16b, where the skewed sine function correspond-
ing to A > 0 (red dashed line) attains an opposite-phase synchronized state, whereas the other
skewed sine function having A < 0 (blue dotted line) ends up an in-phase synchronized state.
As expected from the analysis, an un-skewed sinusoidal function (black solid line) maintains its
initial phase difference for all time.

Energy dissipation

We close by briefly remarking on energy dissipation 898, As first considered by Taylor '3, one
can calculate the rate of energy dissipation in the volume of fluid between the sheets at the syn-
chronized states. The global maximum and minimum of energy dissipation occur respectively
at ¢ = 0 and 7, independently of the waveform. In contrast, as shown in the analysis above,
the stability of the fixed points are dictated by the waveform geometry through the integral A
(Eq. 1.121). Therefore, there is no relationship between the configuration yielding the mini-
mum energy dissipation and the location of a stable fixed point. In particular, two sheets can
be forced into a stable configuration at which the energy dissipation is indeed the maximum —
specifically, all geometries such that A > 0 which lead to ¢ = 7. In other words, the system
here does not always adopt a state with minimized energy dissipation.

1.6 Swimming with Elasticity

In this section, we consider the effects of elasticity on inertialess locomotion. Elasticity can be
present in the deforming body (e.g. flexible flagellum) or in the fluid medium (e.g. polymeric
fluids). We first illustrate the roles of elasticity of the body in generating propulsive thrust at low
Reynolds number (Sec. 1.6.1) and then turn our attention to the first effects of viscoelasticity on
microscopic locomotion (Sec. 1.6.2).

1.6.1 Flagellar elasticity

In the previous sections, we assumed the flagellar waveforms were prescribed and computed
the resulting swimming kinematics. However, exactly how the flagellar waveform is actuated
and maintained is an important question to address’?. Several actuation mechanisms have been
elucidated, and they can be categorized into boundary and distributed actuations*. For bound-
ary actuation, the flagellum is driven by a motor at its base and the rest of the flagellum is
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passive; this is the situation arising in bacterial flagella. In the case of distributed actuation rel-
evant to eukaryotic flagella and cilia, there are molecular (dynein) motors distributed all along
the flagellum that cause microtubules to slide, resulting in bending and propulsion. Extensive
theoretical studies have been carried out to determine the flagellar waveform and propulsion
velocity resulting from distributed actuation3%71-7>, Here we focus on a classical calculation of
boundary actuation to illustrate the role of flagellar elasticity in enabling locomotion ’®.

Specifically, we consider an elastic filament wiggled periodically at one end, and we in-
vestigate how the filament flexibility enables the development of non-reciprocal kinematics and
propulsion. The elastic filament has a cross-sectional radius » and total length L described by the
position vector r(s,t) = [x(s,t),y(s,t),z(s,t)], where s denotes the arc-length along the filament
(see Fig. 1.5a). The filament is actuated on one end harmonically with an angular frequency
o. In contrast to previous sections, where r(s,7) is prescribed, here the deformation is an un-
known function of space and time to be determined by balancing viscous and elastic forces on
the filament. In order to write down the force balance and determine the shape, we first need
descriptions of the viscous and the elastic forces, which are given, respectively, by slender body
theory from hydrodynamics and Euler-Bernoulli beam theory from elasticity.

Hydrodynamics: Slender body theory

We assume the filament is sufficiently slender (L >> r) that we can apply slender body theory
(Sec. 1.2.2) to describe hydrodynamic forces. Similarly to Sec. 1.2.2, we use only the leading-
order theory (resistive force theory) and ignore hydrodynamic interactions between distinct
parts of the filament. This local theory was shown to be quantitatively correct for gentle distor-
tions of the filament shape?’—3Y. The local viscous force per unit length acting on the filament
is thus given by (Eq. 1.24)

fuis(s) = — [gtt+ &L (I—tt)| -v=—[E T+ (§ —E)tt] - v, (1.125)

where t(s,7) = ry(s,t) is the local tangent vector to the filament and v(s) = r,(s,#) the local
velocity of the filament (assuming no background flow).

