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We review aspects of twistor theory, its aims and
achievements spanning the last five decades. In
the twistor approach, space–time is secondary
with events being derived objects that correspond to
compact holomorphic curves in a complex threefold—
the twistor space. After giving an elementary
construction of this space, we demonstrate how
solutions to linear and nonlinear equations of
mathematical physics—anti-self-duality equations
on Yang–Mills or conformal curvature—can be
encoded into twistor cohomology. These twistor
correspondences yield explicit examples of Yang–
Mills and gravitational instantons, which we
review. They also underlie the twistor approach to
integrability: the solitonic systems arise as symmetry
reductions of anti-self-dual (ASD) Yang–Mills
equations, and Einstein–Weyl dispersionless systems
are reductions of ASD conformal equations. We then
review the holomorphic string theories in twistor
and ambitwistor spaces, and explain how these
theories give rise to remarkable new formulae for
the computation of quantum scattering amplitudes.
Finally, we discuss the Newtonian limit of twistor
theory and its possible role in Penrose’s proposal
for a role of gravity in quantum collapse of a wave
function.
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1. Twistor theory
Twistor theory was originally proposed as a new geometric framework for physics that aims to
unify general relativity and quantum mechanics [1–5]. In the twistor approach, space–time is
secondary with events being derived objects that correspond to compact holomorphic curves in a
complex threefold, the twistor space. The mathematics of twistor theory goes back to the nineteenth
century Klein correspondence, but we shall begin our discussion with a formula for solutions
to the wave equation in (3+1)-dimensional Minkowski space–time put forward by Bateman
in 1904 [6],

φ(x, y, z, t)=
∮
Γ⊂CP

1
f ((z+ ct)+ (x+ iy)λ, (x− iy)− (z− ct)λ, λ) dλ. (1.1)

This is the most elementary of Penrose’s series of twistor integral formulae for massless fields
[7]. The closed contour Γ ⊂CP

1 encloses some poles of a meromorphic function f . Differentiating
(1.1) under the integral sign yields

1
c2

∂2φ

∂t2 −
∂2φ

∂x2 −
∂2φ

∂y2 −
∂2φ

∂z2 = 0. (1.2)

The twistor contour integral formula (1.1) is a paradigm for how twistor theory should work and
is a good starting point for discussing its development over the last five decades. In particular,
one may ask the following.

— What does this formula mean geometrically?
The integrand of (1.1) is a function of three complex arguments and we will see in §2 that
these arise as local affine coordinates on projective twistor space PT, which we take to be
CP

3 − CP
1. In (1.1), the coordinates on PT are restricted to a line with affine coordinate λ.

The Minkowski space arises as a real slice in the four-dimensional space of lines in PT.
The map (1.1) from functions f to solutions to the wave equation is not one to one:
functions holomorphic inside Γ can be added to f without changing the solution φ. This
freedom in f was understood in the 1970s in a fruitful interaction between the geometry
and mathematical physics research groups in Oxford, UK [8]: twistor functions such as
f in (1.1) should be regarded as elements of Čech sheaf cohomology groups. Rigorous
theorems establishing twistor correspondences for the wave equation, and higher spin
linear equations, have now been established [9–12]. The concrete realizations of these
theorems lead to (contour) integral formulae.

— Do ‘similar’ formulae exist for nonlinear equations of mathematical physics, such as Einstein or
Yang–Mills equations?
The more general integral formulae of Penrose [7] give solutions to both linearized
Einstein and Yang–Mills equations. In the case that the linearized field is anti-self-dual
(ASD) (i.e. circularly polarized or right-handed) these cohomology classes correspond to
linearized deformations of the complex structure of twistor space for gravity [13,14] or
of a vector bundle in the Yang–Mills case [15]. We shall review these constructions in §§3
and 5.
These constructions give an ‘in principle’ general solution to the equations in the sense
that every solution can be represented locally in terms of free data on the twistor space
as in the original integral formula. Indeed this leads to large classes of explicit examples
(e.g. Yang–Mills and gravitational instantons, which we shall review in the gravitational
case in §3d) although it can be hard to implement for general solutions.
It turns out [16] that most known integrable systems arise as symmetry reductions
of either the ASD Yang–Mills or the ASD (conformal) gravity equations. The twistor
constructions then reduce to known (inverse scattering transform, dressing method, etc.)
or new solution generation techniques for solitonic and other integrable equations [17,18].
We shall review some of this development in §6.
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As far as the full Einstein and Yang–Mills equations are concerned, the situation is
less satisfactory. The generic nonlinear fields can be encoded in terms of complex
geometry in closely related ambitwistor spaces. In these situations, the expressions of the
field equations are less straightforward and they no longer seem to provide a general
solution generation method. Nevertheless, they have still had a major impact on the
understanding of these theories in the context of perturbative quantum field theory as
we will see in §7.

— Does it all lead to interesting mathematics?
The impacts on mathematics have been an unexpected major spin-off from the original
twistor programme. These range over geometry in the study of hyper-Kähler manifolds
[14,19–23], conformal, Cauchy–Riemann CR and projective structures [24–36], exotic
holonomy [37–40], in representation theory [12,41], and differential equations particularly
in the form of integrable systems [17,18]. We will make more specific comments and
references in the rest of this review.

— Is it physics?
Thus far, the effort has been to reformulate conventional physics in twistor space
rather than propose new theories. It has been hard to give a complete reformulation
of conventional physics on twistor space in the form of nonlinear generalizations of
(1.1). Nevertheless, in just the past 13 years, holomorphic string theories in twistor and
ambitwistor spaces have provided twistorial formulations of a full range of theories
that are commonly considered in particle physics. They also provide remarkable new
formulae for the computation of scattering amplitudes. Many technical issues remain
to be resolved to give a complete reformulation of conventional physics ideas even
in this context of perturbative quantum field theory. Like conventional string theories,
these theories do not, for example, have a satisfactory non-perturbative definition.
Furthermore, despite recent advances at one and two loops, their applicability to all loop
orders has yet to be demonstrated. See §7 for a full discussion.
The full (non-anti-self-dual) Einstein and Yang–Mills equations are not integrable and
so one does not expect a holomorphic twistor description of their solutions that has
the simplicity of their integrable self-dual (SD) sectors. It is hoped that the full, non-
perturbative implementation of twistor theory in physics is still to be revealed. One set
of ideas builds on Penrose’s proposal for a role of gravity in quantum collapse of a wave
function [42,43]. This proposal only makes use of Newtonian gravity, but it is the case
that, in the Newtonian limit, the SD/ASD constraint disappears from twistor theory and
all physics can be incorporated in the c→∞ limit of PT [44] (see §8).

— Does it generalize to higher dimensions?
There are by now many generalizations of twistors in dimensions higher than four [22,45–
54]. One definition takes twistor space to be the projective pure spinors of the conformal
group. This definition respects full conformal invariance, and there are analogues of (1.1)
for massless fields. However, the (holomorphic) dimension of such twistor spaces goes up
quadratically in dimension and becomes higher than the dimension of the Cauchy data
(i.e. one less than the dimension of space–time). Thus solutions to the wave equation
and its nonlinear generalizations do not map to unconstrained twistor data and this is
also reflected in the higher degree of the cohomology classes in higher dimensions that
encode massless fields. These do not seem to have straightforward nonlinear extensions.
Another dimension agnostic generalization of twistor theory is via ambitwistors. Indeed
some of the ambitwistor-string models described in §7 are only critical in 10 dimensions,
relating closely to conventional string theory, although without the higher massive
modes.
Twistor theory has many higher-dimensional analogues for space–times of restricted
holonomy [22]. The hyper-Kähler case of manifolds of dimension 4k with holonomy in
SU(2)× SP(2k) admits a particularly direct generalization of Penrose’s original nonlinear
graviton construction and now has wide application across mathematics and physics.
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This review celebrates the 50 years of twistor theory since the publication of the first paper
on the subject1 by Roger Penrose [1]. We apologize to the many researchers whose valuable
contributions have been inadvertently overlooked.

2. Twistor space and incidence relation
Twistor theory is particularly effective in dimension four because of an interplay between three
isomorphisms. Let M be a real oriented four-dimensional manifold with a metric g of arbitrary
signature.

— The Hodge ∗ operator is an involution on two-forms, and induces a decomposition

Λ2(T∗M)=Λ2
+(T∗M)⊕Λ2

−(T∗M) (2.1)

of two-forms into SD and ASD components, which only depends on the conformal class
of g.

— Locally, there exist complex rank-two vector bundles S, S′ (spinbundles) over M equipped
with parallel symplectic structures ε, ε′, such that

TCM∼= S⊗ S
′ (2.2)

is a canonical bundle isomorphism and

g(p1 ⊗ q1, p2 ⊗ q2)= ε(p1, p2)ε′(q1, q2) (2.3)

for p1, p2 ∈ Γ (S) and q1, q2 ∈ Γ (S′). The isomorphism (2.2) is related to (2.1) by

Λ2
+ ∼= S

′∗ � S
′∗, Λ2

− ∼= S
∗ � S

∗.

— The orthogonal group in dimension four is not simple:

SO(4, C)∼= (SL(2, C)× S̃L(2, C))
Z2

, (2.4)

where S and S
′ defined above are the representation spaces of SL(2) and S̃L(2),

respectively. There exist three real slices, as follows. In the Lorentzian signature,
Spin(3, 1)∼= SL(2, C) and both copies of SL(2, C) in (2.4) are related by complex
conjugation. In the Riemannian signature, Spin(4, 0)= SU(2)× S̃U(2). In (2, 2) (also called
the neutral, or ultra-hyperbolic, signature) Spin(2, 2)∼= SL(2, R)× S̃L(2, R). Only in this
signature, there exists a notion of real spinors, and, as we shall see in §3b, real twistors.

