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Anti-self-dual metrics in the (+ + ) signature that admit a covariantly constant
real spinor are studied. It is shown that ­ nding such metrics reduces to solving a
fourth-order integrable partial di¬erential equation (PDE), and some examples are
given. The corresponding twistor space is characterized by existence of a preferred
non-zero real section of µ¡1=4, where µ is the canonical line bundle of the twistor
space. It is demonstrated that if the parallel spinor is preserved by a Killing vector,
then the fourth-order PDE reduces to the dispersionless Kadomtsev{Petviashvili
equation and its linearization. Einstein{Weyl structures on the space of trajectories
of the symmetry are characterized by the existence of a parallel weighted null vector.
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1. Introduction

Constraints on a (pseudo) Riemannian geometry imposed by the existence of a par-
allel spinor essentially depend on the properties of the Cli¬ord algebra and the spin
group associated with the metric. There has been an interest in such geometries in
pure mathematics because they extend a list of holonomy groups of Riemannian
manifolds (where the existence of a parallel spinor implies Ricci ®atness). Pseudo-
Riemannian metrics in various dimensions with a covariantly constant spinor have
also attracted a lot of attention in physics, as such spinors play a central role in
supersymmetry.

Bryant (2000) analysed all cases up to six dimensions, together with some higher-
dimensional examples of particular interest. In this paper I shall concentrate on the
four-dimensional case.

Let (M; g) be a (pseudo) Riemannian spin four-manifold. Therefore, there exist
complex two-dimensional vector bundles S§ (spin-bundles) equipped with parallel
symplectic structures "§ such that

(i) C« TM ¹= S + « S¡ is a canonical bundle isomorphism;

(ii) g(v1 « w1; v2 « w2) = "+ (v1; v2)"¡(w1; w2) for v1; v2 2 ¡ (S + ) and w1; w2 2
¡ (S¡ ).

I shall assume that there exists a spinor ´ , parallel with respect to a Levi-Civita
connection r of g,

´ = (p; q) 2 ¡ (S+ ); r ´ = 0:
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1206 M. Dunajski

There are three possible situations, depending on the signature of the metric.

(i) In the Lorentzian signature (+ ),

Spin(3; 1) = SL(2; C); ´ = (p; q)! ·́ = (·p; ·q) 2 ¡ (S¡); r·´ = 0:

Therefore, l = ´ «·´ is a parallel null vector. This condition has been extensively
studied in general relativity (Kramer et al . 1980): there exist two real functions
u, v and one complex function ¹ such that

g = dudv d ¹ d·¹ + H(u; ¹ ; ·¹ ) du2:

The Ricci ®at condition implies that H(u; ¹ ; ·¹ ) = Re(f(u; ¹ )), where f is holo-
morphic in ¹ . These solutions are known as p.p waves. Analysis of curvature
invariants shows that the function H(u; ¹ ; ·¹ ) cannot be eliminated by a co-
ordinate transformation.

(ii) In the Euclidean signature (+ + ++),

Spin(4; 0) = SU (2) £gSU (2); ´ = (p; q)! ·́ = (·q; ·p) 2 ¡ (S+ ); r·´ = 0:

A spinor and its complex conjugate form a basis of a spin space S+ . A four-
dimensional Riemannian manifold that admits a covariantly constant spinor
must therefore be hyper-K�ahler. Hyper-K�ahler four-manifolds have been much
studied for the last 25 years; see Dancer (2000) and the references therein.

(iii) In the split signature (+ + ) (also called ultra-hyperbolic, Kleinian or neu-
tral),

Spin(2; 2) = SL(2; R)£ fSL(2; R); ´ = (p; q)! ·́ = (·p; ·q) 2 ¡ (S+ ); r·´ = 0;

and the representation space of the spin group splits into a direct sum of two
real two-dimensional spin spaces S+ and S¡ . The conjugation of spinors is
involutive and maps each spin space onto itself, and there exists an invariant
notion of real spinors.

One can therefore look for (+ + ) metrics with a parallel real spinor (which
we choose to be ´ 2 ¡ (S + )). These metrics do not have to be Ricci ®at. The
resulting geometry will be studied in the rest of this paper. The isomorphism
¤ 2

+ (M) ¹= Sym2(S + ) between the bundle of self-dual two-forms and the symmet-
ric tensor product of two spin bundles implies that the real self-dual two-form
§ = ´ « ´ « " + is covariantly constant and null (i.e. § ^ § = 0), which motivates the
following de­ nition.

