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The biological fluids encountered by self-propelled cells display complex microstruc-
tures and rheology. We consider here the general problem of low-Reynolds number
locomotion in a complex fluid. Building on classical work on the transport of particles
in viscoelastic fluids, we demonstrate how to mathematically derive three integral
theorems relating the arbitrary motion of an isolated organism to its swimming
kinematics in a non-Newtonian fluid. These theorems correspond to three situations
of interest, namely, (1) squirming motion in a linear viscoelastic fluid, (2) arbitrary
surface deformation in a weakly non-Newtonian fluid, and (3) small-amplitude defor-
mation in an arbitrarily non-Newtonian fluid. Our final results, valid for a wide-class
of swimmer geometry, surface kinematics, and constitutive models, at most require
mathematical knowledge of a series of Newtonian flow problems, and will be use-
ful to quantity the locomotion of biological and synthetic swimmers in complex
environments. C© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4891969]

I. INTRODUCTION

Among all active fields of fluid mechanics, the biological hydrodynamics of cellular life has
recently undergone a bit of a renaissance.1 This is due to three facts. First, while the hydrodynamics
of swimming cells primarily interested scientists from traditional continuum mechanics,2–6 many
problems in collective locomotion have found traction in the condensed matter physics community,
with a number of questions still under active debate.7 Second, new quantitative data from the
biological world have led to renewed interest in classical questions, in particular, regarding the
synchronization of cellular appendages.8 The third reason, and the one at the center of our study,
concerns locomotion in fluids displaying non-Newtonian characteristics.

In most biological situations, the fluids encountered by self-propelled cells display complex
microstructures and rheology. Some bacteria progress through multi-layered host tissues while others
live in open water surrounded by particle suspensions.9 Lung cilia have to transport viscoelastic,
polymeric mucus.10 Mammalian spermatozoa have to overcome the resistance of cervical mucus
in order to qualify for the race to the finish line.11 In all these situations, a non-Newtonian fluid is
being transported, or being exploited to induce fluid transport, and it is of fundamental importance
to quantify the relationship between kinematics and the resulting transport.

The problem of predicting the swimming speed of a low-Reynolds swimmer in a complex
fluid was first addressed in three pioneering studies focusing on a two-fluid model,12 second-order
fluid,13 and linearly viscoelastic fluids.14 Recent work started by looking at the asymptotic regime
of small-amplitude waving motion in Oldroyd-like fluids,15–17 predicting that, for a fixed swimming
gait, the swimming speed is always smaller than in a Newtonian fluid. Importantly, that result does
not appear to depend on the detail of the continuum description for the viscoelastic fluid, and is
unchanged for more advanced nonlinear relationships such as FENE (finitely extensible nonlinear
elastic) or Giesekus in the same asymptotic limit.15 Numerical computations in two dimensions were
then employed to probe the limit of validity of these results. While they confirmed the low-amplitude
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results, they also demonstrated that for some large-amplitude motion viscoelasticity could actually
enhance the swimming speed of the model cell.18 In contrast, simulations for spherical squirmers—
swimmers acting on the surrounding fluid tangentially to their shape—showed that viscoelastic
swimming was systematically slower than its Newtonian counterpart even at high Weissenberg
number.19, 20

Beyond polymeric fluids, analytical modeling was also proposed for locomotion in fluids dis-
playing other rheological behavior. The two-dimensional approach was applied to swimming in a
gel,21 a two-phase fluid,22 and yield stress materials.23 A series of models was exploited to demon-
strate that locomotion in a heterogeneous media—one made of stationary rigid inclusions—could
systematically enhance self-propulsion.24 Inelastic fluids with shear-dependent viscosities were
also considered. While they necessarily impact the fluid motion at a higher order than polymeric
stresses,25 it was shown that shear and therefore rheological gradients along the swimmer could
lead to swimming enhancement.26, 27 Different setups were also proposed and tested to demonstrate
that nonlinearities in the fluid rheology could be exploited to design novel actuation and swimming
devices.28–32

In contrast with theoretical studies, detailed experimental work on the fluid mechanics of
swimming in complex fluids has been limited to a small number of investigations. A study of
the nematode C. elegans self-propelling in synthetic polymeric solutions behaving as Boger fluids
(constant shear viscosities) showed a systematic decrease of their swimming speed33 consistent with
asymptotic theoretical predictions.15, 16 In contrast, recent work on a two-dimensional rotational
model of a swimming sheet demonstrated that Boger fluids always lead to an increase of the
swimming speed while elastic fluids with shear-thinning viscosities lead to a systematic decrease.34

The swimming increase in Boger fluid was also obtained in the case of force-free flexible swimmers
driven by oscillating magnetic fields.35 Translating rigid helices used as a model for free-swimming
of bacteria were further shown to also decrease their swimming speed at small helix amplitude but
displayed a modest speed increase for larger helical amplitude.36 This increase is consistent with
earlier computations18 and was further confirmed by a detailed numerical study.37

In this paper, we consider theoretically the general problem of low-Reynolds number locomo-
tion in a non-Newtonian fluid. Following classical work proposing integral formulations to quantify
cell locomotion in Newtonian flows38 and the motion of solid particles in viscoelastic fluids39–44

(themselves adapted from earlier work on inertial effects45–48), we demonstrate how to mathemat-
ically derive three integral theorems relating the arbitrary motion of an organism to its swimming
kinematics. After introducing the mathematical setup (Sec. II) and recalling the classical results
for locomotion in a Newtonian fluid (Sec. III), the first theorem considers the classical tangential
squirmer model of Lighthill and Blake (Sec. IV). We demonstrate that in this case, in an arbi-
trary linear viscoelastic fluid the swimming kinematics are the same as in a Newtonian fluid. The
second theorem considers the asymptotic limit of small deviation from the Newtonian behavior
(low Deborah number limit) with no asymptotic constraint on the amplitude of the deformation
(Sec. V). We compute analytically in this weakly non-Newtonian regime the first-order effect of
the non-Newtonian stresses on the swimming kinematics. In the final, and more general, theorem
we address an arbitrary nonlinear viscoelastic fluid and derive the swimming kinematics in the
limit of small-amplitude deformation (Sec. VI). The theorems in Secs. V and VI address therefore
two complementary asymptotic limits: small deformation rate in Sec. V (low Deborah number) vs.
small deformation amplitude in Sec. VI (low Weissenberg number, arbitrary Deborah number). The
implications of our results for Purcell’s scallop theorem are then discussed in Sec. VII. Finally, we
apply the general theorem from Sec. VI to the locomotion of a sphere in an Oldroyd-B fluid in
Sec. VIII. We show in particular that we can construct swimming kinematics which are either en-
hanced or reduced by the presence of viscoelastic stresses, thereby further demonstrating that the
impact of non-Newtonian rheology on swimming is kinematics-dependent.

II. MATHEMATICAL SETUP

The mathematical setup for the swimming problem is illustrated in Fig. 1. We consider a
closed surface S0 undergoing periodic deformation into a shape denoted S(t). This shape is that
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FIG. 1. Schematic representation of the swimming problem: Material points on a surface S0 are moving periodically to a
time-dependent shape S(t). The instantaneous velocity on the surface is denoted uS, and is the swimming gait. As a result of
free swimming motion, the shape S(t) moves instantaneously with three-dimensional solid body velocity U(t) and rotation
rate !(t).

of an isolated three-dimensional swimmer self-propelling in an infinite fluid. We use the notation
xS for the instantaneous location of the material points on the surface of the swimmer and n the
instantaneous normal to the surface S(t). The velocity field and stress tensor in the fluid are written
u and σ , respectively. The stress is given by σ = −p1 + τ where p is the pressure, 1 the identity
tensor, and τ the deviatoric stress, modeled by specific constitutive relationships considered in
Secs. III–VIII. The equations to solve for the fluid are the incompressibility condition, ∇ · u = 0,
and Cauchy’s equation of motion in the absence of inertia

∇ p = ∇ · τ . (1)

The boundary conditions for Eq. (1) are given by

u(xS, t) = U + ! × xS + uS, (2)

where the imposed surface velocity, uS(xS, t), is the swimming gait, and {U,!} are the unknown
swimming kinematics, i.e., the instantaneous solid body translation and rotation of the shape S(t).
Both are to be determined by enforcing the instantaneous condition of no net force or torque on the
swimmer as

∫∫

S(t)
σ · n dS =

∫∫

S(t)
xS × (σ · n) dS = 0. (3)

Note that throughout the paper we will use the notation γ̇ = ∇u +t∇u for the shear rate tensor, γ̇ ,
equal to twice the symmetric rate-of-strain tensor (t denotes the transpose of a tensor). Note also
that surface motion (uS $= 0) does not necessarily imply a change in shape as only the components
of uS normal to the surface, uS · n, contribute to the deformation of the shape.