Elasticity: Euler-Bernoulli beam theory

We consider here an elastic and inextensible filament. When the filament is deformed, elastic
bending and tensile forces arise trying to minimize the energy and restore the filament to its
undeformed shape. These elastic forces can be obtained by taking a variational derivative of the
energy functional, & = %fOL [A(rg-rss) + 0(rs-15)]ds, where A = EI is the filament bending
stiffness (the product of Young modulus E and the second moment of area /), and & (s,?) is the
Lagrange multiplier (tension) enforcing local inextensibility, (r;-rs); = 0. The elastic force, per
unit length, is then given by

felastic (S) = _Arssss + (Grs)s y (1126)

and the reader is referred to classical monographs for its derivation”’. Note that here we study
a planar problem, where no twisting along the filament occurs. In three-dimensional problems,
the energy cost due to twisting can enter the energy functional and contribute another restoring
force 877,
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Elastohydrodynamics

Since we are in the low Reynolds number regime, inertial forces are negligible. Hence, the local
viscous force density, Eq. (1.125), balances the local elastic force, Eq. (1.126), fyis + fejastic =0,
yielding the equation governing the elastohydrodynamics of the filament

[gLI—i— <§H - éL)rSrS] Ty = —Algge5+ (Grs)s . (1.127)

Upon the supply of appropriate boundary conditions, the equation can be solved to obtain the
resulting deformation, r(s,7), along the filament.

Non-dimensionalization

We now non-dimensionalize the variables and equations in order to identify the relevant dimen-
sionless parameters governing the physics of this problem. We scale lengths by L, times by the
actuation frequency w~!, velocities by Lo, and forces by A/L?. Using the same symbols for
simplicity, the dimensionless elastohydrodynamic equation now reads

I+ (v ' = 1) rorg] -x = Sp~* [—rysss + (O7y) ], (1.128)

and two dimensionless groups appear: the drag anisotropy ratio y = &, / 5” we encountered in

Sec. 1.2.2, and the so-called Sperm number, Sp =L (&, ® /A)l/ *. which characterizes the rela-
tive influence of the viscous and bending forces’®30. All variables hereafter are dimensionless
unless otherwise stated.

There are two unknowns in Eq. (1.128), namely r(s,¢) and o(s,¢). The equation for o (s,?)
is obtained from the inextensibility condition, (rs-ry), = 0, which implies r; - r,; = 0. In order
to apply this condition, we first invert Eq. (1.128) to obtain

r, = Sp I+ (y— 1) ryry] [Ty + (OT) ], (1.129)

which can be simplified as
I = —Sp [~ Ly + Oyry + OFgs + (Y — 1)K (=g - Tygs + 05)] (1.130)
noting that r - rg = 0 by differentiating the relation ry-rg = 1 once. We then differentiate

Eq. (1.130) and take the inner product with ry to apply the condition r; - r;s = 0, resulting in the
equation for the Lagrange multiplier

’YGss - G(rss 'rss) ‘|‘7rss *Tgsss + 6rsss ‘Togs = 07 (1~131)

while the following identities (obtained by repeated differentiation of the identity ry-ry = 1)
have been used for simplification: rs-rg =0, Iy Fgy = —Tgg - Ty, Ty - Fygs = — 3l - Fygg, and
Iy - Fyggs = —405 - Tyggs — 3Tsss - Fgss. EqQ. (1.131) 1s then a second-order differential equation
for the Lagrange multiplier o(s,t), together with Eq. (1.128), forming a coupled system of
equations for the elastohydrodynamic problem.
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Table 1.1: Boundary conditions for the boundary-actuated filament

Location Boundary conditions Physical meaning (nature)
x=0 y=¢gcost or h=1 Driven (wiggling) end (kinematic)
x=0 Ve =0 or hy =0 Bending moment free (dynamic)
x=1 Ve =0 or hy,, =0 Bending moment free (dynamic)
x=1 Veex =0 or Iy, =0 Force free (dynamic)