(a) Incidence relation
The projective twistor space PT is defined to be CP

3 − CP
1. The homogeneous coordinates of a

twistor are (Z0, Z1, Z2, Z3)∼ (ρZ0, ρZ1, ρZ2, ρZ3), where ρ ∈C
∗ and (Z2, Z3) �= (0, 0). The projective

twistor space (which we shall call twistor space from now on) and Minkowski space are linked
by the incidence relation (figure 1)(

Z0

Z1

)
= i√

2

(
ct+ z x+ iy
x− iy ct− z

)(
Z2

Z3

)
, (2.5)

where xμ = (ct, x, y, z) are coordinates of a point in Minkowski space. If two points in Minkowski
space are incident with the same twistor, then they are connected by a null line. Let

Σ(Z, Z̄)=Z0Z̄2 + Z1Z̄3 + Z2Z̄0 + Z3Z̄1

1See also the programme and slides from the meeting New Horizons in Twistor Theory in Oxford, UK, in January
2017, which celebrated this anniversary along with the 85th birthday of Roger Penrose and the 67th of Nick Woodhouse
(http://www.maths.ox.ac.uk/groups/mathematical-physics/events/twistors50).
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MCC PTPT

Figure 1. Twistor incidence relation.

be a (++−−) Hermitian inner product on the non-projective twistor space T=C
4 − C

2. The
orientation-preserving endomorphisms of the twistor space which preserve Σ form a group
SU(2, 2), which is locally isomorphic to the conformal group SO(4, 2) of Minkowski space. The
twistor space T is divided into three parts depending on whether Σ is positive, negative or zero.
This partition descends to the projective twistor space. In particular, the hypersurface

PN = {[Z] ∈ PT, Σ(Z, Z̄)= 0} ⊂ PT

is preserved by the conformal transformations of the Minkowski space, which can be verified
directly using (2.5). The five-dimensional manifold PN ∼= S2 × R

3 is the space of light rays in the
Minkowski space. Fixing the coordinates xμ of a space–time point in (2.5) gives a plane in the
non-projective twistor space C

4 − C
2 or a projective line CP

1 in PT. If the coordinates xμ are real,
this line lies in the hypersurface PN . Conversely, fixing a twistor in PN gives a light ray in the
Minkowski space.

So far only the null twistors (points in PN ) have been relevant in this discussion. General
points in PT can be interpreted in terms of the complexified Minkowski space MC =C

4, where they
correspond to α-planes, i.e. null two-dimensional planes with an SD tangent bi-vector. This, again,
is a direct consequence of (2.5), where now the coordinates xμ are complex (figure 1):

Complexified space–time MC ←→ Twistor space PT.

Point p ←→ Complex line Lp =CP
1.

Null self-dual (=α) two-plane ←→ Point.

p1, p2 null separated ←→ L1, L2 intersect at one point.

(b) Robinson congruence
The non-null twistors can also be interpreted in the real Minkowski space, but this is somewhat
less obvious [1]: the inner product Σ defines a vector space T

∗ dual to the non-projective twistor
space. Dual twistors are the elements of the projective space PT

∗. Consider a twistor Z ∈ PT \
PN . Its dual Z̄ ∈ PT

∗ corresponds to a two-dimensional complex projective plane CP
2 in PT.

This holomorphic plane intersects the space of light rays PN in a real three-dimensional locus
corresponding to a three-parameter family of light rays in the real Minkowski space. The family
of light rays representing a non-null twistor is called the Robinson congruence.

Null ray in M ←→ Point in PN .

Robinson congruence {Z̄} ∩ PN ←→ Point in PT \ PN .
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Figure 2. Robinson congruence of twisting light rays.

The Robinson congruence in figure 2 is taken from the front cover of Penrose & Rindler [3]. It
consists of a system of twisted oriented circles in R

3: a light ray is represented by a point in R
3

together with an arrow indicating the direction of the ray’s motion. It is this twisting property of
circles in figure 2 that gave rise to a term ‘twistor’ for points of PT. An account of congruences in
general relativity which motivated initial progress in twistor theory is given in [55–57].

(c) Cohomology
The twistor interpretation of Penrose’s contour integral formula (1.1) is as follows. Cover the
twistor space T=C

4 − C
2 by two open sets: U0 defined by Z2 �= 0 and U1 defined by Z3 �= 0.

Consider a function on the non-projective twistor space f = f (Z0, Z1, Z2, Z3) which is holomorphic
on U0 ∩U1 and homogeneous of degree −2 in Zα . Restrict this function to a two-dimensional
plane in T defined by the incidence relation (2.5) with (x, y, z, t) fixed. This gives rise to an element
of the cohomology group2 H1(Lp,O(−2)) on the projective twistor space, where Lp ∼=CP

1 is the
curve corresponding, via the incidence relation (2.5), to a point p ∈MC. Integrate the cohomology
class along a contour Γ in Lp. This gives (1.1) with λ=Z3/Z2. For example, f = (PαZα)−1(QβZβ )−1,
where α, β = 0, . . . , 3 and (Pα , Qβ ) are constant dual twistors, gives rise to a fundamental solution
to the wave equation (1.2). The theorem of Eastwood et al. [9] states that solutions to the wave
equation (1.2) which holomorphically extend to a future tube domain in MC are in one-to-one
correspondence with elements of the cohomology group H1(PT,O(−2)). This correspondence
extends to solutions of zero-rest-mass equations with higher spin, and elements of H1(PT,O(k)),
where k is an integer (see [3,9–11,58] for further details).

3. Twistors for curved spaces
The twistor space of complexified Minkowski space MC =C

4 was defined by the incidence
relation (2.5) as the space of all α-planes in C

4. Let (MC, g) be a holomorphic four-manifold with
a holomorphic Riemannian metric and a holomorphic volume form. Define an α-surface to be
a two-dimensional surface in MC such that its tangent plane at every point is an α-plane. If the

2The cohomology group H1(CP
1,O(k)) is the space of functions f01 holomorphic on U0 ∩U1 and homogeneous of degree k

in coordinates [Z2, Z3] modulo addition of coboundaries (functions holomorphic on U0 and U1). In a trivialization over U0,
we represent f01 by a holomorphic function f on C

∗. In the trivialization over U1, f01 is represented by λ−kf , where λ=Z3/Z2.
Here, and in the rest of this paper, O(k) denotes a line bundle over CP

1 with transition function λ−k in a trivialization over
U0. Alternatively, it is defined as the (−k)th tensor power of the tautological line bundle.
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metric g is curved, there will be integrability conditions coming from the Frobenius theorem for
an α-plane to be tangent to a 2D surface.

(a) The nonlinear graviton construction
Define PT to be the space of α-surfaces ζ in (MC, g). The Frobenius theorem implies that, for
X, Y ∈ Tζ→ [X, Y] ∈ Tζ , and there are obstructions in terms of the curvature of g. This gives rise
to the nonlinear graviton theorem.

Theorem 3.1 (Penrose [13]). There exists a three-parameter family of α-surfaces in MC iff the Weyl
tensor of g is ASD, i.e.

Cabcd =− 1
2 εab

pqCcdpq. (3.1)

The anti-self-duality of the Weyl tensor is the property of the whole conformal class

[g]=Ω2g, Ω : MC→C
∗,

rather than any particular metric. Points in an ASD conformal manifold (MC, [g]) correspond to
rational curves in PT with normal bundle O(1)⊕O(1), and points in PT correspond to α-surfaces
in MC. The ASD conformal structure on MC can be defined in terms of the algebraic geometry of
curves in twistor space: PT is three dimensional, so two curves in PT generically do not intersect.
Two points in MC are null separated iff the corresponding curves in PT intersect at one point.

Theorem 3.2 (Penrose [13]). Let MC be a moduli space of all rational curves with the normal bundle
O(1)⊕O(1) in some complex threefold PT. Then MC is a complex fourfold with a holomorphic conformal
metric with ASD curvature. Locally, all ASD holomorphic conformal metrics arise from some PT.

More conditions need to be imposed on PT if the conformal structure contains a Ricci-
flat metric. In this case, there exists a holomorphic fibration μ : PT→CP

1 with O(2)-valued
symplectic form on the fibres. Other curvature conditions (ASD Einstein [59–63], hyper–
Hermitian [64,65], scalar-flat Kähler [66], null Kähler [67]) can also be encoded in terms of
additional holomorphic structures on PT. Some early motivation for theorem 3.2 came from
complex general relativity and theory of H-spaces [68,69].

(b) Reality conditions
The real ASD conformal structures are obtained by introducing an involution on the twistor space.
If the conformal structure has Lorentizian signature, then the anti-self-duality implies vanishing
of the Weyl tensor, and thus g is conformally flat. This leaves two possibilities: Riemannian
and neutral signatures. In both cases, the involutions act on the twistor lines, thus giving rise
to maps from CP

1 to CP
1: the antipodal map which in stereographic coordinates is given by

λ→−1/λ̄, or a complex conjugation which swaps the lower and upper hemispheres preserving
the real equator. The antipodal map has no fixed points and corresponds to the positive-definite
conformal structures. The conjugation corresponds to the neutral case.