III. NEWTONIAN CASE

Before addressing the non-Newtonian case, we briefly summarize here the integral theorem in
the Newtonian case for which τ = µγ̇ . This is work originally presented by Stone and Samuel38

based on an application of Lorentz’ reciprocal theorem.
We consider two solutions of Stokes flow with the same viscosity around the instantaneous

surface S(t). The first one has velocity and stress fields given by (u, σ ) and is that of the swimming
problem. Its boundary conditions are thus yet to be determined. The second solution, denoted (û, σ̂ ),
is the problem of solid body motion with instantaneous shape S(t), with force F̂,

F̂ =
∫∫

σ̂ · n dS, (4)

and torque L̂ with respect to some origin in the body,

L̂ =
∫∫

xS × (σ̂ · n) dS. (5)
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In the hat problem, the shape S(t) moves thus instantaneously like a solid body with velocity Û and
rotation speed !̂, and thus on the surface we have

û = Û + !̂ × xS, (6)

for all material points xS.
In the absence of body forces, Lorentz’ reciprocal theorem states if both problems concern a

fluid with identical viscosity we have the equality of virtual powers
∫∫

S
u · σ̂ · n dS =

∫∫

S
û · σ · n dS. (7)

Since û is known everywhere on the surface, Eq. (6), the left term in Eq. (7) gives
∫∫

S
û · σ · n dS = Û ·

∫∫

S
σ · n dS + !̂ ·

∫∫

S
xS × (σ · n) dS = 0, (8)

because swimming is force- and torque-free at all instants, see Eq. (3). Consequently, Eq. (7)
simplifies to

∫∫

S
u · σ̂ · n dS = 0. (9)

By using the kinematic decomposition on the swimmer surface in Eq. (2), Eq. (9) becomes
∫∫

S
u · σ̂ · n dS = U ·

∫∫

S
σ̂ · n dS + ! ·

∫∫

S
xS × (σ̂ · n) dS +

∫∫

S
uS · σ̂ · n dS = 0 (10)

and thus, using Eqs. (4) and (5) we finally obtain

F̂ · U + L̂ · ! = −
∫∫

S
uS · σ̂ · n dS. (11)

The final result, Eq. (11), is an equation for the swimming kinematics, {U,!}. In order to solve
that equation, one needs to know the distribution of stress, σ̂ · n, on the surface S for solid body
motion in a Newtonian flow under and external force F̂ and torque L̂, which we assume is known.
Since the values of F̂ and L̂ are arbitrary, Eq. (11) allows us to solve for all components of U and !.

As a side note which will be exploited later in the paper, we remind that the two velocity and
stress fields in the application of Lorentz’ reciprocal theorem correspond to two problems in the
same Newtonian fluid. However, this constraint is relaxed in the final result quantified by Eq. (11).
This is because the left-hand side of Eq. (7) turns out to be identically zero and a solid body motion
implies zero virtual rate of work against a distribution of stress from force-free and torque-free
swimming. Another way to see this is to note that by changing the fluid viscosity in Eq. (11), both
sides of the equation are modified by the same prefactor since forces, torque, and stresses all scale
proportionally with the viscosity in the Stokes regime.

IV. SQUIRMING IN A LINEARLY VISCOELASTIC FLUID

A. Squirming

In this section, we present the derivation for the first of our integral theorems. We consider here
the class of swimmers known as squirmers which deform their surfaces everywhere in the direction
parallel to their shapes, i.e., for which uS · n = 0 for all times. The shape of the swimmer is therefore
fixed in time, S0, and the distribution of velocity uS is assumed to be known on S0 (uS does not
have to be steady, as we see below). This squirmer model, most often used when S0 is a sphere,
was first proposed by Lighthill,49 with corrections by Blake,50 and is one of the very few analytical
solutions to low-Reynolds swimming. As such, it has proven very popular to address a larger number
of fundamental problems in cell locomotion, including hydrodynamic interactions,51 the rheology
of swimmer suspensions,52 optimal locomotion,53 nutrient uptake,54, 55 inertial swimming,56 and
locomotion in polymeric fluids.19, 20
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B. Generalized linear viscoelastic fluid

For the constitutive relationship, we assume in this section that the fluid is a generalized linear
viscoelastic fluid.57, 58 Admittedly, this is a very idealized assumption as the flow around a swim-
ming cell is non-viscometric while the linear constitutive equation only applies to small-amplitude
viscometric motions. However, within this idealized class of fluids, we are able to obtain the solution
for the swimming problem exactly without requiring any asymptotic expansion, which makes it
a valuable exercise. Furthermore, the work in this section will in fact represent the leading-order
behavior for a fluid with a more complex, nonlinear rheology as addressed in Sec. VI asymptotically,
and therefore the mathematical details outlined below are important preliminaries.

A generalized linear viscoelastic fluid is characterized by arbitrary relaxation modulus, G, such
that the stress is linearly related to the history of the rate of train in the most general form as

τ (x, t) =
∫ t

−∞
G(t − t ′)γ̇ (x, t ′) dt ′, (12)

or, using index notation,

τi j (x, t) =
∫ t

−∞
G(t − t ′)γ̇i j (x, t ′) dt ′. (13)

In order to derive the integral theorem in this section we are going to use Eq. (13) written
in Fourier space. This will allow us to derive an integral theorem for each Fourier components
of the swimming kinematics (see earlier work on the so-called correspondence principle for linear
viscoelasticity59). The one-dimensional Fourier transform and its inverse are defined for any function
f(t) as

f̃ (ω) = 1√
2π

∫ ∞

−∞
f (t)e−iωt dt, f (t) = 1√

2π

∫ ∞

−∞
f̃ (ω)eiωt dt. (14)

Following a classical textbook approach,58 we apply the Fourier transform to Eq. (13), leading to

τ̃i j (x,ω) = 1√
2π

∫ ∞

−∞
τi j (x, t)e−iωt dt = 1√

2π

∫ ∞

−∞

[∫ t

−∞
G(t − t ′)γ̇i j (x, t ′) dt ′

]
e−iωt dt. (15)

Change the order of time-integration allows us to obtain

τ̃i j (x,ω) = 1√
2π

∫ ∞

−∞

[∫ ∞

t ′
G(t − t ′)e−iωt dt

]
γ̇i j (x, t ′) dt ′. (16)

We then write e−iωt = e−iω(t−t ′)e−iωt ′
and get

τ̃i j (x,ω) = 1√
2π

∫ ∞

−∞

[∫ ∞

t ′
G(t − t ′)e−iω(t−t ′) dt

]
γ̇i j (x, t ′)e−iωt ′

dt ′. (17)

A final change of variable t̄ = t − t ′ in the bracketed integral leads to

τ̃i j (x,ω) = 1√
2π

∫ ∞

−∞

[∫ ∞

0
G(t̄)e−iωt̄ dt̄

]
γ̇i j (x, t ′)e−iωt ′

dt ′. (18)

Defining

G(ω) =
∫ ∞

0
G(t̄)e−iωt̄ dt̄, (19)

we are able to take G(ω) out of the integral relationship in Eq. (18), leading to

τ̃i j (x,ω) = G(ω) ˜̇γi j (x,ω). (20)

The statement in Eq. (20) is the constitutive relationship written in Fourier space, while Eq. (19) is
the classical approach to relate the relaxation modulus of the fluid to the storage and loss modulus
in Fourier space.58
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C. Integral theorem

In order to derive the integral theorem, we first rewrite the swimming problem in Fourier space.
Since the kinematics is restricted to squirming motion, the shape of the swimmer does not change,
and uS is known with no ambiguity in the Eulerian frame for each point xS and for all times. We
therefore decompose the surface velocity in Fourier modes as

uS(xS, t) = 1√
2π

∫ ∞

−∞
ũS(xS,ω)eiωt dt, (21)

and do similarly for the swimming kinematics as

{U(t),!(t)} = 1√
2π

∫ ∞

−∞
{Ũ(ω), !̃(ω)}eiωt dt. (22)

The Fourier transforms of the velocity and pressure fields are similarly defined.
Using Eq. (20), we then see that the incompressible Cauchy’s equation, Eq. (1), becomes in

Fourier space

∇ p̃(x,ω) = G(ω)∇2ũ(x,ω), ∇ · ũ(x,ω) = 0. (23)

Consequently, the swimming problem consists in solving Eq. (23) with the boundary condition

ũ(xS,ω) = Ũ(ω) + !̃(ω) × xS + ũS(xS,ω). (24)