De¯nition 1.1. A null-K�ahler structure on a four-manifold consists of a metric
of signature (+ + ) and a real spinor ­ eld parallel with respect to this inner
product. A null-K�ahler structure is anti-self-dual (ASD) if the self-dual part of the
Weyl spinor vanishes.

The ASD condition on null-K�ahler structures is worth studying for at least two
reasons. Firstly, four-dimensional vacuum metrics in signature (++ ) appeared in
describing the bosonic sector of the N = 2 superstring (Barrett et al . 1994; Ooguri
& Vafa 1990). Secondly, many integrable systems in dimensions two and three arise
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ASD four-manifolds with a parallel real spinor 1207

(together with their twistor description) as symmetry reductions of anti-self-duality
equations on (+ + ) background (Mason & Woodhouse 1996; Ward 1985).

The ­ rst aspect will be not discussed in the present paper, but I shall reveal some
connections with integrable systems in xx 3 and 5.

In the next section, the ASD null-K�ahler condition will be related to Einstein{
Maxwell equations. In x 3 the ASD null-K�ahler condition will be reduced to a single
fourth-order integrable partial di¬erential equation (PDE). Explicit solutions to these
equations will provide some examples of ASD null-K�ahler structures. The resulting
twistor theory will be described in x 4. The existence of a parallel real spinor will be
characterized by a real structure preserving a preferred non-zero section of µ¡1=4,
where µ is the canonical line bundle of the twistor space. In x 5 it will be shown
that ASD null-K�ahler structures with a symmetry that preserves the parallel spinor
are locally given by solutions to the dispersionless Kadomtsev{Petviashvili equation
and its linearizations (Dunajski 2000). Einstein{Weyl (EW) structures on the space
of trajectories of the symmetry will be characterized by the existence of a parallel
weighted null vector. The two-component spinor notation will used in the paper. The
spin spaces S¡ and S + will be denoted by SA and SA 0

, respectively.
From now on, the parallel real spinor and the corresponding null-K�ahler two-form

will be denoted by ´ A 0 2 ¡ (SA 0
) and § 00 00

= ´ A 0 ´ B 0 § A 0 B 0 2 ¤ 2
+ (M). The notation

is summarized in the appendix.

2. Null-K�ahler metrics in four dimensions

It is well known (Pontecorvo 1992) that K�ahler four-manifolds with vanishing scalar
curvature are necessarily ASD. This is not true for scalar-®at null-K�ahler four-
manifolds. Instead, one has the following result.

Proposition 2.1. Let ´ A 0 be a parallel real spinor on a four-dimensional, ultra-
hyperbolic manifold. Then the scalar curvature vanishes, the Ricci tensor is null and
the self-dual Weyl spinor is given by

CA 0 B 0 C 0 D 0 = c´ A 0 ´ B 0 ´ C 0 ´ D 0 (2.1)

for some function c such that ´ A 0 rAA 0 c = 0.

Proof . Vanishing of the scalar curvature follows from the second Ricci iden-
tity given by (A 5). The ­ rst identity (A 4) implies that © ABA 0 B 0 ´ B 0

= 0, and so
© ABA 0 B 0 = FAB ´ A 0 ´ B 0 for some FAB . The formula (2.1) is a direct consequence
of (A 5) and (A 6) applied to a covariantly constant spinor. ¥

Now I shall show that ASD null-K�ahler metrics can be viewed as solutions to
Einstein equations with electromagnetic stress-energy tensors. The ASD part of the
Maxwell ­ eld is given by the Ricci form, and the self-dual (SD) part is given by the
null-K�ahler form.