Deformation of the filament

In order to model the boundary actuation by a motor at the base of the flagellum, we assume
for simplicity that we sinusoidally oscillate vertically one end of the filament, s = 0, with a
dimensionless amplitude € while the other end of the filament, s = L, is free. Given this actu-
ation, the motion of the filament is confined to the x — y plane, r(s,z) = [x(s,?),y(s,?),0]. The
coupled nonlinear elastohydrodynamic equations for the shape r(s,z) and o(s,7), Egs. (1.128)
and (1.131), can be solved numerically with prescribed boundary conditions. In order to make
analytical progress, we assume that the amplitude of actuation is small € < 1. With this ap-
proximation, we have s ~ x and the position vector can be approximated as r ~ x e, + y(x,?) ey.
The leading-order local velocity of the filament is then given by v = dr/dt ~ [0,dy/dt|. Since
the boundary actuation is O(g), we expect y ~ €. From Eq. (1.131), we then see that & ~ €.
As a result, the leading-order balance in the elastohydrodynamic equation, Eq. (1.128), comes
from the y-direction and is given by

0 ot
Yy _ —Sp_4—y

ot oxt’

a hyper-diffusion equation?®. Note that the higher-order term & does not appear in the dynamic
balance to leading order, significantly simplifying the analysis.

At the actuated end, x = 0, the vertical displacement is given by y |,—o= €cost. This end
is hinged and hence is free of bending moment, y,, |y—o= 0. At the other end of the filament,
x =1, there is no force, Yy |x=1= 0, and no bending moment, y, |,—;= 0. The boundary
conditions and their nature (dynamics and kinematic) are summarized in Table 1.1.

Because of the linearity of Eq. (1.132) and the oscillatory boundary condition at x = 0, we
expect a harmonic solution in time and thus assume a separable solution of the form.

y=¢eZ [e"h(x)] (1.133)

(1.132)

where & denotes taking the real part of a complex number. This allows us to reduce Eq. (1.132)
into an ordinary differential equation with constant coefficients for /(x) as

d*h
o —4
ih = —Sp Ta (1.134)
Assuming a solution of the form 4 = ce®*, where ¢ is a constant, we determine that
k* = —iSp?, (1.135)

which has four roots as

k= "¢ ™/8Sp, n=1,2,3,4. (1.136)
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Figure 1.17: Propulsion by the periodic actuation of a flexible filament. (a) Average dimension-
less propulsive force as a function of the sperm number, Sp. (b) Deformations of the filament
over one period (7T = 27) at different times nm/4, where n = [1,2,...,7] and different fixed val-
ues of sperm numbers (Sp = 1, 2, 4, and 6); the intensity of color decreases as time advances
and the amplitude is € = 0.1.

Superimposing these modes, the general solution is given by
4
h(x) =Y cue", (1.137)
n=1

where k,’s are given by Eq. (1.136), and the constants ¢,’s are determined from the boundary
conditions for 4(x) summarized in Table 1.1 and satisfy the 4-by-4 linear system

4
Y =1, (1.138a)
n=1
4
Y kncn =0, (1.138b)
n=1
4
Y kie*rc, =0, (1.138¢)
n=1
4
Y ketrc,=0. (1.138d)
n=1

The leading-order deformation of the filament, y(x,t) = eZ[e"h(x)] = e [T} caef ], is
then completely determined upon solving the above simultaneous equations for c¢,,.
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Propulsive force

We now calculate the propulsive force developed by the actuation at one end of the filament. The
hydrodynamic force acting on the filament is given by Eq. (1.125), which has the dimensionless
form (scaled by & | Lw)

fyig=—[I+(y"'—1)tt] -v. (1.139)
Using the small-amplitude approximation, € < 1, we have the leading-order velocity v ~ [0 y,]”
and tangent t ~ [1 y,]”, noting that y, y,, and y, are all O(&). Substituting these approximations
into Eq. (1.139) and keeping only the leading-order terms for each component, we obtain the
viscous force as

—1_
fyis ~ — ((y l)yxy’) : (1.140)
Yt

and we note that the x and y-components scale as O(¢?) and O(&) respectively. These results
should be compared with the dimensional form of the viscous force in the swimming problem,
Eq. (1.26). Note also that the y-component of the viscous force has been used in the leading-
order force balance with the elastic force, Eq. (1.132). The leading-order viscous force in the
x-direction can be rewritten as

fx:_('}/_l_l)yxytzsp_4<’}/_l_1)yxyxxxx, (1141)

where we have used Eq. (1.132). The total viscous force acting along the filament is therefore
given by

1 1 1
Fo= /0 fedx=Sp~H(y = 1) /0 YeVeedx = Sp 4y 1 1) <—yxym+ Ey)%x) (1.142)
x=0

upon integration by parts and using the boundary conditions, Yxxy |x=1= Yxx |x=1= 0. Note that
this is the force acting on the filament by the fluid. The force required to hold the filament in
place, or the propulsive thrust F,, has the same magnitude but opposite direction: F), = —Fy.
Averaging the propulsive force over a period of oscillation gives the mean propulsive force

(y'=1) p2= 1, ,
<FP> = TSp“/o yxyxxx_iyxx x:()dt =€ <Fp>2, (1.143)

which is of order £ (as indicated by our use of the subscript 2).