The problem defined by Eqs. (23) and (24) is a Stokes flow locomotion problem with (complex)
viscosity G(ω). The integral theorem of Sec. III is then directly applicable, and we have

F̂ · Ũ(ω) + L̂ · !̃(ω) = −
∫∫

S
n · σ̂ · ũS(xS,ω) dS. (25)

The final step allowing us to go back from Fourier to real space is to take advantage of the fact
that the hat problem in Eq. (25) is a Newtonian Stokes flow with arbitrary viscosity (see the discussion
at the end of Sec. III). We can take it to be a constant reference viscosity, µ0, independent of the
frequency ω. Furthermore, the shape S of the swimmer is not a function of time. We therefore see
that none of the terms in Eq. (25) depend on the frequency except for the three Fourier components:
U(ω), !(ω), and ũS(xS,ω). The inverse Fourier transform in Eq. (14) can directly be applied to
Eq. (25) leading to the same integral equation as for the Newtonian case

F̂ · U + L̂ · ! = −
∫∫

S
n · σ̂ · uS dS. (26)

In summary, for squirming in an arbitrary linear viscoelastic fluid we obtain an exact integral
theorem for the swimming kinematics, Eq. (26), identical to the Newtonian one. The squirming
velocity and rotation rate in a linearly viscoelastic fluid are thus identical to those in a Newtonian
fluid. In Eq. (26) the hat problem is in a different fluid though, namely, a Newtonian Stokes flow
with constant, arbitrary, viscosity. It is notable that no asymptotic assumption was required to derive
Eq. (26).

Two hypotheses were necessary in order to derive this result. First, we assumed that the motion
was always tangential to the shape, allowing us to write the boundary condition on the swimmer
surface in Fourier space and to take the inverse Fourier transform of Eq. (25) with no ambiguity.
Second, we assumed that the fluid was linearly viscoelastic with no nonlinear rheological response
(despite the shortcomings of this hypothesis, as outlined above). Beyond this, no restriction was
required on the distribution of surface velocity, uS, and in particular it could be unsteady. If either
hypothesis breaks down, and the fluid is nonlinear (as most fluids are) or the swimmer undergo
normal shape deformation, an asymptotic analysis will be required, as we show in Secs. V–VI.
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V. SWIMMING IN WEAKLY NON-NEWTONIAN FLUIDS

A. Weakly non-Newtonian rheology

In this section, we consider fluids whose rheological behaviors are close to that of a Newtonian
fluid. If a fluid displays a zero-shear-rate Newtonian behavior, then we are concerned here in
situations in which the fluid is deformed at small shear rate, and we will quantify the first effect of
non-Newtonian rheology.

Two specific examples of such fluids can be given. For an inelastic fluid with shear-
dependent viscosity η (so-called Generalized Newtonian fluids), we are interested in the limit where
(η− η0)/η0 ( 1 when η0 is the zero-shear-rate viscosity.58 Another example is that of elastic fluids
at small Deborah numbers, De ( 1, for which the constitutive relationship is the retarded motion
expansion.57

In all cases, we assume that the non-Newtonian rheology of the fluid is a small perturbation,
of dimensionless size ε, on an otherwise Newtonian dynamics. We thus write the constitutive
relationship in the most general form as

τ = ηγ̇ + ε%[u], (27)

where %[u] is a symmetric tensor and an arbitrary nonlinear functional of u with units of stress and
ε ( 1 quantifies the small deviation from Newtonian behavior. For example, ε could be a small
Deborah number in the case of viscoelastic fluids, or a small Carreau number for a shear-thinning
fluid. Importantly, since we assume a small value for ε we have no time-history in the constitutive
relationship and therefore the shape S(t) will be allowed to vary arbitrarily in time.

B. Integral theorem

In order to derive the integral theorem in this case, we adapt below classical work on the first
effect of non-Newtonian rheology on the dynamics of small particles in externally-driven flows
(see, e.g., classical studies in Refs. 39–42 and reviews in Refs. 43 and 44) to the case of self-
propulsion. The reader already familiar with these works will not be surprised by the final form of
the non-Newtonian component of the swimming speed derived in Eq. (44).

1. Asymptotic expansion

We look for regular perturbation expansions for all variables under the form

{u, τ , p, σ } = {u0, τ 0, p0, σ 0} + ε{u1, τ 1, p1, σ 1} + . . . (28)

and similarly for the resulting locomotion kinematics

{U,!} = {U0,!0} + ε{U1,!1} + . . . , (29)

which, in the most general case, are allowed to depend in time.
The swimming gait, uS, is imposed at order ε0 and has no component at higher orders. In other

words, the swimming gait is fixed and independent of the rheological behavior of the fluid. On the
swimmer surface we thus have the instantaneous boundary conditions at order ε0 and ε given by

u0 = U0 + !0 × x + uS, (30a)

u1 = U1 + !1 × x. (30b)

The hydrodynamic force and torque on the swimmer are given by

F(t) =
∫∫

S(t)
n · σ dS, L(t) =

∫∫

S(t)
xS × (σ · n) dS, (31)

where the torque can be computed with respect to an arbitrary origin since F = 0. Expanding both
in powers of ε we obtain

{F, L} = {F0, L0} + ε{F1,!1} + . . . , (32)
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and we see that the force- and torque-free requirements lead to Fi = !i = 0 at any order i for all
times.

2. Order ε0

At order ε0, the flow is Newtonian, σ 0 = −p01 + ηγ̇ 0, and we can directly apply the integral
result from Sec. III

F̂ · U0 + L̂ · !0 = −
∫∫

S(t)
n · σ̂ · uS dS, (33)

where S(t) is the instantaneous shape of the swimmer (note that we placed no restriction on the
amplitude of the surface motion).

3. Order ε

At next order, we are interested in deriving the new formulae leading to U1 and !1. At order ε,
the constitutive relationship is written as

σ 1 = −p11 + ηγ̇ 1 + %[u0]. (34)

In order to derive the integral result, we first have to use a modified version of Lorentz reciprocal
theorem. We start by noting that we have, at each instant,

∇ · σ 1 = 0 = ∇ · σ̂ , (35)

where the hat stress field, σ̂ , refers to the Stokes flow where the body is subject to external force, F̂,
and an external torque, !̂, in Newtonian fluid of viscosity η (same notation as in Sec. III). We then
dot Eq. (35) with the velocity fields û and u1 as

û · ∇ · σ 1 = u1 · ∇ · σ̂ , (36)

which states that the virtual rates of working of each flow in the opposite stress field are equal.
Integrating Eq. (36) over the entire fluid volume, V (t), and using the divergence theorem leads to
the equality

∫∫

S(t)
n · σ̂ · u1 dS −

∫∫

S(t)
n · σ 1 · û dS =

∫∫∫

V (t)
σ 1 : ∇û dV −

∫∫∫

V (t)
σ̂ : ∇u1 dV, (37)

where the normal n is directed into the fluid. Examining the right-hand side of Eq. (37) we can
rewrite it as ∫∫∫

V (t)
σ 1 : ∇û dV −

∫∫∫

V (t)
σ̂ : ∇u1 dV =

∫∫∫

V (t)
%[u0] : ∇û dV

+
∫∫∫

V (t)

[
(−p11 + ηγ̇ 1) : ∇û − (− p̂1 + η ˆ̇γ ) : ∇u1

]
dV . (38)

Using incompressibility for the fields u1 and û (i.e., ∇ · u1 = ∇ · û = 0), it is straightforward to
show that∫∫∫

V (t)
{(−p11 + ηγ̇ 1) : ∇û − (− p̂1 + η ˆ̇γ ) : ∇u1} dV =

∫∫∫

V (t)
η{γ̇ 1 : ∇û − ˆ̇γ : ∇u1} dV,

(39)
which is zero by symmetry, so that Eq. (37) becomes

∫∫

S(t)
n · σ̂ · u1 dS −

∫∫

S(t)
n · σ 1 · û dS =

∫∫∫

V (t)
%[u0] : ∇û dV . (40)

In the hat problem, the surface instantaneously moves with solid-body motion with velocity Û
and rotational speed !̂, and therefore on the surface of the swimmer, we have û = Û + !̂ × xS .
Consequently, the second integral on the left-hand-side of Eq. (37) is given by

∫∫

S(t)
n · σ 1 · û dS = Û ·

∫∫

S(t)
n · σ 1 dS + !̂ ·

∫∫

S(t)
xS × (n · σ 1) dS. (41)
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The two integrals on the right-hand side of Eq. (41) are the instantaneous first-order force and torque
on the swimmer, which, as was shown above, are both zero and thus we obtain

∫∫

S(t)
n · σ 1 · û dS = 0. (42)