Proposition 2.2. There is a one-to-one correspondence between ASD metrics
with a constant real spinor and ASD Einstein{Maxwell spaces for which the SD part
of Maxwell ¯eld is null and covariantly constant.
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1208 M. Dunajski

Proof . Let (M; g) be an ASD manifold with a covariantly constant spinor ´ A 0 .
Proposition 2.1 implies that

© ABA 0 B 0 = FAB ´ A 0 ´ B 0 ; (2.2)

and the spinor Bianchi identities (A 6) yield rAA 0
FAB = 0. Therefore,

Fab = FAB"A 0 B 0 + ´ A 0 ´ B 0 "AB (2.3)

is a Maxwell ­ eld, and the formula (2.2) can be read o¬ as Einstein equations with
a Maxwell stress energy tensor

Tab = 1
2
( 1

4
gabFcdF cd FacFb

c) = FAB ´ A 0 ´ B 0 :

Conversely, consider a Maxwell ­ eld Fab (2.3) on an ASD background, such that its
SD part is null and constant. The Maxwell equations give

rA
A 0 FAB = 0; rAA 0 ´ B 0 = 0

and the Einstein equations with the stress energy tensor Tab = FAB ´ A 0 ´ B 0 yield (2.2).
¥

The following result will be used in xx 3 and 4.

Proposition 2.3. Let § A 0 B 0
= ( § 00 00

; § 00 10
; § 10 10

) be a basis of normalized real
SD two-forms on an ASD scalar-°at manifold such that

d( ´ A 0 ´ B 0 § A 0 B 0
) = d(oA 0 ´ B 0 § A 0 B 0

) = 0: (2.4)

Then there exists a covariantly constant real section of SA 0 . Conversely, let ´ A 0 be
a covariantly constant section of SA 0 on an ASD four-manifold. Then it is possible
to ¯nd another section oA 0 such that (oA 0 ; ´ A 0 ) forms a normalized spin frame, and
equations (2.4) hold.

Proof . Let (oA 0 ; ´ A 0 ) be a normalized spin basis. The covariant derivatives of the
basis can be expressed as

ra ´ B 0 = Ua ´ B 0 + VaoB 0 ; raoB 0 = Wa ´ B 0 UaoB 0 :

The ­ rst condition in (2.4) can be rewritten as rA
A 0

( ´ A 0 ´ B 0 ) = 0, which implies

Va = 2UAB 0 ´ B 0
´ A 0 :

The second condition in (2.4) yields UAA 0 = ¬ A ´ A 0 , WAA 0 = ­ A ´ A 0 for some ¬ A, ­ A.
Therefore,

rAA 0 ´ B 0 = ¬ A ´ A 0 ´ B 0 : (2.5)

Contracting the right-hand side of the above equation with rA
C 0 and sym-

metrizing over (A0B 0) gives 0, since g is ASD and scalar-®at. As a conse-
quence, rA

(C 0 [ ´ A 0 ) ´ B 0 ¬ A] = 0, which gives rA
A 0 ¬ A = 0. Consider the real spinor

^́A 0 := ´ A 0 exp f , where ´ A 0 rAA 0 f = 0 in order to preserve d § 00 0 0
= 0. Integrabil-

ity conditions for rAA 0 f = ¬ A ´ A 0 are satis­ ed, as ¬ A solves the neutrino equation.
Therefore, we can ­ nd f for each ¬ A, and equation (2.5) implies that ^́A 0 is covariantly
constant.
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Converse. Now assume rAA 0 ´ B 0 = 0. Consider ôA 0 such that ôA 0 ´ A 0
= 1. The

normalization condition implies rAA 0 ôB 0 = ® A ´ A 0 ´ B 0 + » A ôA 0 ´ B 0 for some ® A, » A.
Contracting with rA

C 0 and using Ricci identities (A 4) yields rA
A 0 » A = 0, and so

» A = ´ A 0 rAA 0 ¿ . Therefore, in the null-rotated normalized spin frame ´ A 0 , ôA 0 ¿ ´ A 0 ,
we have » A = 0. Therefore,

rA
A 0

(oA 0 ´ B 0 + oB 0 ´ A 0 ) = 2WA
A 0

´ A 0 ´ B 0 = » A ´ B 0 = 0

and d § 0 0 1 0
= 0. ¥

3. The ASD null-K�ahler condition as an integrable system

I shall now construct a local coordinate system adapted to the parallel spinor, and
reduce the ASD null-K�ahler condition to a pair of coupled PDEs. Integrability of
these PDEs will be established using the Lax formulation (i.e. showing that they
arise as the integrability conditions to an overdetermined system of linear equations).