The scaled average dimensionless propulsive force, (F},)», is plotted in Fig. 1.17a as a func-
tion of the sperm number Sp. We observe that propulsion goes to zero in the limit Sp < 1. The
low-Sp limit corresponds to the situation where elastic forces dominate and the filament takes
the shape of a pivoting rigid rod (Fig. 1.17b, Sp = 1), a reciprocal motion unable to generate
propulsion according to the scallop theorem (Sec. 1.1.2). For non-zero values of Sp, flexibility
allows the propagation of waves along the filament, breaking the kinematic reversibility and
enabling propulsion?2%-76.81  For large values of Sp, viscous forces dominate. The bending
of the filament is localized near the actuation point, which can be mathematically shown by
the exponential decay of the solution amplitude, Eq. (1.137), when Sp is large?® (Fig. 1.17b).
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The portion where bending is small contributes little propulsive thrust. We therefore expect a
plateau as Sp increases, as seen in Fig. 1.17. The optimal value of Sp leading to a maximum
propulsive force occurs around Sp ~ 4. It should be remarked that the filament discussed here
is held fixed in the horizontal direction and not allowed to move; only the force required to hold
the filament is calculated. Should the filament be free to move, the swimming velocity can be

determined by enforcing the overall force-free and torque-free conditions®!.

1.6.2 Fluid Elasticity

We now turn our attention to elasticity in the fluid medium and its impact on locomotion. Many
biological fluids are polymeric and display non-Newtonian rheological properties>*82-85 Ag
a result, the locomotion of microorganisms in viscoelastic fluids has recently attracted consid-
erable interest. Fundamental questions, such as whether fluid elasticity enhances or hinders
propulsion, remain under debate36-!. In this section we illustrate an extension of Taylor’s clas-
sical swimming sheet calculation, Sec. 1.2.1, in a viscoelastic fluid. Lauga86 considered vari-
ous non-Newtonian constitutive models, including the Oldroyd-B, FENE-P, Johnson-Segalman-
Oldroyd, Giesekus models, and obtained a seemingly universal conclusion regarding the effect
of viscoelasticity on small-amplitude, inertialess swimming. The origin and limitations of dif-
ferent constitutive models are beyond the scope of this chapter and the reader is referred to
classical books on the subject®>?3. Here we focus on the Oldroyd-B model, arguably the most
popular constitutive equation, both because of its simplicity and the fact that it can be derived
exactly from kinetic theory by modelling the polymeric fluid as a dilute solution of elastic
dumbbells >3

Governing equations

Since we now consider a non-Newtonian problem, we no longer have the Stokes equations but
the general Cauchy’s equation of motion without inertial terms,

Vp=V.T, (1.144)
where 7 is the deviatoric viscoelastic stress tensor. The continuity equation,
V-v=0, (1.145)

remains in effect for incompressible flows.

Constitutive equation

We require constitutive equations, which relate stresses and kinematics of the flow, in order to
close the system of equations. For polymeric fluids, the deviatoric stress may be decomposed
into two components, 7 = 7° + 77, where 7° is the Newtonian contribution from the solvent,
and 77 is the polymeric contribution to the stress. For the Newtonian contribution, the con-
stitutive equation is given simply by 7° = 7y, where i is the Newtonian contribution to the
viscosity and 4 = Vv + Vv’ . The polymeric contribution is described by the classical Oldroyd-
B model, where the polymeric stress, 77, satisfied the upper-convected Maxwell equation

v
TP+ A TP= 1, (1.146)
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where L1, is the polymer contribution to the viscosity and A is the polymeric relaxation time. In
Eq. (1.146), the upper-convected derivative for a tensor A is defined as

v JdA

AZE—FV-VA—VVT-A—A-VV, (1.147)
and represents the rate of change of A in the frame translating, rotating, and deforming with the
fluid. From Eq. (1.146), we can obtain the Oldroyd-B constitutive equation for the total stress,
T, as given by