As a consequence, Eq. (40) simplifies to
∫∫

S(t)
n · σ̂ · u1 dS =

∫∫∫

V (t)
%[u0] : ∇û dV . (43)

On the swimmer surface, we then apply the boundary condition at order ε from Eq. (30b) and obtain
the final integral relationship

F̂ · U1 + L̂ · !1 =
∫∫∫

V (t)
%[u0] : ∇û dV . (44)

This second integral theorem, Eq. (44), allows us to compute the first non-Newtonian correction
to the Newtonian swimming kinematics, namely, U1 and !1, using only the knowledge from
Newtonian solution. Importantly, the derivation is instantaneous, and it is thus valid for both steady
and unsteady problems. In contrast to the Newtonian integral theorem, we notice that we need
to know more than just the solution to the hat problem and the entire velocity field, u0, for the
instantaneous Newtonian swimming problem also needs to be known. Given Eq. (11), we know the
boundary conditions for u0 and thus solving for it is the same level of complexity as solving for
û. With the knowledge of both u0 and û, the volume integral on the right-hand side of Eq. (44)
can be computed, giving access to the swimming kinematics. As a side note, it is clear that the
antisymmetric part of ∇û does not contribute to Eq. (44) since % is a symmetric tensor, and thus the
integral theorem can also be rewritten as

F̂ · U1 + L̂ · !1 =
∫∫∫

V (t)
%[u0] : ê dV, (45)

where ê = 1
2 (t∇û + ∇û) is the symmetric rate-of-strain tensor for the hat problem.

VI. SMALL-AMPLITUDE SWIMMING IN NONLINEAR FLUIDS

For the two integral theorems above we considered very specific constitutive relationships.
Specifically, in order to derive Eq. (26) we assumed that the fluid rheology was linear while, in order
to obtain Eq. (44), we allowed some nonlinearity in the constitutive relationship but assumed it was
always small. It would be desirable to have a theorem valid when the rate of deformation of the fluid
is comparable to its relation time, thereby displaying possible nontrivial nonlinear effects on the
swimming kinematics. In order to allow finite values of the Deborah number while deriving the result
analytically we consider another asymptotic limit, namely that of small-amplitude deformations. The
results presented below are the most important results of this paper and are broadly applicable to
different fluids and geometry. An earlier form of the theorem focusing solely on time-averaged
motion was presented in Ref. 29. Furthermore, as we detail below, the results from Sec. IV will be
used at leading order.

A. Domain perturbation

The tool used to derive the approximate solution in this case is that of domain perturbation,
as originally proposed by Taylor in his pioneering study of the two-dimensional swimming sheet
swimming in a Newtonian fluid.60 We now denote by ε the dimensionless amplitude of the surface
deformation and are interested in deriving the results asymptotically in the limit ε ( 1.

In this domain-perturbation approach we have to make explicit the link between the Lagrangian
deformation of the surface and the resulting Eulerian boundary conditions for the solution to the
fluid dynamics problem. The reference surface, S0, is described by the field xS

0 , and we then write
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the Lagrangian location of material points, xS, on the surface as

xS(t) = xS
0 + εxS

1 (xS
0 , t), (46)

where xS
1 represents thus the dimensional change in position of each reference point xS

0 . While n
denotes the normal to the surface S into the fluid, we denote by n0 the normal to the reference surface
S0.

We then proceed to solve the problem as a perturbation expansion in powers of ε. At order ε0

there is no motion, so we have to go to order ε to obtain the leading-order fluid motion as well as ε2

since we expect the swimming kinematics to scale quadratically with the amplitude of the surface
motion.60 We thus write the swimming kinematics as

{U,!} = ε{U1,!1} + ε2{U2,!2} + . . . (47)

and look similarly for velocity and stress fields as

{u, τ , p, σ } = ε{u1, τ 1, p1, σ 1} + ε2{u2, τ 2, p2, σ 2} + . . . , (48)

which are defined, in the domain-perturbation framework, with boundary conditions on the zeroth-
order surface S0. Note that the domain-perturbation approach does rigorously take into account all
terms of the dynamics balance for the swimmer, even nonlinear interactions at all orders, as shown
below.

B. Boundary conditions

In order to derive the correct boundary conditions for the velocity field in Eq. (48), we have to
pay attention to the kinematics of the surface. The instantaneous boundary condition on the surface
of the swimmer is given by

u(xS, t) = U + ! × xS + uS, (49)

an equation in which all four terms need to be properly expanded in powers of ε. The swimming
velocity, U, and rotation rate, !, are expanded in Eq. (47) while the expansion for the surface shape
is given in Eq. (46). The expansion for the swimming gait, uS, is carried out using a Taylor expansion
on the swimmer surface. The instantaneous boundary condition on the swimmer surface defining
the swimming gait is given by

uS(xS, t) = ∂xS

∂t
· (50)

The Lagrangian partial derivative on the right-hand side of Eq. (50) is order ε while the Eulerian
velocity on the left-hand side of the equation contains terms at all order in ε since it is evaluated
on a moving shape defined by Eq. (46). A Taylor expansion of Eq. (50) up to order ε2 allows us to
obtain the two boundary conditions as

u1 = U1 + !1 × xS
0 + uS

1 , (51a)

u2 = U2 + !2 × xS
0 + uS

2 , (51b)

where uS
1 = ∂xS

1/∂t |xS
0

and uS
2 = −xS

1 · ∇u1|xS
0
+ !1 × xS

1 .
A final important point to note is that since we are using an approach in domain perturbation,

all fields are defined with boundary conditions on the O(ε0) shape S0. This shape is fixed in time, a
fact which as we see below is critical.

C. Constitutive relationship

For this integral theorem, we place no restriction on the Deborah number for the flow, and will
allow the period of the surface motion to be on the same order as the fluid relaxation time, but the
small value of ε will ensure that the Weissenberg number remains small. We consider fluids obeying
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a general, multi-mode, differential relationship with a spectrum of relaxation times in which the
deviatoric stress, τ = σ + p1, is written as a sum

τ =
∑

i

τ i . (52)

Each stress, τ i , is assumed to be following a nonlinear evolution equation of the form

(1 + Ai )τ i + Mi (τ i , u) = ηi (1 + Bi )γ̇ + Ni (γ̇ , u), (53)

where the repeated indices i do not imply Einstein summations. In Eq. (53), Ai and Bi are arbitrary
linear differential operators in time (for example, a time scale times a time derivative giving Maxwell-
like terms); the symmetric tensors Mi and Ni are arbitrary nonlinear differential operators in space
(for example, upper-convective derivatives) which are differentiable and contain no linear part (so
at least quadratic); and ηi is the zero-shear rate viscosity of the ith mode.

The assumed constitutive relationship, Eqs. (52) and (53), is very general, and includes all clas-
sical non-Newtonian models from continuum mechanics, including all Oldroyd-like models (upper-
and lower-convected Maxwell, corotational Maxwell and Oldroyd, Oldroyd-A and -B, Oldroyd
8-constant model, Johnson-Segalman-Oldroyd), Giesekus and Phan-Thien-Tanner nonlinear poly-
meric models, the second and nth order fluid approximation, all generalized Newtonian fluids, and
all multi-mode version of these constitutive models.57, 58, 61–65 Furthermore, although the FENE-P
constitutive relationship does not exactly take the form in Eqs. (52) and (53), it agrees with it for
small deformations,15 so our approach is valid for the FENE class of models too.

D. First order solution

At leading order, the constitutive equation for each mode is linearized and becomes

(1 + Ai )τ i
1 = ηi (1 + Bi )γ̇ 1. (54)

For each mode, we obtain therefore a linearly viscoelastic fluid on a fixed shape, S0, a problem which
was almost already solved in Sec. IV.