Let SA 0
=M£ C2 be the bundle of complex primed spinors. The natural context

for introducing the Lax pair is the geometry of the projective primed spin bundle
(also called the correspondence space) F = P(SA 0

) =M£ CP1. It is coordinatized
by (xa; ¶ ), where xa denotes the coordinates on M and ¶ is the coordinate on CP1

that parametrizes the ¬ surfaces through x in M. We relate the ­ bre coordinates
º A 0

on SA 0
to ¶ by ¶ = º 0 0 =º 10 .

Let rAA 0 be a null tetrad of vector ­ elds for the metric g on M and let ¡ AA 0 B 0 C 0

be the components of the spin connection in the associated spin frame. A horizontal
lift of rAA 0 to SA 0 is given by

~rAA 0 = rAA 0 + ¡ AA 0 B 0 C 0 º B 0 @

@º C 0
:

Its horizontality implies ~rAA 0 º B 0 = 0.
The space F possesses a natural two-dimensional distribution called the twistor

distribution, or Lax pair to emphasize the analogy with integrable systems. The
Lax pair arises as the image under the projection TSA 0 ! TF of the distribution
spanned by LA = º A 0 ~rAA 0 , and is given by

L0 = r00 0 ¶ r010 + l0@ ¶ ; L0 = r100 ¶ r11 0 + l1@ ¶ ; (3.1)

where lA = ¡ AA 0 B 0 C 0 º A 0
º B 0

º C 0
are cubic polynomials in ¶ (note that º 10 = 1 in

these formulae).

Theorem 3.1 (cf. Penrose 1976). The twistor distribution on SA 0 given by (3.1)
is integrable if and only if the Weyl curvature of g is ASD, i.e. CA 0 B 0 C 0 D 0 = 0.

We are now ready to reformulate the ASD null-K�ahler condition as an integrable
system.

Theorem 3.2. Real coordinates (w; z; x; y) can be chosen such that all ASD null-
K�ahler metrics are locally given by

g = dwdx + dzdy £ xx dz2 £ yy dw2 + 2 £ xy dwdz; (3.2)
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where £ (w; z; x; y) is a solution to a fourth-order PDE (which we write as a system
of two second-order PDEs),

£ wx + £ zy + £ xx £ yy £ 2
xy = f; (3.3)

¤ f = fxw + fyz + £ yyfxx + £ xxfyy 2 £ xyfxy = 0: (3.4)

Moreover, equations (3.3), (3.4) arise as an integrability condition for the linear
system L0 ª = L1 ª = 0, where ª = ª (w; z; x; y; ¶ ) and

L0 = (@w £ xy@y + £ yy@x) ¶ @y + fy@ ¶ ;

L1 = (@z + £ xx@y £ xy@x) + ¶ @x fx@ ¶ :

¾
(3.5)

Proof . Let eAA 0
be a tetrad of real independent one-forms. The parallel spinor

´ A 0 enables us to choose coordinates wA = (w; z) such that eA00
= ´ A 0 eAA 0

= dwA.
Proposition 2.3 implies that we can choose oA 0 such that oA 0 ´ A 0

= 1 and

§ 00 10
= 1

2
"ABoA 0 ´ B 0 eAA 0 ^ eBB 0

= oA 0 eAA 0 ^ dwA

is a closed two-form. Therefore, the Frobenius theorem guarantees the existence of
coordinates xA = (x; y) such that

eA
10

= oA 0 eA
A 0

= dxA + £ AB dwB ;

where £ AB = £ AB(w; z; x; y) is symmetric in A and B. With this choice, we have
§ 00 10

= dxA ^ dwA and the metric is given by

g = dxA dwA + £ AB dwA dwB :

Calculating the components of the spin connection yields ¡ AA 0 B 0 C 0 = AAA 0 ´ B 0 ´ C 0 .
The residual conformal freedom is used to set AAA 0 = ­ A ´ A 0 .