In the discussion below, we shall make use of the double fibration picture

MC

r←−F q−→ PT, (3.2)

where the five-complex-dimensional correspondence is defined by

F = PT×MC|ζ∈Lp =MC × CP
1,

where Lp is the line in PT that corresponds to p ∈MC and ζ ∈ PT lies on Lp. The space F can be
identified with a projectivization PS

′ of the spin bundle S
′ →MC. It is equipped with a rank-two

distribution, the twistor distribution, which at a given point (p, λ) of F is spanned by horizontal lifts
of vectors spanning α-surface at p ∈MC. The normal bundle to Lp consists of vectors tangent to
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p horizontally lifted to T(p,λ)F modulo the twistor distribution D. We have a sequence of sheaves
over CP

1

0−→D−→C
4 −→O(1)⊕O(1)−→ 0.

Using the abstract index notation [3] (so that, for example, πA′ denotes a section of S
′, and

no choice of a local frame or coordinates is assumed), the map C
4 −→O(1)⊕O(1) is given by

VAA′ −→VAA′πA′ . Its kernel consists of vectors of the form πA′ρA with ρ ∈ S varying. The twistor
distribution is therefore D=O(−1)⊗ S and so there is a canonical LA ∈ Γ (D⊗O(1)⊗ S), given by
LA = πA′∇AA′ , where A= 0, 1.

— Euclidean case. The conjugation σ : S
′ → S

′ given by σ (π0′ , π1′ )= (π̄1′ ,−π̄0′ ) descends from
S
′ to an involution σ : PT→ PT such that σ 2 =−Id. The twistor curves which are

preserved by σ form a real four-parameter family, thus giving rise to a real four-manifold
MR. If ζ ∈ PT, then ζ and σ (ζ ) are connected by a unique real curve. The real curves do not
intersect as no two points are connected by a null geodesic in the positive definite case.
Therefore, there exists a fibration of the twistor space PT over a real four-manifold MR. A
fibre over a point p ∈MR is a copy of a CP

1. The fibration is not holomorphic, but smooth.
In the Atiyah–Hitchin–Singer [14] (AHS) version of the correspondence, the twistor space
of the positive-definite metric is a real six-dimensional manifold identified with the
projective spin bundle P(S′)→MR.
Given a conformal structure [g] on MR, one defines an almost-complex structure on P(S′)
by declaring

{πA′∇AA′ , ∂/∂λ̄}

to be the anti-holomorphic vector fields in T0,1(P(S′)).

Theorem 3.3 (Atiyah–Hitchin–Singer [14]). The six-dimensional almost-complex manifold

P(S′)→MR

parametrizes almost-complex structures in (MR, [g]). Moreover, P(S′) is complex iff [g] is ASD.

— Neutral case. The spinor conjugation σ : S
′ → S

′ given by σ (π0′ , π1′ )= (π̄0′ , π̄1′ ) allows an
invariant decomposition of a spinor into its real and imaginary parts, and thus definition
of real α-surfaces [67,70].
In general, π =Re(π )+ iIm(π ), and the correspondence space F = P(S′) decomposes into
two open sets

F+ = {(p, [π ]) ∈F ; Re(πA′ )Im(πA′ ) > 0} =MR ×D+

and F− = {(p, [π ]) ∈F ; Re(πA′ )Im(πA′ ) < 0} =MR ×D−,

where D± are two copies of a Poincaré disc. These sets are separated by a real
correspondence space F0 =MR × RP

1. The correspondence spaces F± have the structure
of a complex manifold in a way similar to the AHS Euclidean picture. There exists an
RP

1 worth of real α-surfaces through each point in MR, and a real twistor distribution
consisting of vectors tangent to real α-surfaces defines a foliation of F0 with quotient
PT0, which leads to a double fibration

MR

r←−F0
q−→ PT0.

The twistor space PT is a union of two open subsets PT+ = (F+) and PT− = (F−)
separated by a three-dimensional real boundary PT0.
These reality conditions are relevant in the twistor approach to integrable systems (see
§6), integral geometry, twistor-inspired computations of scattering amplitudes (see §7),
as well as recent applications [71] of the index theorem [72], which do not rely on
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LL
UU

U

CPCP1

PTPT

Figure 3. Curvature on (MC, g) corresponds to deformations ofPT.

positivity of the metric. The discussion in this subsection has assumed real analyticity
of MR. The approach of LeBrun & Mason [73] based on holomorphic discs can weaken
this assumption.

(c) Kodaira deformation theory
One way of obtaining complex three-manifolds with four-parameter families of O(1)⊕O(1)
curves comes from the Kodaira deformation theory applied to PT=CP

3 − CP
1 (figure 3).

The normal bundle N(Lp)≡ T(PT)|Lp/TLp ∼=O(1)⊕O(1) satisfies

H1(Lp, N(Lp))= 0.

The Kodaira theorems [74] imply that there exist infinitesimal deformations of the complex
structure of PT which preserve the four-parameter family MC of CP

1s, as well as the type of
their normal bundle. Moreover, this deformed family admits an isomorphism

H0(Lp, N(Lp))∼= TpMC,

identifying tangent vectors to MC with pairs of linear homogeneous polynomials in two variables.
This identification allows a conformal structure on MC to be constructed that arises from a
quadratic condition that both polynomials in each pair have a common zero. There are some
examples of ASD Ricci-flat metrics arising from explicit deformations [18,58]. A method of
constructing such examples was pioneered by George Sparling.

(i) Twistor solution to the holonomy problem

The Kodaira approach to twistor theory has given rise to a complete classification of manifolds
with exotic holonomy groups (holonomy groups of affine connections which are missing from
Berger’s list). The first landmark step was taken by Bryant [37], who generalized the Kodaira
theorems and the twistor correspondence to Legendrian curves. Complex contact three-folds
with a four-parameter family of Legendrian rational curves with normal bundle O(2)⊕O(2)
correspond to four-manifolds MC such that TpMC

∼=C
2 � C

2 � C
2 and there exists a torsion-

free connection with holonomy group GL(2, C). The theory was extended by Merkulov [38,39]
to allow Legendrian deformations of more general submanifolds. This work leads to a complete
classification by Merkulov & Schwachhofer [40].

(d) Gravitational instantons
Gravitational instantons are solutions to the Einstein equations in Riemannian signature which
give complete metrics whose curvature is concentrated in a finite region of a space–time. The non-
compact gravitational instantons asymptotically ‘look like’ flat space. While not all gravitational
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instantons are (anti)-self-dual (e.g. the Euclidean Schwarzchild solution is not) most of them are,
and therefore they arise from theorems 3.2 and 3.3.

— There exists a large class of gravitational instantons which depend on a harmonic function
on R

3,
g=V(dx2 + dy2 + dz2)+ V−1(dτ + A)2, where ∗3 dV= dA, (3.3)

where V and A are a function and a one-form, respectively, which do not depend
on τ . This is known as the Gibbons–Hawking ansatz [75]. The resulting metrics are
hyper-Kähler (or equivalently ASD and Ricci flat). The Killing vector field K= ∂/∂τ

is tri-holomorphic—it preserves the sphere of Kähler forms of g. It gives rise to a
holomorphic vector field on the corresponding twistor space which preserves the
O(2)-valued symplectic structure on the fibres of PT→CP

1. Therefore, there exists an
associated O(2)-valued Hamiltonian, and the Gibbons–Hawking twistor space admits a
global fibration over the total space of O(2). Conversely, any twistor space which admits
such fibration leads to the Gibbons–Hawking metric on the moduli space of twistor
curves [76,77].

— An example of a harmonic function in (3.3) which leads to the Eguchi–Hanson
gravitational instanton is V= |r+ a|−1 + |r− a|−1. It is asymptotically locally Euclidean
(ALE), as it approaches R

4/Z
2 for large |r|. The corresponding twistor space has been

constructed by Hitchin [19].
— A general gravitational instanton is called ALE if it approaches R

4/Γ at infinity, where Γ

is a discrete subgroup of SU(2). Kronheimer [20,21] has constructed ALE spaces for finite
subgroups

Ak, Dk, E6, E7, E8

of SU(2). In each case, the twistor space is a three-dimensional hyper-surface

F(X, Y, Z, λ)= 0,

in the rank-three bundle O(p)⊕O(q)⊕O(r)→CP
1, for some integers (p, q, r), where F is

a singularity resolution of one of the Klein polynomials corresponding to the Platonic
solids

XY− Zk = 0, X2 + Y2Z+ Zk = 0, . . . , X2 + Y3 + Z5 = 0 (isocahedron).

The twistor spaces of these ALE instantons admit a holomorphic fibration over the total
space of O(2n) for some n≥ 1. In the case of Ak one has n= 1 and the metric belongs to
the Gibbons–Hawking class. In the remaining cases n > 1, and the resulting metrics do not
admit any tri-holomorphic Killing vector. They do, however, admit hidden symmetries
(in the form of tri-holomorphic Killing spinors), and arise from a generalized Legendre
transform [78–82].

— There are other types of gravitational instantons which are not ALE, and which are
characterized by different volume growths of a ball of the given geodesic radius [83,84].
They are asymptotically locally flat (ALF), and ‘inductively’ named ALG, ALH spaces.
Some ALF spaces arise from the Gibbons–Hawking ansatz (3.3) where

V= 1+
N∑

m=1

1
|x− xm| ,

where x1, . . . , xN are fixed points in R
3 (the corresponding twistor spaces are known), but

others do not. In [85], some progress has been made in constructing twistor spaces for Dk
ALF instantons, but finding the twistor spaces, or explicit local forms for the remaining
cases, is an open problem.