T+A 7V-=n(~y+12§), (1.148)

where 4 = s+ t,, Ay = A, and A, = ueA /. Here, A1 and A, are, respectively, the relaxation
and retardation times of the fluid. The relaxation time is the typical decay rate of stress when
the fluid is at rest, and the retardation time measures the decay rate of residual rate of strain
when the fluid is stress-free %23, It can be noted that A, < A, and both are exactly zero in the
Newtonian case.

Non-dimensionalization

We adopt the same non-dimensionalizations as in Taylor’s original calculations (Sec. 1.2.1).
We scale times as 1/, lengths as 1/k, and hence speed as by the phase speed of the wave
¢ = w/k. Shear rates and stresses are hence non-dimensionalized as @ and p® respectively.
The dimensionless equations are then given by

V.v=0, (1.1492)
Vp=V.1, (1.149b)

v
T+ De; T =4 +Dey ¥, (1.149¢)

where De; = A and De; = A, @ are defined as the two Deborah numbers for the flow and we
have adopted the same symbols for convenience.

Boundary Conditions
The geometry and boundary conditions of this problem remain unchanged compared with the
Newtonian calculations and are therefore given by Egs. (1.7) and (1.8).

Asymptotic Expansions

In the spirit of Taylor’s original calculations, we consider the small-amplitude limit € < 1 and
look for regular perturbation expansions for the stream function, the swimming speed, and the
deviatoric stress as

v=cey +ev+ ..., (1.150a)
U=¢eU +¢€*Us+..., (1.150b)
T=eT+ETm+ ... (1.150¢)
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Substituting the expansion for stress into the constitutive equation, Eq. (1.149c¢), we obtain

d d
(8T1—|—827'2—|—...) + Dey <8% —|—82 87-2 +£ A\ VT]-EZVVI T1—8 T -Vvi+.. >
d d
= (s*’yl +,«32;),2+.,.) + Dey (g%+g2% + &2 vi-VA; —gZVVlT A1 —gZ,-Y1 -Vvy +) .

(1.151)

The boundary conditions are expanded similarly to the Newtonian case, see Eqgs. (1.10) and
(1.11).
First-order solution

Collecting the terms of the same order, we have the O(¢g) constitutive equation given by

or 0
1 +De, al — 41 +De, a% (1.152)

The equation of mechanical equilibrium, Eq. (1.144), gives at first order Vp; = V- 7. We pro-
ceed to take the divergence of the constitutive equation, Eq. (1.152), and relate the divergence
of stress to the gradient of pressure. We then eliminate the pressure by taking the curl of that
equation, resulting in

(1+De2§)V4y/1 =0, (1.153)

where we have used the kinematic relation V x V-4, = —V*yqe.. Eq. (1.153) is subject to the
same O(¢€) boundary conditions as in the Newtonian case, Eq. (1.12). It is straightforward to see
that the solution satisfying the biharmonic equation, V*y; = 0, with the same boundary condi-
tions in the Newtonian case will also satisfy Eq. (1.153). Therefore, after a possible transient,
the first-order harmonic solution is given by

Y1 = (1+y)e Vsin(x—1), (1.154)

the same as the Newtonian first-order solution, Eq. (1.16). Note that although the flow field
and swimming kinematics remain unchanged by the presence of viscoelastic stresses at leading
order, the rate of work of the sheet is however modified. Readers interested in this calculation
are referred to the original paper3°.

Second-order solution

The second-order constitutive equation is given by

0 0
(l—l—Delg) <1—|—D61(9 )'72 De; (VVIT.Tl +71-Vvi —vVv; -VT])

—Dey (VW] 41 +41 - Vvi—vi-V41),  (1.155)
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where the right-hand side can be computed explicitly using the first-order solution. For conve-
nience, we write the first-order solution in Fourier notations as

) - it =% —it )
%2%(%6”)2%, U1 =i(l1+y)e e ™, (1.156)

where # denotes taking the real part of the quantity and the star denotes the complex conju-
gate in this section. Using similar notations for the stress and rate-of-strain tensors, we write
variables on the right-hand side of Eq. (1.155) as