The tetrad of vector ­ elds rAA 0 dual to eAA 0
is

rA10 = ´ A 0 rAA 0 =
@

@xA
; rA00 = oA 0 rAA 0 =

@

@wA
+ £ AB

@

@xB

;

and the Lax pair (3.1) is

LA =
@

@xA
¶

µ
@

@wA
+ £ AB

@

@xB

¶
+ lA

@

@¶
;

where, in the chosen spin frame, lA = ­ A do not depend on ¶ . Consider the Lie
bracket

[L0; L1] =

µ
@£ CD

@wC
+ £ AC

@£ AD

@xC
­ D ¶

@ £ AD

@xA

¶
@

@xD

+

µ
@­ A

@wA
+ £ AB

@­ A

@xB
+ ¶

@­ A

@xA

¶
@

@¶
:

The ASD condition is equivalent to integrability of the distribution LA. In fact,
[L0; L1] = 0, since there is no @=@!A term in the Lie bracket above. We deduce that

£ AB = ¯ A ¯ B £ ; ­ A = ¯ Af; where ¯ A := ´ A 0 rAA 0 =
@

@xA
;
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and f = f(w; z; x; y) and £ (w; z; x; y) satisfy

£ wx + £ zy + £ xx £ yy £ 2
xy = f + F(w; z); ¤ f = 0:

To obtain (3.3), we absorb F(w; z) into f without changing (3.4). ¥

Remark 3.3. One-forms (e00 0
; e100

) span a di¬erential ideal and

§ 00 0 0
= e000 ^ e10 0

= dw ^ dz

is the null-K�ahler form (it is covariantly constant with respect to the metric (3.2)).
On the other hand, (e01 0

; e110
) do not span an ideal unless f = 0, in which case g is

pseudo-hyper-K�ahler.

Remark 3.4. The components of the Ricci and Weyl curvatures, and the Levi-
Civita spinor connection, are

CABCD = ¯ A ¯ B ¯ C ¯ D £ ; CA 0 B 0 C 0 D 0 = ´ A 0 ´ B 0 ´ C 0 ´ D 0 ¤ f = 0; R = 0;

© ABA 0 B 0 = ´ A 0 ´ B 0 ¯ A ¯ Bf; ¡ AB = ¯ A ¯ B ¯ C £ dwC ; ¡ A 0 B 0 = ´ A 0 ´ B 0 ¯ Af dwA:

The Bianchi identity (A 6) is satis­ ed as a consequence of equation (3.4). To sum
out f is a potential for a null Maxwell ­ eld (the so-called Hertz potential), and £ is
a nonlinear potential for a metric.

Potential forms of complexi­ ed null Einstein{Maxwell equations were given by
Garcia (1977) and Robinson (2000). It will be instructive to look for a non-trivial
overlap between them and the one given above.

(a) Examples

Example 3.5. Consider a class of metrics given by £ x = 0. Equations (3.3), (3.4)
reduce to

£ yz = f; fyz = 0:

The general solution is given by

£ = B(w; y) + z

Z
A(w; y) dy; f = A(w; y); (3.6)

where A(w; y) and B(w; y) are arbitrary functions. (In fact, there are other terms
linear in y and depending on arbitrary functions of w, z. These terms can be gauged
away, as they do not change the metric.) We have

g = dwdx + dzdy (zAy + Byy) dw2:

If Ay = 0, then g is pseudo-hyper-K�ahler.

Example 3.6. Consider solutions with f = £ v , where v is one of (w; z; x; y).
Equation (3.4) implies

@

@v
( £ wx + £ zy + £ xx £ yy £ 2

xy) = 0;

and di¬erentiating equation (3.3) yields £ vv = 0. It is enough to consider two sub-
cases: £ xx = 0 and £ ww = 0, where the former one can be integrated explicitly,

g = dwdx + dzdy (xPy + z(P Pw + 2P Py) + Q) dw2 + 2P dwdz; (3.7)

where P (w; y) and Q(w; y) are arbitrary functions.
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Example 3.7. We have

£ = A

µ
x

y

¶
;

g = dwdx + dzdy
1

y2

µµ
x2

y2
A00 + 2

x

y
A0

¶
dw2 + A00 dz2 + 2

µ
x

y
A00 + A0

¶
dwdz

¶
;

where A is an arbitrary function, and A0 is its derivative.

Example 3.8. We have

£ = xA(y) + B(y);

g = dwdx + dzdy (xAyy + Byy) dw2 + 2Ay dwdz;

where A and B are arbitrary functions of one variable.