There also exist compact examples of Riemannian metrics with ASD conformal curvature. The
round S4 and CP

2 with the Fubini–Study metric are explicit examples where the ASD metric is
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also Einstein with positive Ricci scalar. A Ricci-flat ASD metric is known to exist on the K3 surface,
but the explicit formula for the metric is not known.

LeBrun has proved [86] that there are ASD metrics with positive scalar curvature on any

connected sum NCP
2

of reversed oriented complex projective planes. This class, together with a
round four-sphere, exhausts all simply connected possibilities. The corresponding twistor spaces
can be constructed in an algebraic way. The strongest result belongs to Taubes [87]. If M is any
compact oriented smooth four-manifold, then there exists some N0 > 0 such that

MN =M#NCP
2

admits an ASD metric for any N≥N0.

4. Local twistors
There exist at least three definitions of a twistor which agree in a four-dimensional flat space.
The first, twistors as α-planes, was used in the last section, where its curved generalization leads
to the nonlinear graviton construction and anti-self-duality. The second, twistors as spinors for
the conformal group, relies heavily on maximal symmetry and so does not generalize to curved
metrics. The last, twistors as solutions to the twistor equation, leads to interesting notions of a
local twistor bundle and a local twistor transport [3,4,88,89], which we now review.

We shall make use of the isomorphism (2.2). Let Zα be homogeneous coordinates of a twistor
as in §2. Set Zα = (ωA, πA′ ). Differentiating the incidence relation (2.5) yields

∇A′
(AωB) = 0, (4.1)

where∇A′
A = εAB∇BA′ and εAB =−εBA is a (chosen) symplectic form on S

∗ used to raise and lower
indices.

The space–time coordinates (x, y, z, t) are constants of integration resulting from solving this
equation on MC. Let us consider (4.1) on a general curved four-manifold, where it is called the
twistor equation. It is conformally invariant under the transformations of the metric g→Ω2g. The
prolongation of the twistor equation leads to a connection on a rank-four vector bundle S⊗ E[1]⊕
S
′ called the local twistor bundle. Here, E[k] denotes a line bundle of conformal densities of weight

k. This connection is also called the local twistor transport, and is given by Dighton [88],

Da

(
ωB

πB′

)
=
(
∇aω

B − εA
BπA′

∇aπB′ − PABA′B′ω
B

)
,

where Pab is the Schouten tensor of conformal geometry given by

Pab = 1
2 Rab − 1

12 Rgab.

The holonomy of the local twistor transport obstructs the existence of global twistors on curved
four-manifolds (all local normal forms of Lorentzian metrics admitting solutions to (4.1) have
been found in [90]).

The tractor bundle is isomorphic to the exterior square of the local twistor bundle. It is a
rank-six vector bundle T= E[1]⊕ T∗M⊕ E[−1], and its connection induced from the local twistor
transform is

Da

⎛⎜⎝ σ

μb
ρ

⎞⎟⎠=
⎛⎜⎝ ∇aσ − μa

∇aμb + Pabσ + gabρ

∇aρ − Pa
bμb

⎞⎟⎠ . (4.2)

This connection does not arise from a metric, but is related to a pull-back of the Levi–Civita
connection of the so-called ambient metric to a hypersurface (see [30,31] as well as [26] for
discussion of the ambient construction).
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The point about the connection (4.2) is that it also arises as a prolongation connection for the
conformal to the Einstein equation

(∇a∇b + Pab)0σ = 0, (4.3)

where (. . . )0 denotes the trace-free part. If σ satisfies (4.3) where ∇a and Pab are computed from g,
then σ−2g is Einstein [91]. Therefore, the holonomy of (4.2) leads to obstructions for an existence
of an Einstein metric in a given conformal class [91–94]. The Bach tensor is one of the obstructions
arising from a requirement that a parallel tractor needs to be annihilated by the curvature of (4.2)
and its covariant derivatives.

Conformal geometry is a particular example of a parabolic geometry—a curved analogue of
a homogeneous space G/P which is the quotient of a semi-simple Lie group G by a parabolic
subgroup P. Other examples include projective and CR geometries. All parabolic geometries
admit tractor connections. See [41] for details of these constructions, and [24,95,96] where
conformally invariant differential operators have been constructed. Examples of such operators
are the twistor operator ωA→∇A′(AωB) underlying (4.1) and the operator acting on Sym4(S∗)

CABCD→ (∇C
(A′∇D

B′) + PCD
A′B′ )CABCD.

This operator associates the conformally invariant Bach tensor with the ASD Weyl spinor.

5. Gauge theory
The full second-order Yang–Mills equations on R

4 are not integrable, and there is no twistor
construction encoding their solutions in unconstrained holomorphic data on PT—there do exist
ambitwistor constructions [97–99] in terms of formal neighbourhoods of spaces of complex null
geodesics, but they do not lead to any solution generation techniques. As in the case of gravity,
the ASD sub-sector can be described twistorially, this time in terms of holomorphic vector bundles
over PT rather than deformations of its complex structures.

(a) Anti-self-dual equations on Yang–Mills and the Ward correspondence
Let A ∈Λ1(R4)⊗ g, where g is some Lie algebra, and let

F= dA+ A ∧ A.

The ASD Yang–Mills equations are

∗ F=−F, (5.1)

where ∗ : Λ2→Λ2 is the Hodge endomorphism depending on the flat metric and the orientation
on R

4. These equations together with the Bianchi identity DF := dF+ [A, F]= 0 imply the full
Yang–Mills equations D ∗ F= 0.

Let us consider (5.1) on the complexified Minkowski space MC =C
4 with a flat holomorphic

metric and a holomorphic volume form. Equations (5.1) are then equivalent to the vanishing of F
on each α-plane in MC. Therefore, given ζ ∈ PT, there exists a vector space of solutions to

laDaΦ = 0 and maDaΦ = 0, where ζ = span{l, m} ∈ TMC. (5.2)

The converse of this construction is also true and leads to a twistor correspondence for solutions
to anti-self-dual equations on Yang–Mills (ASDYM) equations.

Theorem 5.1 (Ward [15]). There is a one-to-one correspondence between

(i) gauge equivalence classes of ASD connections on MC with the gauge group G=GL(n, C);
(ii) holomorphic rank-n vector bundles E over twistor space PT which are trivial on each degree 1

section of PT→CP
1.
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The splitting of the patching matrix FE for the bundle E into a product of matrices holomorphic
on U0 and U1 is the hardest part of this approach to integrable PDEs. When the Ward
correspondence is reduced to lower-dimensional PDEs as in §6, the splitting manifests itself as
the Riemann–Hilbert problem in the dressing method.

To obtain real solutions on R
4 with the gauge group G= SU(n) the bundle must be compatible

with the involution σ preserving the Euclidean slice (cf. §3b). This comes down to det FE = 1, and

FE
∗(ζ )= FE(σ (ζ )),

where ∗ denotes the Hermitian conjugation, and σ : PT→ PT is the anti-holomorphic involution
on the twistor space which restricts to an antipodal map on each twistor line [10,100].

(b) Lax pair
Consider the complexified Minkowski space MC =C

4 with coordinates w, z, w̃, z̃, and the metric
and orientation

g= 2(dz dz̃− dw dw̃), vol= dw ∧ dw̃ ∧ dz ∧ dz̃.

The Riemannian reality conditions are recovered if z̃= z̄, w̃=−w̄, and the neutral signature arises
if all four coordinates are taken to be real. The ASDYM equations (5.1) arise as the compatibility
condition for an overdetermined linear system LΨ = 0, MΨ = 0, where

L=Dz̃ − λDw and M=Dw̃ − λDz, (5.3)

where Dμ = ∂μ + [Aμ, ·] and Ψ =Ψ (w, z, w̃, z̃, λ) is the fundamental matrix solution. Computing
the commutator of the Lax pair (L, M) yields

[L, M]= Fz̃w̃ − λ(Fww̃ − Fzz̃)+ λ2Fwz = 0

and the vanishing of the coefficients of various powers of λ gives (5.1). The geometric
interpretation of this is as follows: for each value of λ ∈CP

1, the vectors l= ∂z̃ − λ∂w, m= ∂w̃ − λ∂z

span a null plane in MC which is SD in the sense that ω= vol(l, m, . . . , . . . ) satisfies ∗ω=ω. The
condition (5.1) takes the equivalent form ω ∧ F= 0, thus F vanishes on all α-planes. For a given
Yang–Mills potential A, the lax pair (5.3) can be expressed as L= l+ l A, M=m+m A.

(c) Instantons
Instantons, i.e. solutions to ASDYM such that∫

R4
Tr(F ∧ ∗F) <∞,

extend from R
4 to S4. The corresponding vector bundles extend from PT to CP

3. The holomorphic
vector bundles over CP

3 have been extensively studied by algebraic geometers. All such bundles
(and thus the instantons) can be generated by the monad construction [101].

One way to construct holomorphic vector bundles is to produce extensions of line bundles,
which comes down to using upper-triangular matrices as patching functions. Let E be a rank-two
holomorphic vector bundle over PT which arises as an extension of a line bundle L⊗O(−k) by
another line bundle L∗ ⊗O(k)

0−→ L⊗O(−k)−→ E−→ L∗ ⊗O(k)−→ 0. (5.4)

If k > 1, then the Yang–Mills potential A is given in terms of a solution to the linear zero-rest-mass
field equations with higher helicity.

Theorem 5.2 (Atiyah–Ward [102]). Every SU(2) ASDYM instanton over R
4 arises from a

holomorphic vector bundle of the form (5.4).