_ ‘716” +€’T€_” 7~.lezt _'_,7~_1>(<e—zt _ "7)/16” —|—77/ike_”

= =— 17 1.157
\d! 7 ;T 3 ;oM 3 ( )
We further relate ¥ to 4; by rewriting Eq. (1.152) in Fourier notations as
1+1iDe) -
1= ——"7- 1.158
T = 1 iDe, ! ( )

By substituting the above expressions, Egs. (1.157) and (1.158), into the second-order constitu-
tive equation, Eq. (1.155), and averaging in time, we end up with

De; —De Ty v = e w o
<7-2> - <72> =% {m (VV%w A1 +91- V¥V — v 'V’yl):| , (1.159)

where (...) denotes time-averaging over a period of oscillation of the wave. The right-hand side
of Eq. (1.159) can be calculated using the first-order solution, Eq. (1.156), which leads

T — _iy -y ,—ix Vv, — -y i(1+y) -y ,—ix V&, — _2y Ziy -y ,—ix
. (—(1+y)>e con (i(y—l) y )OI T \ay y)C 0

(1.160)
With the first-order solution, Eq. (1.159) then becomes in a matrix form
_ De; —De; ,,( 67?—2y—1  Dej(1+2y—y?)
_ — - T ) 1.161
=)= pe ¢ T D (142-2%) 2242y (1.161

Upon taking the divergence of Eq. (1.161) to relate the divergence of the stress tensor to the
pressure gradient, and then taking the curl to eliminate the pressure, we obtain the equation for
the time-averaged second-order stream function as

8De1 (Del — Dez) 2N -2
Vi) = 1-3y+ Y, 1.162
(v2) I De% ( y+y°)e ( )
This equation is subject to the time-averaged Newtonian boundary conditions (Eq. 1.18),
d
(va) — U, (1.163a)
dy x,y—roo
d
9(w2) _0, (1.163b)
ox Ty—soo
1
o) _ L (1.163¢)
dy ry=0 2
d
o)l (1.163d)
ox xy=0
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Due to the presence of viscoelastic stresses, the equation for the second-order stream function,
Eq. (1.161), is an inhomogenous biharmonic equation, whose solution is a superposition of the
time-averaged homogenous solution, Eq. (1.19),

(Y2)n =Ax+ By, (1.164)
and a particular solution of the form
(ya)p = (a+by+cy?)e ™. (1.165)

The unknown coefficients are determined by substituting the particular solution into Eq. (1.161)
and we obtain

De; (De; — D
4=0, p=c=er(De 262)- (1.166)
2(1+Dey)

The admissible solutions are therefore given by

De(De; — De»)

= + = Ax+By+ 1+y)e 2, 1.167

(v2) = (¥2)n + (¥2)p = Ax+ By 21+ D) y(1+y)e (1.167)
and Egs. (1.163b) or (1.163d) give A = 0. Finally, Eq. (1.163c) leads to
Dei(De; —D 1 14+ DeD

eiDer ~Dey) 1+ p_ 1+ DeiDes (1.168)
2(1+Dey) 2 2(1+Dey)

which is then used with Eq. (1.163a) to lead to the swimming speed
_ 1+ DeDe;
- 2(14De?)

U, = (1.169)
In the Newtonian limit, we have De; = De; = 0, and the solution reduces to U, = Uy = 1/2,
which is the Newtonian swimming speed first obtained by Taylor, Eq. (1.21). We may then
compare the viscoelastic to the Newtonian swimming speeds and find that

U, . 1+ De;Dey

- (1.170)
Uy 1+ De?

Since De,; < Dej, the waving sheet always swims slower in a viscoelastic fluid compared
with a Newtonian fluid, i.e. U, < Uy. This relationship continues to hold in the case of a cylin-
drical filament propagating a travelling wave®’. Further numerical simulations of a swimming
sheet in a complex fluid recovered the asymptotic results presented in this section in the limit
of small wave amplitude®, while suggesting that fluid viscoelasticity can increase swimming
speeds in the case of finite-amplitude swimmers.