In order to proceed in the analysis we will make the assumption, relevant to all small-scale
biological swimmers, that the shape change occurs periodically in time with a fixed period, denoted
T. We thus use Fourier series, and we write for all functions h of period T = 2π /ω

h(t) =
∞∑

n=−∞
h̃(n)einωt , h̃(n) = 1

T

∫ T

0
h(t)e−inωt dt. (55)

Evaluating Eq. (54) in Fourier space leads to

[1 + Ai (n)]τ̃ i,(n)
1 (x) = ηi [1 + Bi (n)] ˜̇γ (n)

1 (x), (56)

where Ai (n) and Bi (n) are multiplicative operators obtained by evaluating the differential operators
Ai and Bi in Fourier space. We can write Eq. (56) compactly as

τ̃
i,(n)
1 (x) = Gi (n) ˜̇γ (n)

1 (x), (57)

where

Gi (n) = ηi
1 + Bi (n)
1 + Ai (n)

· (58)

Summing on all the modes i we then obtain the Fourier components of the total stress as Newtonian-
like

τ̃
(n)
1 (x) = G(n) ˜̇γ (n)

1 (x), (59)

with effective complex viscosity

G(n) =
∑

i

Gi (n). (60)
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To within a rescaling of the pressure, the problem posed by Eq. (59) is that of force- and
torque-free swimming a linear viscoelastic fluid with a surface velocity defined on a fixed shape, S0.
This is therefore the same problem as in Sec. IV, and thus the swimming kinematics at order ε are
the same as the Newtonian one and we obtain for each Fourier component

F̂ · Ũ(n)
1 + L̂ · !̃

(n)
1 = −

∫∫

S0

n0 · σ̂ · ũS,(n)
1 dS. (61)

Given that the shape S0 does not vary with time, one can invert the Fourier transform in Eq. (61)
to obtain

F̂ · U1 + L̂ · !1 = −
∫∫

S0

n0 · σ̂ · uS
1 dS. (62)

Notice that, similarly to the problem addressed in Sec. IV, all material properties of the fluid have
disappeared at leading order. They will however matter at next order.

The result of Eq. (62) can also be used to show that the time-averaged locomotion at leading
order is always zero. From Eq. (51a), we see that uS

1 is an exact time-derivative. We therefore have
〈uS

1 (xS
0 , t)〉 = 0 and thus taking the time-average of Eq. (62) leads to

F̂ · 〈U1〉 + L̂ · 〈!1〉 = 0, (63)

and therefore 〈U1〉 = 〈!1〉 = 0. Similarly to the Newtonian case, net swimming occurs therefore at
order ε2 at least.3, 15, 60

E. Second-order solution

We now consider the expansion at second order.

1. Constitutive relationship

The constitutive relationship, Eq. (53), is written at order ε2 as

(1 + Ai )τ i
2 = ηi (1 + Bi )γ̇ 2 + Hi [u1]. (64)

Unlike the expansion considered in Sec. V for weakly non-Newtonian flows, the general model
considered in this section does allow for history terms in the evolution of the fluid stress (Ai $= 0)
and thus the problem requires us to consider each Fourier mode separately. In Eq. (64), the nonlinear
operator, Hi, is only a functional of u1 and is formally written using gradients in the operators Ni

and Mi as

Hi [u1] = γ̇ 1 :
[
(∇γ̇ ∇uNi )

∣∣
0,0

]
· u1 − τ i

1 :
[
(∇τ i ∇uMi )

∣∣
0,0

]
· u1, (65)

with the relationship between τ i
1 and γ̇ 1 given by Eq. (54), and where we recall that γ̇ 1 = ∇u1

+ ∇uT
1 . Using Fourier series and using the same notation as in Sec. VI D, we can then rewrite

Eq. (64) as

[1 + Ai (n)]τ̃ i,(n)
2 (x) = ηi [1 + Bi (n)] ˜̇γ (n)

2 (x) + H̃i [u1]
(n)

(x), (66)

or

τ̃
i,(n)
2 (x) = Gi (n) ˜̇γ (n)

2 (x) + 1
[1 + Ai (n)]

H̃i [u1]
(n)

(x). (67)

Summing up Eq. (67) for all indices i, we obtain explicitly the second order deviatoric stress as

τ̃
(n)
2 (x) = G(n) ˜̇γ (n)

2 (x) + %̃[u1]
(n)

(x), (68)

where we have defined

%̃[u1]
(n)

(x) =
∑

i

1
1 + Ai (n)

H̃i [u1]
(n)

(x). (69)
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2. Principle of virtual work

After Eq. (68), we see that total stress in the fluid is given by

σ̃
(n)
2 (x) = − p̃(n)

2 (x)1 + G(n) ˜̇γ (n)
2 (x) + %̃[u1]

(n)
(x). (70)

We now apply the principle of virtual work to the {ũ(n)
2 , σ̃

(n)
2 } problem, together with a solid body

motion which takes place with the viscosity G(n), which we denote {û(n), σ̂ (n)} (note that the flow
field û(n) is not a Fourier component nor a series expansion; the subscript (n) is simply used as a
reminder that the associated viscosity is G(n)). The solid body motion is associated with complex
forces and torques given by F̂(n) and L̂(n), resulting in solid body kinematics given by Û(n) and !̂(n).
As a difference with the calculation in Sec. IV, here the value of the complex viscosity matters and
thus the solid body motion in the hat problem will always be a function of the order, n, of the Fourier
mode considered (hence the notation chosen).

Since both problems satisfy that the divergence of the stress tensor is zero, we compute the
virtual work and obtain

û(n) · ∇ · σ̃
(n)
2 = ũ(n)

2 · ∇ · σ̂ (n), (71)

which we then integrate in the entire fluid volume and use the divergence theorem to obtain
∫∫

S0

n0 · σ̂ (n) · ũ(n)
2 dS −

∫∫

S0

n0 · σ̃
(n)
2 · û(n) dS =

∫∫∫

V0

σ̃
(n)
2 : ∇û(n) dV −

∫∫∫

V0

σ̂ (n) : ∇ũ(n)
2 dV .

(72)
We then plug Eq. (70) into the right-hand side of Eq. (72) to get

∫∫∫

V0

σ̃
(n)
2 : ∇û(n) dV −

∫∫∫

V0

σ̂ (n) : ∇ũ(n)
2 dV =

∫∫∫

V0

%̃[u1]
(n)

: ∇û(n) dV, (73)

where the symmetric terms have disappeared due to incompressibility and by equality of their
viscosity, similarly to Eq. (39), so that we obtain

∫∫

S0

n0 · σ̂ (n) · ũ(n)
2 dS −

∫∫

S0

n0 · σ̃
(n)
2 · û(n) dS =

∫∫∫

V0

%̃[u1]
(n)

: ∇û(n) dV . (74)

On the left-hand side of Eq. (72) we write, on S0, the Fourier components of the boundary condi-
tion at order ε2, namely, ũ(n)

2 (xS
0 ) = Ũ(n)

2 + !̃
(n)
2 × xS

0 + ũS,(n)
2 (xS

0 ), so that the integral formulation,
Eq. (74), becomes

F̂(n) · Ũ(n)
2 + L̂(n) · !̃

(n)
2 = −

∫∫

S0

n0 · σ̂ (n) · ũS,(n)
2 dS +

∫∫

S0

n0 · σ̃
(n)
2 · û(n) dS

+
∫∫∫

V0

%̃[u1]
(n)

: ∇û(n) dV, (75)

where F̂(n) and L̂(n) depend on n through the complex viscosity G(n). The final term we have to
evaluate in Eq. (75) is the integral

I =
∫∫

S0

n0 · σ̃
(n)
2 · û(n) dS, (76)

and since the boundary condition for the hat problem on the surface is û(n) = Û(n) + !̂(n) × xS
0 , I is

given by

I =
[∫∫

S0

n0 · σ̃
(n)
2 dS

]
· Û(n) +

[∫∫

S0

xS
0 × (n0 · σ̃

(n)
2 ) dS

]
· !̂(n). (77)

The terms multiplying the solid-body kinematics in Eq. (77) seem to involve the O(ε2) forces and
torques on the swimmer. In Sec. VI E 3, we show how to use arguments of vector calculus and
differential geometry to evaluate them explicitly.
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3. Differential geometry

Since we are using a domain expansion method, particular attention needs to be paid to the
expressions for the hydrodynamic forces and moments acting on the swimmer. Indeed, these are to
be evaluated on a shape changing in time, and thus the application of the force- and moment-free
condition is not straightforward.

Since motion of the swimmer tangential to its surface does not lead to changes in its shape, only
the normal component of the surface motion will contribute. We thus write the shape variation of
the periodically moving interface, S(t), as the normal projection to the motion of the material points,
and thus we describe the surface as x = xS

0 + εδ1(xS
0 , t)n0(xS

0 ), where n0 is the normal to the surface
S0 at point xS

0 , and the function δ1, with units of length, represents the normal shape deformation of
the reference surface. Given that we have material points whose dynamics is given by Eq. (46)
we necessarily have δ1 = xS

1 · n0. Note that for a squirming motion, we have by definition
δ1 = 0, so x = xS

0 and thus S(t) = S0 for all times. Associated with this shape variation is the
normal to the surface, which is expanded as n = n0(xS

0 ) + εn1(xS
0 ) + . . ., with all fields described

on the undeformed surface, S0. On the swimmer surface we thus have the expansion

n · σ = εn0 · σ 1 + ε2(n0 · σ 2 + n1 · σ 1). (78)

Using this description, we can calculate the asymptotic value of the surface integral W of an
arbitrary scalar field w(x)

W =
∫∫

S(t)
w(x) dS. (79)

Expanding the integrand as w(x) = εw1(x) + ε2w2(x) + . . . and using Taylor expansion to evaluate
the integral on the reference S0 we obtain W = εW1 + ε2W2 + . . . with

W1 =
∫∫

S0

w1(xS
0 ) dS, and W2 =

∫∫

S0

(
w2 + δ1

∂w1

∂n

)
(xS

0 ) dS, (80)

where the normal derivative is understood as normal to the unperturbed surface, i.e., ∂w1/∂n
= n0 · ∇w1.