Advances made in ASD gauge theory using the twistor methods lead to the studies of moduli
spaces of connections. Such moduli spaces continue to play an important role in mathematical
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Figure 4. Mini-twistor correspondence.

physics [103], and gave rise to major advances in the understanding of the topology of four-
manifolds [104].

(d) Mini-twistors and magnetic monopoles
Another gauge-theoretic problem which was solved using twistor methods [105,106] is the
construction of non-Abelian magnetic monopoles.

Let (A, φ) be an su(n)-valued one-form and a function, respectively, on R
3, and let F= dA+

A ∧ A. The non-Abelian monopole equation is a system of nonlinear PDEs

dφ + [A, φ]=∗3F. (5.5)

These are three equations for three unknowns as (A, φ) are defined up to gauge transformations

A−→ gAg−1 − dgg−1, φ −→ gφg−1, g= g(x, y, z) ∈ SU(n) (5.6)

and one component of A can always be set to zero.
Following Hitchin [105], define the mini-twistor space Z to be the space of oriented lines in R

3.
Any oriented line is of the form v+ su, s ∈R, where u is a unit vector giving the direction of the
line and v is orthogonal to u and joins the line at some chosen point (say the origin) in R

3. Thus,

Z = {(u, v) ∈ S2 × R
3, u.v= 0}.

For each fixed u ∈ S2 this space restricts to a tangent plane to S2. The twistor space is the union of
all tangent planes—the tangent bundle TS2 which is also a complex manifold TCP

1 (figure 4).
Given (A, φ), solve a matrix ODE along each oriented line x(s)= v+ su,

dV
ds
+ (ujAj + iφ)V= 0.

This ODE assigns a complex vector space C
n to each point of Z, thus giving rise to a complex

vector bundle over the mini-twistor space. Hitchin [60] shows that monopole equation (5.5) on R
3

holds iff this vector bundle is holomorphic.
The mini-twistor space of Hitchin can also be obtained as a reduction of the twistor space

PT=CP
3 − CP

1 by a holomorphic vector field corresponding to a translation in R
4. An analogous

reduction of ASDYM on R
4 by a rotation gives non-Abelian hyperbolic monopoles [107].

In the next section, we shall discuss how more general reductions of PT give rise to solution
generation techniques for lower-dimensional integrable systems.
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6. Integrable systems
Most lower-dimensional integrable systems arise as symmetry reductions of ASD equations on
(M, [g]) in (2, 2) or (4, 0) signature.

The solitonic integrable systems are reductions of ASDYM as their linear systems (Lax pairs)
involve matrices. The programme of reducing the ASDYM equations to various integrable
equations has been proposed and initiated by Ward [16] and fully implemented in [17]. The
dispersionless integrable systems are reductions of ASD equations on a conformal structure
[18,108]. A unified approach combining curved backgrounds with gauge theory has been
developed by Calderbank [109].

In both cases, the reductions are implemented by assuming that the Yang–Mills potential or
the conformal metric are invariant with respect to a subgroup of the full group of conformal
symmetries. Conformal Killing vectors on MC correspond to holomorphic vector fields on PT.
The resulting reduced system will admit a (reduced) Lax pair with a spectral parameter coming
from the twistor α-plane distribution. It will be integrable by a reduced twistor correspondence
of theorem 3.2 or theorem 5.1.

(a) Solitonic equations
The general scheme and classification of reductions of ASDYM on the complexified Minkowski
space involves a choice of subgroup of the complex conformal group PGL(4, C), a real section
(hyperbolic equations arise from ASDYM in neutral signature), a gauge group and finally
canonical forms of Higgs fields.

We have already seen one such symmetry reduction: the ASDYM equation on R
4 invariant

under a one-dimensional group of translations generated by K= ∂/∂x4 reduces to the non-
Abelian monopole equation (5.5). The Higgs field on R

3 is related to the gauge potential A on
R

4 by φ =K A. The analogous reduction from R
2,2 leads to Ward’s integrable chiral model on

R
2,1 [110]. It is solved by a mini-twistor construction, where the mini-twistor space Z from the

description of monopoles is instead equipped with an anti-holomorphic involution fixing a real
equator on each twistor line [111]. The solitonic solutions are singled out by bundles which extend
to compactified mini-twistor spaces [112,113]. Below we give some examples of reductions to two
and one dimensions.

— Consider the SU(2) ASDYM in neutral signature and choose a gauge Az̃ = 0. Let Tα , α =
1, 2, 3 be two-by-two constant matrices such that [Tα , Tβ ]=−εαβγ Tγ . Then the ASDYM
equations are solved by the ansatz

Aw = 2 cos φ T1 + 2 sin φ T2, Aw̃ = 2T1, Az = ∂zφT3,

provided that φ = φ(z, z̃) satisfies

φzz̃ + 4 sin φ = 0,

which is the Sine–Gordon equation. Analogous reductions of ASDYM with gauge group
SL(3, R) or SU(2, 1) lead to the Tzitzeica equations and other integrable systems arising in
affine differential geometry [18]. A general reduction by two translations on R

4 leads to
Hitchin’s self-duality equations, which exhibit conformal invariance and thus extend to
any Riemann surface [114].

— Mason & Sparling [115] have shown that any reduction to the ASDYM equations on
R

2,2 with the gauge group SL(2, R) by two translations, exactly one of which is null, is
gauge equivalent to either the Korteweg–de Vries or the nonlinear Schrodinger equation
depending on whether the Higgs field corresponding to the null translation is nilpotent
or diagonalizable. In [17,116], this reduction has been extended to integrable hierarchies.
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— By imposing three translational symmetries, one can reduce ASDYM to an ODE. Choose
the Euclidean reality condition, and assume that the Yang–Mills potential is independent
on xj = (x1, x2, x3).
Select a gauge A4 = 0, and set Aj =Φj, where the Higgs fields Φj are real g-valued
functions of x4 = t. The ASDYM equations reduce to the Nahm equations

Φ̇1 = [Φ2, Φ3], Φ̇2 = [Φ3, Φ1] and Φ̇3 = [Φ1, Φ2].

These equations admit a Lax representation, which comes from taking a linear
combination of L and M in (5.3). Let

B(λ)= (Φ1 + iΦ2)+ 2Φ3λ− (Φ1 − iΦ2)λ2.

Then

Ḃ= [Φ2 − iΦ1, Φ3]+ 2[Φ1, Φ2]λ− [Φ2 + iΦ1, Φ3]λ2

= [B,−iΦ3 + i(Φ1 − iΦ2)λ]

= [B, C], where C=−iΦ3 + i(Φ1 − iΦ2)λ.

The Nahm equations with the group of volume-preserving diffeomorphisms of some
three-manifold as the gauge group are equivalent to ASD vacuum equations [117].

— Reductions of ASDYM by three-dimensional Abelian subgroups of the complexifed
conformal group PGL(4, C) lead to all six Painlevé equations [17]. The coordinate-
independent statement of the Painlevé property for ASDYM was first put forward by
Ward [118]: if a solution of ASDYM on MC =C

4 has a non-characteristic singularity, then
that singularity is at worst a pole. Another twistor approach to the Painlevé equation is
based on SU(2)-invariant ASD conformal structures [119–121].

(b) Dispersionless systems and Einstein–Weyl equations
There is a class of integrable systems in 2+ 1 and three dimensions which do not fit into
the framework described in the last section. They do not arise from ASDYM and there is no
finite-dimensional Riemann–Hilbert problem which leads to their solutions. These dispersionless
integrable systems admit Lax representations which do not involve matrices, like (5.3), but instead
consist of vector fields.

Given a four-dimensional conformal structure (M, [g]) with a non-null conformal Killing vector
K, the three-dimensional space W of trajectories of K inherits a conformal structure [h] represented
by a metric

h= g− K⊗ K
|K2| .

The ASD condition on [g] results in an additional geometrical structure on (W , [h]); it becomes
an Einstein–Weyl space [122]. There exists a torsion-free connection D which preserves [h] in the
sense that

Dh=ω ⊗ h, (6.1)

for some one-form ω, and the symmetrized Ricci tensor of D is proportional to h ∈ [h]. These
are the Einstein–Weyl equations [123]. They are conformally invariant: if h−→Ω2h, then ω−→
ω + 2d(log Ω).

Most known dispersionless integrable systems in 2+ 1 and three dimensions arise from the
Einstein–Weyl equations. Consult [18,109,124] for the complete list. Here we shall review the
twistor picture and examples of integrable reductions.

Theorem 6.1 (Hitchin [60]). There is a one-to-one correspondence between solutions to Einstein–Weyl
equations in three dimensions and two-dimensional complex manifolds Z admitting a three-parameter
family of rational curves with normal bundle O(2).
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Figure 5. Einstein–Weyl twistor correspondence.

In this twistor correspondence, the points of W correspond to rational O(2) curves in the
complex surface Z, and points in Z correspond to null surfaces in W which are totally geodesic
with respect to the connection D (figure 5).

To construct the conformal structure [h], define the null vectors at p in W to be the sections
of the normal bundle N(Lp) vanishing at some point to second order. Any section of O(2)
is a quadratic polynomial, and the repeated root condition is given by the vanishing of its
discriminant. This gives a quadratic condition on TW .

To define the connection D, let a direction at p ∈W be a one-dimensional space of sections of
O(2) which vanish at two points ζ1 and ζ2 on a line Lp. The one-dimensional family of twistor
O(2) curves in Z passing through ζ1 and ζ2 gives a geodesic in W in a given direction. The
limiting case ζ1 = ζ2 corresponds to geodesics which are null with respect to [h] in agreement
with (6.1). The special surfaces in W corresponding to points in Z are totally geodesic with respect
to the connection D. The integrability conditions for the existence of totally geodesic surfaces is
equivalent to the Einstein–Weyl equations [123].