Recent experiments on the locomotion of Caenorhabditis elegans in synthetic polymeric so-
lutions showed quantitative agreement with the asymptotic analysis®®. In contrast, experiments
on rotating helices in viscoelastic fluids reported more complex results where decrease of the
swimming speed is seen for small-amplitude motion while a modest increase of the swimming
speed is obtained for larger amplitudes®’. A recent numerical study on the locomotion of he-
lices in viscoelastic fluids connects results from small-amplitude theories to large-amplitude
experimental measurements. Further work will be needed to fully unravel to the role of fluid
elasticity in small-scale locomotion.
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Figure 1.18: Different designs of synthetic micro-propellers. Flexible propellers: (a)®® and
(b)°; rigid helical propellers: (©)? and (d)!'99; surface walkers: (e)!°!, (£)192 and (g)lo3 ; cat-
alytic swimmers: (h)!%* and (i)'%. All images were reprinted with permission: (a) from Drey-
fus et al.”3. Copyright (©)2005 Nature Publishing Group; (b) from Pak et al.® with permission
from The Royal Society of Chemistry; (¢) from Zhang et al.*® ©)2009 American Chemical So-
ciety; (d) from Ghosh and Fischer!'® ©2009 American Chemical Society; (e) from Tierno et
al.'%" ©2008 American Physical Society; (f) from Zhang et al. 1% ©2010 American Chemical
Society; (g) from Sing et al. 93 (©2008 National Academy of Sciences, USA; (h) from Paxton
et al. ' ©2004 American Chemical Society; (i) from Ebbens and Howse !9 ©2011 American
Chemical Society.

1.7 Synthetic micro-propellers

In the previous sections, we reviewed classical theoretical models addressing the swimming
of microorganisms. Beyond the biological realm, similar concepts and ideas may be applied
to analyzing and designing synthetic micro-swimmers. These are of current interest for po-
tential biomedical applications such as micro-surgery and targeted drug delivery®*. Thanks in
part to our improved understanding of low-Reynolds-number hydrodynamics and to advances
in micro- and nano-fabrication, a variety of synthetic propelling devices have been proposed.
Some are biomimetic and use biology as an inspiration while others take advantage of differ-
ent mechanisms offered by physics in order to achieve micro-propulsion. In this section, we
very briefly introduce several of these mechanisms together with their basic physical principles.
Interested readers are referred to comprehensive reviews of recent progress on the design of
synthetic micro-swimmers*!%-94-97

We categorize the design of different synthetic micro-propellers as shown in Fig. 1.18. As
a preliminary remark, we note that many propellers driven by external fields are often referred
to as swimmers in the literature. Although they are force-free, strictly speaking, they do not
represent true self-propulsion like that of swimming microorganisms because of the presence
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of non-zero external moments. This is why we use the generic term propellers instead of swim-
mers.

The first propeller category is that of flexible propellers, which exploit the flexibility of a
body — typically a slender filament — to develop non-reciprocal deformation for propulsion. The
underlying physical principle is similar to that discussed in Sec. 1.6.1. Dreyfus et al.® realized
the idea experimentally by fabricating a 24 mm long flexible filament composed of paramag-
netic beads linked by DNA, and the filament was attached to a red blood cell (Fig. 1.18a).
Different from the boundary actuation discussed in Sec. 1.6.1, actuation in this propeller was
distributed along the filament by the paramagnetic beads, driven by an external, transverse, pla-
nar magnetic field. The presence of the red blood cell broke the frontback symmetry of the
device, and allowed the propagation of a travelling wave along the filament and propulsion.
Recently, metallic nanowires have been also used to fabricate flexible swimmers®1%. A typical
nanowire motor consists of two segments, silver (Ag) and nickel (Ni) (Fig. 1.18b). The ferro-
magnetic nickel segment is driven by a rotating magnetic field, and the flexibility of the silver
segment allows chiral deformations to develop along the filament, leading to propulsion. The
importance of chiral deformation for micro-propulsion has been illustrated in the second exam-
ple discussed in Sec. 1.1.1 (Fig. 1.2b). In contrast to the propeller proposed by Dreyfus et al.”%,
the actuation in these nanowire motors is acting solely on the rigid magnetic nickel portion of
the filament, while the flexible silver portion is passive.