4. Twistor theory of ASD null-K�ahler metrics

All ASD null-K�ahler metrics locally arise from solutions to (3.3), (3.4). Non-analytic
solutions are generic in (2; 2) signature. However, in order to ­ nd a twistor descrip-
tion, in this section I shall restrict myself to real-analytic solutions.

Given an analytic solution to (3.3), (3.4), one can obtain the corresponding twistor
space by equippingM£CP1 with an integrable complex structure: the basis of [0; 1]
vectors is (L0; L1; @·¶ ), where (L0; L1) are given by (3.5). The parallel spinor ´ A 0

gives
rise to the section l = ´ A 0

º A 0 of µ¡1=4. In this section I shall perform this construction
(together with its converse) in a coordinate-independent way.

De¯nition 4.1. An ¬ -surface is a totally null two-dimensional surface, such that
a two-form orthogonal to its tangent plane is SD.

There are Frobenius integrability conditions for the existence of such ¬ -surfaces
through each point and these are equivalent, by theorem 3.1, to the vanishing of the
SD part of the Weyl curvature, CA 0 B 0 C 0 D 0 . Thus, given CA 0 B 0 C 0 D 0 = 0, we can de­ ne
a twistor space PT to be the three-complex-dimensional manifold of ¬ -surfaces in
M.

A tangent space to an ¬ -surface is spanned by null vectors of the form ¶ A º A 0
, with

º A 0
­ xed and ¶ A arbitrary. As mentioned in x 1, in the split signature, any spinor

has an invariant decomposition into its real and imaginary part. A real ¬ -surface
corresponds to both ¶ A and º A 0

being real.
In general, º A 0

= Re º A 0
+ i Im º A 0

, and the correspondence space F de­ ned in
the last section decomposes into two open sets,

F + = f(xa; [ º A 0
]) 2 F ; Re( º A 0 ) Im( º A 0

) > 0g =M£D + ;

F¡ = f(xa; [ º A 0
]) 2 F ; Re( º A 0 ) Im( º A 0

) < 0g =M£D¡ ;

where D§ are two copies of a Poincaŕe disc. These complex submanifolds are sepa-
rated by a real correspondence space,

F0 = f(xa; [ º A 0
]) 2 F ; Re( º A 0 ) Im( º A 0

) = 0g =M£ RP1:

The vector ­ elds (3.1), together with the complex structure on the CP1, give F , a
structure of a complex manifold PT : the integrable sub-bundle of TF is spanned
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by L0, L1, @·¶ . The distribution (3.1) with ¶ 2 RP1 de­ ne a foliation of F0 with a
quotient PT 0, which leads to a double ­ bration,

M p F0
q! PT 0: (4.1)

The twistor space PT is a union of two open subsets PT + = (F + ) and PT ¡ = (F¡)
separated by a three-dimensional real boundaryy (real twistor space) PT 0 := q(F0).

The real structure ¼ (xa) = ·xa maps ¬ -surfaces to ¬ -surfaces, and therefore induces
an anti-holomorphic involution ¼ : PT ! PT . The ­ xed points of this involution
correspond to real ¬ -surfaces inM. There is an RP1 worth of such ¬ -surfaces through
each point of M. The set of ­ xed points of ¼ in PT is PT 0.

Each point x 2 M determines a sphere lx made up of all the ¬ -surfaces through x.
The normal bundle of lx in PT is N = TPT jlx

=T lx. This is a rank-two vector bundle
over CP1, therefore it has to be one of the standard linez bundles O(n)© O(m).

Lemma 4.2. Let p : F =M£ CP1 !M. The holomorphic curves lx := p¡1(x),
x 2 M, have normal bundle N = O(1) © O(1).

Proof . The bundle N can be identi­ ed with the quotient p ¤ (TxM)=fspan L0; L1g.
In their homogeneous form, the operators LA have weight one, so the distribution
spanned by them is isomorphic to the bundle C2 « O( 1). The de­ nition of the
normal bundle as a quotient gives a sequence of sheaves over CP1,

0! C2 « O( 1) ! C4 ! N ! 0;

and we see that N = O(1) © O(1), because the last map, in the spinor notation, is
given explicitly by V AA 0 7! V AA 0

º A 0 projecting onto O(1) © O(1). ¥

If M is ASD null-K�ahler, then PT has an additional structure.