The dispersionless integrable systems can be encoded in the twistor correspondence of
theorem 6.1 if the twistor space admits some additional structures.

— If Z admits a preferred section of κ−1/2, where κ is the canonical bundle of Z, then there
exist coordinates (x, y, t) and a function u on W such that

h= eu(dx2 + dy2)+ dt2, ω= 2ut dt,

and the Einstein–Weyl equations reduce to the SU(∞) Toda equation [86,125]

uxx + uyy + (eu)tt = 0.

This class of Einstein–Weyl spaces admits both Riemannian and Lorentzian sections (for
the latter replace t by it or x by ix), which correspond to two possible real structures
on Z. It can be characterized on W by the existence of a twist-free shear-free geodesic
congruence [126,127].

— If Z admits a preferred section of κ−1/4, then there exist coordinates (x, y, t) and a function
u on W such that

h= dy2 − 4 dx dt− 4u dt2, ω=−4ux dt, (6.2)

and the Einstein–Weyl equations reduce to the dispersionless Kadomtsev–Petviashvili
(dKP) equation [108]

(ut − uux)x = uyy.

This class of Einstein–Weyl spaces can be real only in the Lorentzian signature. The
corresponding real structure on Z is an involution which fixes an equator on each CP

1
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and interchanges the upper and lower hemisphere. The vector field ∂/∂x is null and
covariantly constant with respect to the Weyl connection, and with weight 1

2 . This vector
field gives rise to a parallel real weighted spinor, and finally to a preferred section
of κ−1/4. Conversely, any Einstein–Weyl structure which admits a covariantly constant
weighted vector field is locally of the form (6.2) for some solution u of the dKP equation.

The most general Lorentzian Einstein–Weyl structure corresponds [128] to the Manakov–Santini
system [129]. Manakov and Santini have used a version of the nonlinear Riemann–Hilbert
problem and their version of the inverse scattering transform to give an analytical description
of wave breaking in 2+ 1 dimensions. It would be interesting to put their result in the twistor
framework. The inverse scattering transform of Manakov and Santini is intimately linked to the
nonlinear graviton construction. The coordinate form of the general conformal ASD equation
[128] gives the master dispersionless integrable system in (2+ 2) dimensions, which is solvable
by methods developed in [130,131].

7. Twistors and scattering amplitudes
Although there has been a longstanding programme to understand scattering amplitudes in
twistor space via ‘twistor diagrams’ [4,132], the modern developments started with Witten’s
twistor string [133] introduced in 2003. The fall-out has now spread in many directions.
It encompasses recursion relations that impact across quantum field theory but also back
on the original twistor-diagram programme, Grassmannian integral formulae, polyhedral
representations of amplitudes, twistor actions and ambitwistor strings.

(a) Twistor strings
The twistor-string story starts in the 1980s with a remarkable amplitude formula due to Parke &
Taylor [134], and its twistorial interpretation by Nair [135]. Consider n massless gluons, each
carrying a null momentum pi

μ, i= 1, . . . , n. The isomorphism (2.2) and the formula (2.3) imply
that null vectors are two-by-two matrices with zero determinant, and thus rank one. Any such
matrix is a tensor product of two spinors

pi
μ = πi

A′ π̃A
i .

In spinor variables, the tree-level amplitude for two negative helicity gluons and n− 2 positive
leads to [134]

An =
〈πiπj〉4δ4(

∑n
k=1 pk)

〈π1π2〉〈π2π3〉 · · · 〈πn−1πn〉〈πnπ1〉
, (7.1)

where 〈πkπl〉 := εA′B′πk
A′πl

B′ , and the ith and jth particles are assumed to have negative helicity
and the remaining particles have positive helicity. Nair [135] extended this formula to incorporate
N = 4 supersymmetry and expressed it as an integral over the space of degree-one curves (lines)
in twistor space using a current algebra on each curve.

Witten [133] extended this idea to provide a formulation of N = 4 super-Yang–Mills as a string
theory whose target is the super-twistor space CP

3|4 (e.g. [136]). This space has homogeneous
coordinates ZI = (Zα , χa) with Zα the usual four bosonic homogeneous coordinates and χb four
anti-commuting Grassmann coordinates b= 1, . . . , 4. The model is most simply described [137]
as a theory of holomorphic maps3 Z : C→T from a closed Riemann surface C to non-projective

3These are D1 instantons in Witten’s original B-model formulation.
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twistor space. It is based on the worldsheet action

S=
∫

C
WI ∂̄ZI + aWIZI .

Here, a is a (0, 1)-form on the worldsheet C that is a gauge field for the scalings (W ,Z, a)→
(e−αW , eαZ, a+ ∂̄α). A prototype of this action was introduced in [138].

To couple this to Yang–Mills, we introduce a d-bar operator ∂̄ + A on a region PT in super-
twistor space with A a (0, 1)-form taking values in some complex Lie algebra, and the field J which
is a (1, 0)-form with values in the same Lie algebra on the worldsheet, and generates the current
algebra.4 When expanded out in the fermionic variables χ , such A with ∂̄A= 0 give Dolbeault
cohomology classes in H1(PT,O(p)) for p= 0, . . . ,−4 corresponding via the Penrose transform to
the full multiplet for N = 4 super-Yang–Mills from the positive helicity gluon to the fermions and
scalars down to the negative helicity gluon.

The standard string prescription for amplitudes leads to a proposal for tree amplitudes for n
particles as correlators of n ‘vertex operators’ when Σ =CP

1. These take the form Vi =
∫

C tr(AiJ)
where Ai is the ‘wave function’, i.e. twistor cohomology class H1(PT,O), of the ith particle in the
scattering, usually taken to be a (super-)momentum eigenstate, and tr is the Killing form on the
Lie algebra. The correlators break up into contributions corresponding to the different degrees d
of the map from C=CP

1 into twistor space. The degree d contribution gives the so-called NkMHV
amplitudes with d= k+ 1 where the MHV degree5 k corresponds to k+ 2 of the external particles
having negative helicity with the rest positive.

Let us give a flavour of the formula. If C is a degree-d curve in twistor space, and Md is the
moduli space of curves containing C, then, for any (0, 1)-form A on CP

3|4 with values in gl(N, C),
we can restrict A to C and consider ∂̄A|C. The perturbative Yang–Mills scattering amplitude is then
obtained from the generating function

∫
Md

R

det(∂̄A|C) dμ,

where dμ is a holomorphic volume form on Md and Md
R

is a real slice of Md. The role of
det(∂̄A|C) is as the generating function of current algebra correlation functions on the curve C. The
nth variation of this functional with respect to A as a (0, 1)-form on C gives the current algebra
correlator that forms the denominator of the Parke–Taylor factor when C is a line (together with
some multi-trace terms). In the full formula, the nth variation with respect to A with values in the
cohomology classes of linearized gauge fields for momentum eigenstates is then the scattering
amplitude as a function of these linear fields. In principle, the genus of C determines the number
of loops in the perturbative series, but the formulae have not been verified beyond genus 0.

This correlation function was evaluated for momentum eigenstates by Roiban et al. [139]
as a remarkably compact integral formula for the full S-matrix of N = 4 super-Yang–Mills.
The NkMHV component is expressed as an integral over the moduli of rational curves of
degree k− 1 with n marked points, a space of bosonic|fermionic dimension (4d+ n)|4(d+ 1).
Furthermore, many of the integrals are linear6 and can be performed explicitly, reducing to a
remarkable compact formula with 2d+ 2+ n bosonic integrations against 2d+ 6+ n|4(n− d− 1)
delta functions (the excess bosonic delta functions expressing momentum conservation). The
resulting formula for the amplitude is, in effect, a sum of residues, remarkably simpler than
anything that had been found before and difficult to imagine from the perspective of Feynman
diagrams.

4To turn this into a string theory, one includes a chiral analogue of worldsheet gravity which, when the gauge is fixed, just
leads to ghosts and a Becchi–Rouet–Stora–Tyutin (BRST) operator.
5MHV stands for maximal helicity violating because amplitudes vanish when k < 0 or k > n− 2.

6It is simplified by the fact that the space of rational curves of degree d in CP
3|4 can be represented as homogeneous

polynomials of degree d in homogeneous coordinates, C
2 for CP

1, and so it is a vector space of dimension 4(d+ 1)|4(d+ 1)
modulo GL(2), which also acts on the marked points.
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(b) Twistor strings for gravity
The Witten and Berkovits twistor-string models also compute amplitudes of a certain conformal
gravity theory with N = 4 supersymmetry [140]. So they demonstrated the principle that gravity
might be encoded in this way. However, this is a problem for the construction of loop amplitudes
for super-Yang–Mills as these conformal gravity modes will by necessity run in the loops,
although it is in any case still not clear whether the model can be used to calculate loop amplitudes
even with conformal supergravity. Furthermore, conformal gravity is widely regarded as a
problematic theory, certainly quantum mechanically because it necessarily contains negative
norm states.

Although there was an early version of the Parke–Taylor MHV formulae for gravity found in
the 1980s [141], the one given by Hodges [142] was the first to manifest permutation invariance
and enough structure to suggest a version of the Roiban–Spradlin–Volovich (RSV) Yang–Mills
formula for maximally supersymmetric N = 8 gravity tree amplitudes. This was discovered by
Cachazo & Skinner [143]; see [144] for a proof and further developments. An underlying twistor-
string theory for this formula has been constructed by Skinner [145], who showed that N = 8
supergravity is equivalent to string theory with target CP

3|8 but now with a supersymmetric
worldsheet and some gauged symmetries.