The force and torque on the swimmer are formally given by the integrals

F =
∫∫

S(t)
n · σ dS, ! =

∫∫

S(t)
x × (n · σ ) dS, (81)

for which we will have the expansion

{F, L} = ε{F1, L1} + ε2{F2,!2} + . . . (82)

with the forces and torques equal to zero at each order. Applying the results above with w equal to
each component of the force per unit area on the swimmer, σ · n, expanded as in Eq. (78) we obtain
at fist order the expected integrals

F1 =
∫∫

S0

n0 · σ 1 dS = 0, (83a)

L1 =
∫∫

S0

xS
0 × (n0 · σ 1) dS = 0, (83b)

while at order ε2 it leads to additional terms and

F2 =
∫∫

S0

(
n0 · σ 2 + n1 · σ 1 + δ1n0 · ∂σ 1

∂n

)
dS = 0, (84a)

L2 =
∫∫

S0

xS
0 ×

(
n0 · σ 2 + n1 · σ 1 + δ1n0 · ∂σ 1

∂n

)
dS +

∫∫

S0

δ1n0 × (n0 · σ 1) dS = 0, (84b)

for all times.
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We can now use differential geometry and vector calculus to simplify the results in Eq. (84a).
Given that the surface shape is described by x = xS

0 + εδ1(xS
0 , t)n0(xS

0 ) then it is straightforward to
see that the first perturbation of the surface normal, n1, is given by minus the surface gradient of the
shape field δ1, i.e., n1(xS

0 ) = −∇xS
0
δ1. In Eq. (84a), we therefore have

n1 · σ 1 + δ1n0 · ∂σ 1

∂n
= −(∇xS

0
δ1) · σ 1 + δ1n0 · ∂σ 1

∂n
· (85)

We can then use the identity from vector calculus

∇xS
0
· (δ1σ 1) = δ1(∇xS

0
· σ 1) + (∇xS

0
δ1) · σ 1 (86)

to simplify Eq. (85) into

n1 · σ 1 + δ1n0 · ∂σ 1

∂n
= −∇xS

0
(δ1 · σ 1) + δ1

(
∇xS

0
· σ 1 + n0 · ∂σ 1

∂n

)
· (87)

The last term in parenthesis in Eq. (87) is an expression for the three-dimensional divergence of σ 1,
which is zero,

∇xS
0
· σ 1 + n0 · ∂σ 1

∂n
= ∇ · σ 1 = 0, (88)

since the flow at each order in the perturbation expansion satisfy Cauchy’s equation of motion,
∇ · σ i = 0. This result allows us to simplify each expression in Eq. (84a). Starting with the force in
Eq. (84a), we now have

F2 =
∫∫

S0

[
n0 · σ 2 − ∇xS

0
· (δ1σ 1)

]
dS = 0. (89)

The integral of the second term in Eq. (89) is a surface divergence integrated on a closed surface,
and therefore equal to zero (this can be viewed as an application of the curl theorem). And therefore
we finally obtain the simple expression for the second-order force as

F2 =
∫∫

S0

n0 · σ 2 dS = 0. (90)

The equation for the moment, Eq. (84b), is now written as

L2 =
∫∫

S0

xS
0 × (n0 · σ 2) dS +

∫∫

S0

[
δ1n0 × (n0 · σ 1) − xS

0 × ∇x0 · (δ1σ 1) dS
]

= 0. (91)

Let us now show that the second integral in Eq. (91) is identically zero. If the shape of the swimmer
does not vary, then δ1 = 0 and that second integral is trivially equal to zero. If the shape of the
swimmer does change in time, then since we have freedom in how we define the reference shape
S0, we can always change how we parametrize it thus without loss of generality can assume S0 is
locally flat. We then employ Cartesian coordinates with n0 = ez and the surface defined as z = 0, so
that xS

0 = xex + yey . In that case, the first integrand in the second integral in Eq. (91) is given by

δ1n0 × (n0 · σ 1) = δ1ez × (σ1,xzex + σ1,yzey) = δ1(σ1,xzey − σ1,yzex ). (92)

The surface divergence in second integrand is given by

∇xS
0
· (δ1σ 1) = eα∂α · (δ1σ1,i j ei e j ) = ∂α(δ1σ1,α j ) e j , (93)

where we have used the convention that Einstein’s summation notation with Latin letters (i, j,. . . )
implies a summation on all three coordinates x, y, z while a summation with Greek letters (α, β, . . . )
implies a summation only on the surface coordinates x and y. Using Eq. (93) we can then compute
explicitly the second integrand as

−xS
0 × ∇xS

0
· (δ1σ 1) = −xβeβ × ∂α(δ1σ1,α j )e j = −εmβ j xβ∂α(δ1σ1,α j ) em . (94)

In order to force that term to take the form of a surface divergence, we can re-write it as

− xS
0 × ∇xS

0
· (δ1σ 1) = −∂α(εmβ j xβδ1σ1,α j ) em + εmα jδ1σ1,α j em . (95)
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The first term on the right-hand side of Eq. (95) is a surface divergence and will thus disappear when
integrate on the close surface S0. The second term can be evaluated explicitly because for all indices
j equal to x or y, since the tensor σ 1 is symmetric and the tensor ε is antisymmetric, terms with (α,
j) and (j, α) will cancel out, and thus only the terms with j = z survive. This leads to

εmα jδ1σ1,α j em = εmαzδ1σ1,αz em = δ1(σ1,yz ex − σ1,xz ey). (96)

We then see that the result of Eq. (96) exactly cancels out the first integrand given in Eq. (92) and
therefore the whole second integral in Eq. (91) disappears, leaving the second-order moment to be
given by

L2 =
∫∫

S0

xS
0 × (n0 · σ 2) dS. (97)

4. Integral theorem

Using the results from Sec. VI E 3 and enforcing that swimming is force- and torque-free at
order two, F2 = L2 = 0, we obtain simply

∫∫

S0

n0 · σ 2 dS = 0,

∫∫

S0

xS
0 × (n0 · σ 2) dS = 0. (98)

In Fourier space, since the reference shape S0 is fixed, we obtain for each Fourier component
∫∫

S0

n0 · σ̃
(n)
2 dS = 0,

∫∫

S0

xS
0 × (n0 · σ̃

(n)
2 ) dS = 0. (99)

From Eq. (76), we then obtain I = 0, and Eq. (75) leads then to the final integral theorem

F̂(n) · Ũ(n)
2 + L̂(n) · !̃

(n)
2 = −

∫∫

S0

n0 · σ̂ (n) · ũS,(n)
2 dS +

∫∫∫

V0

%̃[u1]
(n)

: ∇û(n) dV . (100)

Our final result, Eq. (100), provides explicit expressions for the Fourier modes of the swimming
kinematics at order 2, namely, U(n)

2 and !
(n)
2 , allowing to reconstruct the whole time-dependent

swimming velocity, U2, and rotation rate, !2, at order O(ε2). This is the most important result
from our paper. Physically, we see that the swimming kinematics are simply given by the sum of a
Newtonian component and a non-Newtonian part. Since the constitutive relationship has been left
very general, the result in Eq. (100) is expected to be applicable to a wide range of complex fluids,
swimmer geometry, and deformation kinematics.