The second group of swimmers is that of rigid helical propellers, similar to the helical bac-
terial flagella discussed in Sec. 1.2.2. These rigid helices are rotated by external magnetic fields
and achieve translation thanks to the chirality of their shapes®”!1%(Figs. 1.18¢ and d). Com-
paring the flexible nanowire motors with rigid helical propellers, the former develops chirality
dynamically due to the balance between viscous and elastic forces acting on the filament and
the chiral deformation changes with the actuation, while the latter has the chirality already built
in the rigid structure and does not change with the actuation. However, they typically require
more complex fabrication techniques.

The third group of swimmers is composed of surface walkers, which rely on the presence
of a rigid surface to break the spatial symmetries enabling propulsion. These surface walkers
typically utilize a rotating magnetic field and exploit the fact that viscous drag varies spatially
at different phases of rotation due to the presence of a nearby boundary. Consider the dou-
blet %1197 shown in Fig. 1.18e as an example: the viscous drag is larger when the smaller
particle in the doublet is closer to the surface than when it is farther away from the surface.
Averaging the viscous drag over one period of rotation, there is hence a net force in the lateral
direction, leading to a lateral translation in order to satisfy the force-free condition. The same
principle applies to other objects externally driven to rotate near a surface, including a single
sphere, a chain of superparamagnetic beads'® or nanowires '2.

Another type of swimmers are called catalytic swimmers, which rely on chemical reactions
between the swimmer and a fuel in the surrounding fluid for propulsion, e.g. hydrogen peroxide.
These swimmers usually consist of two different materials (janus) so that the chemical reaction
occurs only with one half (typically platinum) of the swimmers®>. The asymmetric distribution
of reaction products hence drives the self-diffusiophoretic motion of the swimmer %119 which
can also be understood as an osmotic propulsion mechanism!!'!. The creation of bubbles in this
setup can also be exploited for propulsion 12113

Besides the types of swimmers discussed above, other interesting designs have been pro-
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5

posed, including Purcell’s three-link swimmer, two- 114 or three—sphere” swimmers, and the

surface-treadmilling swimmer3*.

1.8 Concluding remarks

In this chapter, we have presented an extensive catalog of theoretical models and analytical
techniques employed in the studies of low-Reynolds-number locomotion. Useful exact solution
methods such as Lamb’s general solution (Sec. 1.3.1) and the reciprocal theorem (Sec. 1.3.2)
have been introduced. In many problems, however, in order to make analytic progress one has
to focus on certain asymptotic limits, such as small-amplitude analysis (Secs. 1.2.1 and 1.6.2),
slender body theory (Secs. 1.2.2 and 1.6.1), lubrication theory (Secs. 1.5.1 and 1.5.3), and far-
field approximations (Secs. 1.4 and 1.5.2). On the other hand, different numerical methods,
such as the boundary element method>? and the method of regularized Stokeslets !'®, have also
been developed to address the subject, but a discussion of these approaches is beyond the scope
of this chapter.

The statement of Purcell’s scallop theorem in Sec. 1.1.2 appears to be simple but it has far-
reaching importance in locomotion at small scales. The theorem holds for reciprocal motion
in Newtonian fluids at zero Reynolds number. An examination of these assumptions reveals
different ways around the theorem to produce micro-propulsion '?, including generating non-
reciprocal motion (propagation of flagellar waves) and exploiting non-Newtonian rheological
properties>117-118 - Another way to escape from the constraints of the scallop theorem is via
inertia. For small-scale locomotion, the Reynolds number is small but cannot be exactly zero,
unless no motion occurs. A fundamentally interesting question is then, how much inertial force
is necessary to break the constraints of the scallop theorem ''°? Is the breakdown continuous or
discontinuous? This topic has recently been studied extensively 120124,

Finally, we remark on another physical process at small scales not taken into account in this
chapter — namely, the presence of noise and fluctuations. Not noticeable in the macroscopic
life, on very small scales the effects of Brownian motion can be dramatic, akin to walking in a
hurricane in our world'>. The deterministic approach outlined in this chapter will then be valid
only on short time scales. On longer time scales, a motile cell will typically always undergo
effective diffusion. Interested readers are referred to a biophysical introduction to this topic 2.

This chapter was designed to serve as a pedagogical introduction to the theoretical modelling
of low-Reynolds-number locomotion, and we hope that it will inspire many to contribute to this
active and exciting field. There is still plenty of room at the bottom!
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