(c) The Cachazo, He and Yuan formulae and ambitwistor strings
The twistor-string theories of Witten, Berkovits and Skinner gave a remarkable new paradigm
for how twistor theory might encode genuine physics. However, their construction very much
relies on maximal supersymmetry and it is unclear how more general theories might be encoded.
The framework is also tied to four dimensions (for some this is a positive feature). Although the
string paradigm suggested that multi-loop processes should correspond to amplitudes built from
higher-genus Riemann surfaces, the details seem to be at best unclear and quite likely obstructed
by anomalies.

In a parallel development, before the Cachazo–Skinner formula for gravity amplitudes,
Cachazo and co-workers had been exploring the relationship between the twistor-string
amplitude formulae and a family of ideas, originating in conventional string theory, whereby
gravity amplitudes can be expressed as the square of Yang–Mills amplitudes via the KLT relations
[146] and their extensions to colour-kinematic duality [147]. This led to an independent twistor-
inspired formula for four-dimensional gravity [148]. Cachazo, He and Yuan (CHY) subsequently
refined and developed these ideas into a remarkably simple and elegant scheme for formulae
analagous to those arising from the twistor string for gauge theories and gravity (and a certain
bi-adjoint scalar theory) in all dimensions [149]. The framework has by now been extended to a
variety of theories [150]. In all of these formulae, the KLT idea of expressing gravity amplitudes
as the square of Yang–Mills is essentially optimally realized (indeed much more elegantly than in
KLT).

The essential observation on which all these formulae rely is that the residues on which
all the twistor-string formulae of RSV and so on are supported are configurations of points
on the Riemann sphere obtained from solutions to the scattering equations. These are equations
for n points on the Riemann sphere given the data of n null momenta subject to momentum
conservation that can be in any dimension. They were first used in [151] to construct classical
string solutions associated to n particle scattering, but also arose from strings at strong coupling in
calculations of Gross & Mende [152]. On the support of the scattering equations, the complicated
momentum kernel that forms the quadratic form in the gravity equals Yang–Mills squared in the
KLT relations is diagonalized.

The question remained as to what the underlying string theory for these formulae might be.
This was answered in [153] based in its simplest form on a chiral, infinite tension limit of the
ordinary bosonic string

S=
∫

C
P · ∂̄X− eP2

2
, (7.2)
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where (X, P) are coordinates on T∗M, and P is understood to take values in one-forms on the
Riemann surface C. The Lagrange multiplier e restricts the target space to a hypersurface P2 = 0
and is a gauge field for the action of the geodesic spray D0 = P · ∇. This is just a Lagrangian
expression of the usual (holomorphic) symplectic reduction of the cotangent bundle to the space
of (scaled) null geodesics A. In four dimensions, this has become known as ambitwistor space
as it is the cotangent bundle both of projective twistor space and of projective dual twistor
and so chooses neither chirality. However, it clearly exists in all dimensions as {T∗M|P2=0}/D0,
the space of complexified null geodesics. It can be defined for geodesically convex regions in
a complexification of any analytic Lorentzian or Riemannian manifold of any dimension. If
dim(M)= d, then dim(PA)= 2d− 3.

The study of ambitwistor space for d= 4 started in 1978 with constructions by Witten
and Isenberg, Yasskin and Green for Yang–Mills. In four dimensions, ambitwistor space of
complexified Minkowski space MC can be expressed as a quadric ZαWα = 0 in PT× PT

∗. The
ambitwistor space is a complexification of the real hypersurface PN ⊂ PT introduced in §2. In
[97–99] (see also [154]), it was shown that generic analytic connections on bundles on Minkowski
space correspond to topologically trivial bundles on ambitwistor space. The full Yang–Mills
equations can be characterized as the condition that the corresponding holomorphic vector
bundles on PA extend to a third formal neighbourhood in PT× PT

∗. The Witten version [97,99]
reformulated this third-order extension condition to the simple requirement of the existence of
the bundle on a supersymmetric extension of ambitwistor space built from N = 3 supersymmetric
twistor spaces. This generalizes the Ward correspondence (theorem 5.1) but, unlike this theorem,
it has not yet led to any effective solution-generating techniques.

Gravitational analogues of the Witten, Isenberg, Yasskin and Green were developed by LeBrun
[91] and Baston & Mason [92].

Theorem 7.1 (LeBrun [155]). The complex structure on PA determines the conformal structure
(MC, [g]). The correspondence is stable under deformations of the complex structure on PA which preserve
the contact structure P dX.

The existence of fifth-order formal neighbourhoods corresponds to vanishing of the Bach tensor of the
space–time and, when the space–time is algebraically general, a sixth-order extension corresponds to the
space–time being conformally Einstein.

The string theories based on the action (7.2) have the property that they need to use
ambitwistor cohomology classes arising from the ambitwistor Penrose transform in amplitude
calculations; it is the explicit form of these cohomology classes that imposes the scattering
equations. To obtain Yang–Mills and gravitational amplitudes from the theory, worldsheet
supersymmetry needs to be introduced by analogy with the standard Ramond–Neveu–Schwarz
(RNS) superstring string and/or other worldsheet matter theories for other theories [156] (current
algebras are required for the original bi-adjoint scalar and Yang–Mills formulae).

The ambitwistor-string paradigm extends to many different geometrical realizations of
ambitwistor space. Ambitwistor strings have also been constructed that are analogues of the
Green–Schwarz string and the pure spinor string [157,158]. In particular, the original twistor
strings can be understood simply as arising from the four-dimensional realization of A as the
cotangent bundle of projective twistor space. However, the approach of [159] uses the four-
dimensional realization of ambitwistor space as a subset of the product of twistor space with its
dual to provide an ambidextrous twistorial ambitwistor-string theory leading to new amplitude
formulae for Yang–Mills and gravity that no longer depend on maximal supersymmetry.

In another direction, one can realize ambitwistor space geometrically as the cotangent bundle
T∗I of null infinity I [160,161]. This gives new insight into the relationship between asymptotic
Bondi–Metzner–Sachs (BMS) symmetries and the soft behaviour of scattering amplitudes, i.e. as
the momentum of particles tends to zero.

An important feature of ambitwistor strings is that they lead to extensions of the CHY formulae
for loop amplitudes. The original models of Mason & Sparling [115] are critical in 26 dimensions
for the bosonic string and in 10 dimensions for the type II RNS version with two worldsheet
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supersymmetries. This latter model was developed further in [162], where it was shown that this
theory does indeed correspond to full type II supergravity in 10 dimensions and that anomalies all
vanish for the computation of loop amplitudes. An explicit conjecture for a formula at one loop for
type II supergravity amplitudes was formulated using scattering equations on a torus in a scheme
that, in principle, extends to all loop orders. This formula was subsequently shown [163] to be
equivalent to one on a Riemann sphere with double points that does indeed compute amplitudes
at one loop correctly. Furthermore, on the Riemann sphere it is possible to see how to adapt
the formulae to ones for many different theories in different dimensions with varying amounts of
supersymmetry. There remains the challenge to extend this to a scheme that transparently extends
to all loop orders, but, although the framework does work at two loops, it already needs new ideas
there [164].

Much remains to be understood about how ambitwistor strings reformulate conventional
massless theories, particularly at higher loops or in the nonlinear regime. One key advance in
the latter direction was the construction of ambitwistor strings on a curved background [165],
providing a kind of Lax pair for the full type II supergravity equations in 10 dimensions in
the sense that the quantum consistency of the constraints is equivalent to the full nonlinear
supergravity equations.

(d) Twistor actions
At degree d= 0, Witten argued that the effective field theory of the twistor string is given by the
twistor space action holomorphic Chern–Simons action:

I=
∫
CP

3|4
Ω ∧ Tr

(
A∂̄A+ 2

3
A ∧ A ∧ A

)
,

where Ω = d3|4Z is the natural holomorphic super-volume-form on CP
3|4 (which turns out to

be super-Calabi–Yau) and A is a (0, 1)-form. The field equations from this action are simply the
integrability of the ∂̄-operator, ∂̄2

A = 0. Interpreting this via the Ward transform (theorem 5.1) on
super-twistor space now leads to the spectrum of full N = 4 super-Yang–Mills, but with only ASD
interactions.

The question arises as to whether one can complete this action to provide the full interactions
of super-Yang–Mills. This can be done by borrowing the leading part of the twistor-string
computation, and some experimentation shows that the interaction term

Sint =
∫
M1

R

log det(∂̄A|C) dμ

gives the correct interactions for full maximally supersymmetric Yang–Mills theory [166–168].
Here, the integration is non-local in twistor space, being firstly a non-local one over degree-one
rational curves (i.e. lines), and, secondly, over M1

R
, which is a real form of the complexified

Minkowski space—for example, the Euclidean space. This can be shown to be equivalent to
the standard space–time action in Euclidean signature in a gauge that is harmonic on twistor
lines as introduced in [100]. Despite its non-locality, the resulting Feynman diagram formalism is
remarkably tractable in an axial gauge in which a component of A is set to zero in the direction of
some fixed reference twistor Z∗. This then leads [169] to the so-called MHV diagram formalism
introduced informally in [170] by considering twistor strings on degree-d curves that arise as
disjoint unions of d lines. In this formalism, amplitudes are computed via 1/p2 propagators and
interaction vertices built from (7.1) via a simple off-shell extension.