Theorem 4.3. Let PT be a three-dimensional complex manifold with

(i) a four-parameter family of rational curves with normal bundle O(1) © O(1);

(ii) a preferred section of µ¡1=4, where µ is the canonical bundle of PT ;

(iii) an anti-holomorphic involution » : PT ! PT ¯xing a real equator of each
rational curve, and leaving the section of µ¡1=4 above invariant.

Then the real moduli spaceM of the » -invariant curves is equipped with a restricted
conformal class [g] of ASD null-K�ahler metric: if g 2 [g] and § 00 00

is a null-K�ahler
two-form, then ĝ = « 2g 2 [g] for any « such that d « ^ § 00 0 0

= 0. Conversely, given
a real analytic ASD null-K�ahler metric, there exists a corresponding twistor space
with the above structures.

Proof . Let g be a real analytic ASD metric with a covariantly constant real
spinor ´ A 0 .

y Woodhouse (1992) performed a careful analysis of the twistor correspondence for ° at (+ + ¡¡)
metrics and showed how functions on PT 0 = RP3 can be used to construct smooth solutions to the
ultra-hyperbolic wave equation.

z Here, O (n) denotes the line bundle over CP1 , with transition functions ¶ ¡ n from the set ¶ 6= 1 to
¶ 6= 0 (i.e. Chern class n).
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From CA 0 B 0 C 0 D 0 = 0, it follows that there exist coordinates º A 0
on the ­ bres of

SA 0 !M such that º A 0 ~rAA 0 º B 0
= 0. Therefore, a parallel section ´ A 0 of SA 0 deter-

mines a function l = º A 0
´ A 0 constant along the twistor distribution. The line bundle

º A 0
´ A 0 = 0 on PT is isomorphic to µ¡1=4, where µ = « 3PT is the canonical bundle.

Converse. The global section l of µ¡1=4, when pulled back to SA 0 , determines
a homogeneity degree-one function on each ­ bre of SA 0 and so must, by Hartog’s
theorem, be given by l = ´ A 0

º A 0 , and since l is pulled back from twistor space, it
must satisfy º A 0 ~rAA 0 l = 0. This implies

rAA 0 ´ B 0 = "A 0 B 0 ¬ A (4.2)

for some ¬ A. Choose a representative in [g] with R = 0. Contracting (4.2) with rA
C 0

and using the spinor Bianchi identity gives

rA
C 0 rAA 0 ´ B 0 = CA 0 B 0 C 0 D 0 ´ D 0 1

12
R"C 0 (B 0 ´ A 0 ) = 0 = "A 0 B 0 rA

C 0 ¬ A;

so ¬ A is a solution to the ASD spin-1
2

equation rAA 0
¬ A = 0 (the so-called neutrino

equation). It can be written in terms of a potential

¬ A = ´ A 0 rAA 0 ¿ ; (4.3)

since the integrability conditions ´ A 0
´ B 0 rA

A 0 ¬ A = ¬ A ´ A 0 rA
A 0 ´ B 0

are satis­ ed. Here,
¿ is a real analytic function that satis­ es

rara ¿ +ra ¿ ra ¿ = 0; (4.4)

as a consequence of the neutrino equation. Consider a conformal rescaling

ĝ = « 2g; "̂A 0 B 0 = « "A 0 B 0 ; ^́A 0 = « ´ A 0 ; ^́A 0
= ´ A 0

; R̂ = R + 1
4
« ¡1¤ « :

The twistor equation (4.2) is conformally invariant as r̂(A 0

A ^́B 0 ) = « ¡1rA
(A 0

´ B 0 ) = 0.
Choose « 2 ker ¤ , so that R̂ = 0. Let ¨ a = « ¡1ra « . Then

r̂AA 0 ^́B 0
= rAA 0 ´ B 0

+ "A 0
B 0

¨ AB 0 ´ C 0
= "A 0

B 0
( ´ C 0 rAC 0 ( ¿ + ln « ));

where we have used equations (4.2) and (4.3). Notice that, as a consequence of (4.4),
exp( ¿ ) 2 ker ¤ , and we can choose ln « = ¿ and

r̂AA 0 ^́B 0
= 0: (4.5)