In order to mathematically evaluate Eq. (100), we see that the following knowledge is required.
We see to know the full velocity field at order 1, u1, the Fourier component of the second-order
swimming gait, ũS,(n)

2 , and a dual Newtonian solution, {û(n), σ̂ (n)}, corresponding to solid body
motion with net force F(n) and moment !(n). The dual Newtonian problem corresponds to rigid-
body motion in a Newtonian fluid of complex viscosity G(n), and can be deduced, by exploiting
the linearity of Stokes equations, from the flow at a reference viscosity by a simple rescaling. The
order 1 swimming problem, u1, has known boundary conditions computed in Eq. (62), and has
therefore the computational complexity of a Newtonian problem. Similarly to the previous theorem,
the gradient ∇û(n) in Eq. (100) can be replaced by the symmetric part of the velocity gradient, giving
the alternative form

F̂(n) · Ũ(n)
2 + L̂(n) · !̃

(n)
2 = −

∫∫

S0

n0 · σ̂ (n) · ũS,(n)
2 dS +

∫∫∫

V0

%̃[u1]
(n)

: ∇ ê(n) dV . (101)

F. Time-averaged swimming kinematics

The most important component of the swimming kinematics is the n = 0 Fourier mode giving
access to the time-average of the motion. In that case, the dual Newtonian problem in Eq. (62),
û, occurs with viscosity G(n = 0) =

∑
i ηi ≡ η. Using the notation 〈 f 〉 = f̃ (0), to denote time
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averaging, the integral formula giving the time-averaged swimming kinematics is given by

F̂ · 〈U2〉 + L̂ · 〈!2〉 = −
∫∫

S0

n0 · σ̂ · 〈uS
2 〉 dS +

∫∫∫

V0

〈%[u1]〉 : ê dV . (102)

G. Locomotion of a sphere

A special case of interest for exact calculations is that of a swimming of a spherical body of
radius a. This is the Lighthill and Blake model49, 50 addressed in Sec. IV.

Inside the fluid, we have the velocity field given by

û = 3
4

a
[

1
r

+ rr
r3

]
· Û + 1

4
a3

[
1
r3

− 3rr
r5

]
· Û + a3

r3
!̂ × r, (103)

with boundary conditions û = Û + ! × xS
0 on the sphere. The surface stress then takes the form

n0 · σ̂ = −3η

2a
Û − 3η!̂ × n0. (104)

In that case, and focusing on the time-averaged locomotion, Eq. (102) becomes

F̂ · 〈U2〉 + L̂ · 〈!2〉 = 6πaη Û · 〈uS
2 〉 + 8πa3η !̂ · (xS

0 × 〈uS
2 〉) +

∫∫∫

V0

〈%[u1]〉 : ê dV, (105)

where overline indicates surface average, w = (
∫∫

S0
w dS)/(4πa2). We have F̂ = −6πηaÛ and

L̂ = −8πηa3!̂. The hat flow field in Eq. (103) can be formally written as û = P̂ · Û + Q̂ · !̂
leading to ê = Ê(P̂) · Û + Ê(Q̂) · !̂ using the definition for, an arbitrary second-order tensor, T, of
the third order tensor {Ê(T̂)}i jk = 1

2 (∂i T̂ jk + ∂ j T̂ik). Considering separately Û = 0 and !̂ = 0 we
then obtain from Eq. (105)

〈U2〉 = −〈uS
2 〉 − 1

6πηa

∫∫∫

V0

〈%[u1]〉 : Ê(P̂) dV, (106)

〈!2〉 = −xS
0 × 〈uS

2 〉 − 1
8πηa3

∫∫∫

V0

〈%[u1]〉 : Ê(Q̂) dV, (107)

with similar formulae available for each of the Fourier modes (modulo the correct definition of the
complex viscosity for mode n).

VII. APPLICATION TO THE SCALLOP THEOREM

In addition to allowing the calculation of non-Newtonian swimming of biological and synthetic
swimmers, our integral results allow us to formally revisit Purcell’s scallop theorem66 in the context
of complex fluids. That theorem states that deformations which are not identical under a time-
reversal symmetry (so-called non-reciprocal) are required to induce locomotion in Newtonian Stokes
flows. Using the formalism of the Newtonian integral theorems from Sec. III, Eq. (11), reciprocal
deformations are those for which 〈uS〉 = 0 leading to 〈U〉 = 〈!〉 = 0.

When considering the scallop theorem in non-Newtonian flows, two distinct points need to be
addressed. The first is answering the question: Is the scallop theorem still valid in general? The
answer is obviously no. Fluids with nonlinear rheology can be exploited to generate propulsion from
time-reversible motion actuation.28, 30–32 The simplest way to see this from our results is to realize
that the operators %[u] appearing in Sec. V (Eq. (44)) and Sec. VI (Eq. (100)) are nonlinear operators
acting on the flow field at the previous order. If that flow includes a time-varying component ∝eiωt

induced by the time-reversible motion, then %[u] will generate harmonics, with in general a nonzero
time-average. A specific example will be given in Sec. VIII.

A second, more interesting point is whether there exists a categories of non-Newtonian fluids
for which the scallop theorem would be remain valid. Our integral theorems can be used to show
that for any linearly viscoelastic fluid a time-reversible actuation cannot lead to any net motion. In
the case where the surface actuation is tangential to the swimmer surface, as addressed in Sec. IV,
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we obtain by simply applying Eq. (26) in the reciprocal case that F̂ · 〈U〉 + L̂ · 〈!〉 = 0 and thus
〈U〉 = 〈!〉 = 0. That result is true for arbitrary amplitude of the motion. When the surface motion
includes a nonzero component normal to the shape, and thus leads to shape changes, we can apply
the small-amplitude results of Sec. VI and Eq. (100). If the fluid is linearly viscoelastic, then we
have % = 0, leading to F̂ · 〈U2〉 + L̂ · 〈!2〉 = 0 and therefore 〈U2〉 = 〈!2〉 = 0. Here again we see
that reciprocal swimming is not possible in a linearly viscoelastic fluid.

VIII. LOCOMOTION IN AN OLDROYD-B FLUID

A model of particular interest for the dynamics of polymeric fluids is the Oldroyd-B fluid, which
can be derived formally from a dilute solution of elastic dumbbells.57, 58, 61–65 We show here how to
apply Eq. (100) for the Oldroyd-B fluid and consider the special case of squirming motion.

A. General framework

The constitutive equation for the Oldroyd-B fluid is written as

τ + λ
!
τ= (ηs + ηp)γ̇ + ηsλ

!
γ̇ , (108)

where λ is the relaxation time for the fluid, ηs the solvent viscosity, and ηp the polymeric contribution

to the viscosity. In Eq. (108), for any tensor a, we write
!
a to denote the upper convected derivative

defined as

!
a= ∂a

∂t
+ u · ∇a − (t∇u · a + a · ∇u). (109)

Writing η ≡ ηs + ηp for the total viscosity of the fluid and using the notation λ1 ≡ λ and λ2 ≡ ληs/η,
the constitutive law can be re-written as

τ + λ1
!
τ= η

(
γ̇ + λ2

!
γ̇

)
, (110)

and λ2 is referred to as the retardation time scale for the fluid. Note that in this model we always
have λ2/λ1 < 1.

The expansion at order one of Eq. (110) leads to

τ 1 + λ1
∂τ 1

∂t
= γ̇ 1 + λ2

∂ γ̇ 1

∂t
, (111)

while the second order term gives
(

1 + ∂

∂t
λ1

)
τ 2 − η

(
1 + ∂

∂t
λ2

)
γ̇ 2 = ηλ2

[
u1 · ∇γ̇ 1 −

(t∇u1 · γ̇ 1 + γ̇ 1 · ∇u1
)]

− λ1
[
u1 · ∇τ 1 −

(t∇u1 · τ 1 + τ 1 · ∇u1
)]

, (112)

from which all Fourier terms can be computed. If we assume to have only one Fourier mode, ∝ eiωt,
in the solution at order one, then we obtain from time-averaging Eq. (112) and exploiting Eq. (111)
written in Fourier space the explicit expression for the time-averaged stress as second order as

〈%[u1]〉 = 2η(λ2 − λ1)R
{

1
1 + iλ1ω

[
ũ(1),∗

1 · ∇ ˜̇γ (1)
1 −

(
t∇ũ(1),∗

1 · ˜̇γ (1)
1 + ˜̇γ (1)

1 · ∇ũ(1),∗
1

)]}
, (113)

where stars denote complex conjugates and R the real part of a complex expression.

B. Squirming motion of a sphere

We now consider that the swimmer is a sphere undergoing tangential squirming motion. We
further assume that all surface motion is axisymmetric so that the sphere does not rotate and only
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swims along a straight line, with direction ez. Using cylindrical coordinates with θ the polar angle,
we thus assume that its surface deforms in time as

θ = θ0 + ε[ f (θ0) sin ωt + g(θ0) sin(ωt + φ)]. (114)

The presence of a phase φ in Eq. (114) allows us to combine the periodic motion of two surface
modes, characterized by the functions f and g, and includes in particular standing and traveling
waves as special cases.