The formulation of these rules via a twistor action allowed them to be expressed with maximal
residual symmetry beyond the choice of Z∗, and extended from amplitudes to more general
correlation functions.

Perhaps the most important application of these ideas was to a proof of the conjectured
amplitude/Wilson loop duality. This conjecture, originally due to Alday and Maldacena, arose
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from AdS/CFT considerations and stated that the planar amplitude (i.e. in the large N limit for
gauge group SU(N)) for maximally supersymmetric Yang Mills is equivalent to a Wilson loop
around a null polygon whose sides are made from the momenta of the particles in the scattering
amplitude; the planarity condition means that there is a trace order for the gluons in the amplitude
as in (7.1) that determines the ordering of the momenta around the polygon. This null polygon
is particularly easy to represent in twistor space, as it corresponds naturally to a generic polygon
there and one can express the Wilson loop on space–time in terms of a holomorphic Wilson loop in
twistor space that can be computed via the twistor action. In the Feynman diagram, a framework
that arises from the twistor action in the axial gauge, one finds that the Feynman diagrams for the
holomorphic Wilson loop are dual to those for the amplitude in the sense of planar duality, giving
a proof of the amplitude/Wilson loop correspondence at the level of the loop integrand [171].

Much of this and related material is reviewed in [172], although this does not cover more recent
work on stress–energy correlators [173] and form factors [174,175].

(e) Recursion relations, Grassmannians and polytopes
The Britto–Cachazo–Feng–Witten (BCFW) recursion relations [176] were a separate major
development that sprang from the twistor string. These use an elegant Cauchy theorem argument
to construct tree amplitudes with n external particles from amplitudes with fewer external
particles. The idea is to introduce a complex parameter z by shifting the spinor representation
of the momenta of two of the particles

(πA′
1 π̃A

1 , πA′
n π̃A

n )→ (πA′
1 (π̃A

1 + zπ̃A
n ), (πA′

n − zπA′
1 )π̃A

n ).

As a function of z, an amplitude only has simple poles where the momenta flowing through
an internal propagator become null (i.e. where some partial sum of momentum becomes null
as z varies). The residues at these poles are products of the tree amplitudes on each side of
the propagator evaluated at the shifted momentum. Thus, the amplitude can be expressed
as the residue of 1/z times the amplitude at z= 0, but this can be expressed as the sum of
the residues where z �= 0, which are expressed in terms of lower-order amplitudes (it turns
out that there are many good situations where there is no contribution from z=∞). These
recursion formulae have subsequently been extended quite widely to include gravity and
Yang–Mills in various dimensions and with varying amounts of supersymmetry [177], and to
loop integrands of planar gauge theories [178]. Andrew Hodges [179] expressed the recursion
relations in terms of twistor diagrams, providing a generating principle that had hitherto been
missing.

Further work on expressing BCFW recursion in twistor space [180,181] led to a Grassmannian
contour formula for amplitudes and leading singularities (invariants of multi-loop amplitudes)
[182]. A related Grassmannian formula was obtained soon after, which, with hindsight, gave
the analogous Grassmannian contour integral formulae for the Wilson loop, but, by the
amplitude/Wilson-loop duality, gives an alternative but quite different contour integral formula
for amplitudes [183] that are rather simpler than the original Grassmannian formulae.

This led to a programme to understand the residues that arise in the Grassmannian. It emerged
that a key idea that is required is to think of the Grassmannians as real manifolds and study their
positive geometry [184], leading to simple combinatorial characterizations of the residues.

The twistors for the Wilson-loop version of the amplitude were first introduced by Hodges
[185] and called momentum twistors as they can be obtained locally from the momenta for
the amplitude. He used them in a completely novel way to show that the redundancy and
choices built into a BCFW decomposition of an amplitude could be understood geometrically
in momentum twistor space as arising from different dissections of a polyhedron that describes
the whole amplitude as one global object. This was originally only realized for NMHV
amplitudes, but the programme has continued and matured into the amplituhedron [186]
(although this is essentially the dual of Hodges’ original picture, which has still not been fully
realized).
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time

G-geodesic

Figure 6. Newton–Cartan space–time.

8. Gravitization of quantummechanics and Newtonian twistors
In [42,43], Roger Penrose has argued that a collapse of the wave function is a real process
taking place in time, and is not described by the Schrödinger equation. Gravity should have
a role to play in explaining the nature of the quantum collapse, and the conventional views
on quantum mechanics may need to be revisited in the process. The key idea is that the
superposition of massive states must correspond to superposition of space–times. This makes
the notion of the stationary states ambiguous—its definition depends on a choice of a time-
like Killing vector. In [42], an essentially Newtonian calculation led to the conclusion that the
time scale of instability of one stationary state is τ ≈ h̄/EG, where EG is the gravitational energy
needed to separate two mass distributions. To attempt a twistor understanding of this relation
one first has to take a Newtonian limit of the relativistic twistor correspondence. Analysing the
incidence relation (2.5) in the flat case shows that such a limit corresponds to the jumping line
phenomenon [44]. If PTc is a family of twistor spaces corresponding to a flat Minkowski space
parametrized by a finite speed of light c, then, exploiting the holomorphic fibration PTc→O(2),
one finds

lim
c→∞(PTc =O(1)⊕O(1))= PT∞ =O ⊕O(2).

In the nonlinear graviton and Ward correspondences (theorems 3.2 and 5.1), the presence of
jumping lines corresponds to singularities of the metric or gauge fields on a hypersurface
[187–189]. In the Newtonian twistor theory all curves jump.

The curved twistor space in the Newtonian limit can be understood by considering a one-
parameter family of Gibbons–Hawking metrics (3.3),

g(c)= (1+ c−2V)(dx2 + dy2 + dz2)+ c2(1+ c−2V)−1(dτ + c−3A)2,

and taking a limit c→∞ in the Gibbons–Hawking twistor space. This leads to a Newton–Cartan
theory [190,191] on the moduli space M of O(2)⊕O curves. The limit of {c−2g(c), g−1(c),∇(c)},
where ∇(c) is the Levi–Civita connection of g(c), is a triple consisting of one-form θ = dτ giving a
fibration M→R (absolute time), a degenerate inverse metric hij = δij on the fibres, and a torsion-
free connection preserving h and θ with the only non-vanishing Christoffel symbols given by
Γ i

ττ = 1
2 δij∂jV (figure 6).

9. Other developments
This article has omitted many interesting applications of twistor methods. A good reference are
articles which appeared in Twistor Newsletter, published by the twistor group at the Mathematical
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Institute, Oxford, between 1976 and 2000 and reprinted in [192,193]. In particular, they contain a
discussion of the notoriously difficult and still unsolved ‘googly problem’ of encoding SD (rather
than ASD) and more general Einstein spaces in a geometry of PT; see also [194–200] (and [201,202]
for recent ideas of how four-manifolds can be used in constructing some geometric models of
matter). Below we list some other developments.

In integral geometry, the role of space–time and twistor space is turned round. The subject goes
back to John [203], who considered the problem of characterizing functions φ on the space or
oriented lines in R

3 such that φ(L) := ∫
L f if f : R

3→R. The image of this integral transform is
characterized by the kernel of the ultra-hyperbolic Laplacian. The resulting integral formula [70,
203] is an analytic continuation of Penrose’s contour integral formula (1.1). A general relationship
between twistor theory and integral geometry has been explored in [204–206] and in the language
of systems of second-order ODEs in [207,208].

Quasi-local mass. In the study of asymptotic properties of space–time one seeks satisfactory
definitions of energy and momentum which make sense at extended, but finite, regions of space–
time, i.e. at the quasi-local level. One definition associates these quantities with an arbitrary two-
surface in space–time and makes use of twistor theory of such surfaces [209–211]. Another twistor
approach to this problem [212] is based on the Ashtekar variables [213].

In loop quantum gravity, twistors provide a description of spin network states. This approach
has been developed by Simone Speziale and his collaborators [214,215]. Their description of
symplectic structures and canonical quantization builds on a work of Tod [216].

Space–time points are derived objects in twistor theory. They become ‘fuzzy’ after
quantization, which initially seemed to be an attractive framework for quantum gravity. One
possible realization of this may be a non-commutative twistor theory [217–222] as well as the most
recent twistorial contribution from Roger Penrose [223].

10. Conclusion
Twistor theory is a set of non-local constructions with roots in nineteenth century projective
geometry. By now twistor ideas have been extended and generalized in many different directions
and applied to many quite different problems in mathematics and physics. A unifying feature
is the correspondence between points in space–time and holomorphic curves or some family
of higher-dimensional compact complex submanifolds in a twistor space, together with the
encoding of space–time data into some deformed complex structure.

Complex numbers play an essential role. The local nonlinearities of ASD Einstein and
Yang–Mills equations in space–time are replaced by algebro-geometric problems in twistor
space or by the CR equations in the AHS picture adapted to Riemannian reality conditions.
Twistor- and ambitwistor-string theories couple directly to the complex geometry of twistor and
ambitwistor spaces; the cohomology classes on twistor and ambitwistor spaces that represent
space–time fields restrict directly to give the vertex operators of the corresponding theories.
These give a coherent twistorial formulation of many of the physical theories that lead to striking
simplifications over their space–time formulations, particularly in amplitude calculations. There
is now clear evidence that the conventional string is tied up with the geometry of twistors
in 10 dimensions [224].

We wish twistor theory and its founder all the best on the occasion of their respective
anniversaries. We expect the future of twistor theory to be at least as productive as its past, and
that there will much to celebrate in this twenty-first century.
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