From Eq. (114) we can compute the surface velocity as

uS
1 = a

∂θ

∂t
eθ = aω[ f (θ0) cos ωt + g(θ0) cos(ωt + φ)]eθ , (115)

with a surface gradient given by

∂uS
1

∂θ
= aω[ f ′(θ0) cos ωt + g′(θ0) cos(ωt + φ)]eθ . (116)

We can then use these results to compute the surface velocity as second-order using Eq. (51b) and
we obtain

〈uS
2 〉 = −

〈
θ
∂uS

1

∂θ

〉
= aω

2
sin φ[ f (θ0)g′(θ0) − f ′(θ0)g(θ0)]eθ . (117)

In order to take advantage of Blake’s mathematical framework50 we then choose the dimension-
less functions

f (θ ) = α sin θ cos θ, g(θ ) = β sin θ . (118)

From Eq. (117) we then obtain

〈uS
2 〉 = αβ

2
aω sin φ sin3 θ eθ , (119)

giving rise to average Newtonian swimming with order-2 speed, 〈U2〉N, as

〈U2〉N = −〈uS
2 〉 = 4αβ

15
aω sin φ ez . (120)

In order to compute the non-Newtonian correction to the swimming speed we need to compute
u1 everywhere from the knowledge of uS

1 . From Eq. (113) we see that all we need is the Fourier
component, ũ1, of u1, which we obtain from Eq. (115) as

uS
1 (a, θ, t) = aω[ f (θ0) cos ωt + g(θ0) cos(ωt + φ)]eθ = ũS,(1)

1 eiωt + ũS,(−1)
1 e−iωt , (121)

with

ũS,(1)
1 (a, θ ) = aω

2
(α sin θ cos θ + βeiφ sin θ )eθ , (122)

and ũS,(−1)
1 = ũS,(1)∗

1 . This surface velocity leads to unsteady swimming at order one as

Ũ(1)
1 = aω

3
eiφβez . (123)

The total velocity at the surface of the spherical swimmer in the laboratory frame, including the
component from swimming, Eq. (123), is thus given by

ũ(1)
1 (a, θ ) = aω

2
(α sin θ cos θ + βeiφ sin θ ) + aω

3
βeiφ(cos θer − sin θeθ )

= aω

6
[αũ(1)

α (a, θ ) + βeiφ ũ(1)
β (a, θ )], (124)

where we have denoted

ũ(1)
α (a, θ ) = 3 sin θ cos θ eθ , ũ(1)

β (a, θ ) = 2 cos θ er + sin θ eθ . (125)
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The solution to the Stokes flow problem at first order with these boundary conditions is given by
Blake50 and we obtain

ũα(r, θ ) = 3
2

(3 cos2 θ − 1)
(

a4

r4
− a2

r2

)
er + 3

a4

r4
sin θ cos θ eθ , (126a)

ũβ(r, θ ) = 2
a3

r3
cos θ er + a3

r3
sin θ eθ . (126b)

C. Non-Newtonian squirming

With this solution we can then compute the non-Newtonian term in Eq. (106). Rewriting
Eq. (106) as

〈U2〉 = 〈U2〉N + 〈U2〉N N , (127)

above we computed

〈U2〉N = 4αβ

15
aω sin φ ez, (128)

and recall that we have from the integral theorem

〈U2〉N N = − 1
6πηa

∫∫∫

V0

〈%[u1]〉 : Ê(P̂) dV . (129)

An explicit calculation for the integrand exploiting Eq. (103) leads to the final result

〈U2〉N N = aω
αβ

15

[
(cos φ + 4De1 sin φ)(De2 − De1)

De2
1 + 1

]
ez, (130)

where we have defined the two Deborah numbers for the flow, De1 = λ1ω and De2 = λ2ω. The ratio
between the magnitudes of non-Newtonian and Newtonian velocities is given by

〈U2〉N N

〈U2〉N
= (cos φ + 4De1 sin φ)(De2 − De1)

4 sin φ(1 + De2
1)

· (131)

The results of Eqs. (130) and (131) can be used to obtain a number of interesting conclusions.
First, we can pick the value of the phase, φ, which will lead to reciprocal motion (physically, a
standing wave of actuation along the swimmer surface), sin φ = 0. This leads to 〈U2〉N = 0 while
〈U2〉NN $= 0, indicating, as announced in Sec. VII, that an Oldroyd-B fluid can be used to induce
reciprocal swimming.

For a phase φ = π /2 where the two surface modes are completely out of phase, we then obtain
a ratio

〈U2〉N N

〈U2〉N
= De1(De2 − De1)

1 + De2
1

· (132)

This is identical to the small-amplitude result for Taylor’s swimming sheet in a viscoelastic fluid15

whose kinematics are that of a traveling wave. Indeed a traveling wave of the form cos (kx − ωt)
can be interpreted as the linear superposition of two standing waves out of phase with each other.
Since we always have λ2 < λ1, this means that De2 < De1, and therefore the ratio 〈U2〉NN/〈U2〉N in
Eq. (132) is negative, indicating that in this case viscoelastic stresses slow down the swimmer. By
comparing the total swimming velocity to the Newtonian one we obtain in this case

〈U2〉N + 〈U2〉N N

〈U2〉N
= 1 + De1De2

1 + De2
1

, (133)

and thus non-Newtonian swimming occurs always in the same direction as its Newtonian counterpart,
but with a decreased magnitude.
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Third, we see by taking the limit of Eq. (131) for large values of De that

lim
De→∞

〈U2〉N N

〈U2〉N
= De1(De2 − De1)

1 + De2
1

, (134)

which is the same result as Eq. (132) (and Eq. (133) remains valid in this limit). Independently
of the phase, at high Deborah number the swimming speed always ends up being decreased by
viscoelasticity.

Finally, we can use Eq. (131) to obtain a class of Newtonian swimmers whose propulsion speeds
are increased by the presence of viscoelasticity. To obtain increase swimming we need 〈U2〉NN and
〈U2〉N to be of the same sign, and thus from Eq. (131) we see that this is equivalent to the mathematical
requirement

cot φ < −4De1. (135)

For a fixed value of De1, we can find values of the phase between 0 and 2π which satisfy
Eq. (135), leading thus to enhanced swimming at that Deborah number. Since 〈U2〉NN is zero
for zero Deborah number and since we have the asymptotic result of Eq. (134) at large values, we
would obtain a maximum of the swimming speed at an intermediate value of Deborah numbers in
this case. In fact, a small-De expansion of Eq. (131) shows that

〈U2〉N N

〈U2〉N
∼ De2 − De1

4 tan φ
+ O(De2

1, De1De2), (136)

and thus we will obtain a range of Deborah numbers with enhanced viscoelastic swimming in all
cases where tan φ < 0. The critical Deborah number beyond which viscoelasticity always decreases
swimming is given by Eq. (135).

IX. CONCLUSION

In this paper, we derived three general integral theorems to quantity the locomotion of isolated
swimmers in non-Newtonian fluids by adapting classical work on the transport of small particles in
non-Newtonian flows to the case of self-propulsion. The first theorem was valid for squirmers un-
dergoing purely tangential deformation in linearly viscoelastic fluids, and in that case the swimming
kinematics were obtained to be identical to the Newtonian case. The second theorem was valid for
large, arbitrary, swimmer deformation but assumed small viscoelastic behavior, for example, a small
Deborah number for a viscoelastic fluid or small Carreau number for a generalized Newtonian flow.
The final theorem allowed order-one Deborah number but assumed that the deformation was time-
periodic and of small-amplitude. That third derivation, significantly more lengthy but more general
than the previous two, exploited results of vector calculus and differential geometry to obtain a final
integral formula valid for a wide class of non-Newtonian and surface-deformation models. In all
three cases, the final integrals require at most the mathematical knowledge of a series of Newtonian
flow problems, and will be useful to quantity the locomotion of biological and synthetic swimmers
in complex environments.

Our results were then used to show that, generically, the scallop theorem should not be expected
to hold in the presence of non-Newtonian stresses. An explicit example of a swimmer unable to move
in a Newtonian fluid but swimming in presence of elastic stresses in an Oldroyd-B fluid was derived.
We further demonstrated that there was no a priori relationship between the direction and magnitude
of the non-Newtonian and Newtonian components of the swimming kinematics. Specific examples
were derived where small-amplitude Newtonian locomotion could be either enhanced or decreased
in an Olrdoyd-B fluid. Past experimental and computational results are therefore not necessarily in
contradiction with each other, and changing kinematics or rheological properties can qualitatively
impact the non-Newtonian influence on swimming. Future computational work will be necessary to
fully untangle the relative effects of elastic vs. shear-dependent stresses.

Furthermore, and in the same way that our work was inspired by classical derivations on the
motion of solid particles, the results in our paper could be adapted to address the migration of
particles in oscillatory shear flows where recent experiments67 and numerical simulations68 under
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confinement have shown interesting dynamics, including an instantaneous inversion of the direction
of the wall-induced force at high frequencies as well as the presence of dead zones with very little
viscoelastic migration.
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