We can still use the residual gauge freedom and add to ¿ and an arbitrary function «
constant along ´ A 0 rAA 0 , which, by the Frobenius theorem, implies d « ^ § 00 00

= 0.
This means (4.5) is invariant under a conformal rescaling by functions constant along
the leaves of the congruence de­ ned by ^́A 0

. Such conformal transformations do not
change R̂ = 0. ¥

5. ASD null-K�ahler metrics with symmetry

In this section I shall consider ASD null-K�ahler metrics that admit a Killing vector
preserving the parallel spinor. Let us call them ASD null-K�ahler metrics with sym-
metry. I shall show that all such metrics are (at least in the real analytic case) locally
determined by solutions to a certain integrable equation and its linearization.

Before establishing this result, I shall review some facts about EW spaces that
admit a parallel weighted vector (Dunajski et al . 2001).
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(a) Three-dimensional EW spaces with a parallel weighted vector

Let W be a three-dimensional real manifold with a torsion-free connection D and
a conformal metric [h]. We shall call W a Weyl space if the null geodesics of [h] are
also geodesics for D. This condition is equivalent to

Dh = ¸ « h (5.1)

for some one-form ¸ . Here, h is a representative metric in the conformal class. If we
change this representative by h! ¿ 2h, then ¸ ! ¸ + 2 d ln ¿ . A tensor object T that
transforms as T ! ¿ mT when h! ¿ 2h is said to be conformally invariant of weight
m. The covariant derivative of a one-form ­ of weight m can be expressed in terms
of the Levi-Civita connection of h,

~D­ = r­ 1
2
(­ « ¸ + (1 m) ¸ « ­ h( ¸ ; ­ )h): (5.2)

The conformally invariant EW condition on (W ; h; ¸ ) is

W(ij) = 1
3
¤ hij ;

where ¤ and Wij are the scalar curvature and the Ricci tensor of the Weyl connection,
respectively.

Three-dimensional EW structures are related to four-dimensional ASD conformal
structures by the Jones{Tod correspondence (Jones & Tod 1985).

Proposition 5.1 (cf. Jones & Tod 1985). Let (M; ĝ) be an ultra-hyperbolic
four-manifold with ASD conformal curvature and a conformal Killing vector K. The
EW structure in inde¯nite signature on the space W of trajectories of K is de¯ned
by

h := jK j¡2ĝ jKj¡4K ­K; ¸ := 2jKj¡2 ¤ĝ (K ^ dK); (5.3)

where jKj2 := ĝabKaKb, K is the one-form dual to K and ¤ĝ is taken with respect
to ĝ. All three-dimensional EW structures arise in this way.

Conversely, let (h; ¸ ) be a three-dimensional EW structure with a signature (++ )
on W , and let (V; ¬ ) be a pair consisting of a function of weight 1 and a one-form
on W that satis¯es the generalized monopole equation

¤h(dV + ( 1
2
) ¸ V ) = d ¬ ; (5.4)

where ¤h is taken with respect to h. Then

g = V h V ¡1(dz + ¬ )2 (5.5)

is an ASD metric with an isometry K = @z .

Dunajski et al . (2001) demonstrated that if an EW space admits a parallel weighted
vector, the coordinates can be found in which the metric and the one-form are given
by

h = dy2 4 dxdt 4u dt2; ¸ = 4ux dt; u = u(x; y; t); (5.6)

and the EW equations reduce to the dispersionless Kadomtsev{Petviashvili equation

(ut uux)x = uyy: (5.7)

If u(x; y; t) is a smooth real function of real variables, then (5.6) has signature (++ ).
It has also been shown that there exists a twistor construction of EW spaces (5.6)
given by the following theorem.
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Theorem 5.2 (cf. Dunajski et al . 2001). There is a one-to-one correspondence
between EW spaces (5.6) obtained from solutions to the equation (5.7) and two-
dimensional complex manifolds with

(i) a three-parameter family of rational curves with normal bundle O(2);

(ii) a global section l of µ¡1=4, where µ is the canonical bundle;

(iii) an anti-holomorphic involution ¯xing a real slice, leaving a rational curve and
the preferred section of µ¡1=4 invariant.

(b) Symmetry reduction

Now we are ready to establish the main result of this section.

Theorem 5.3. Let H = H(x; y; t) and W = W (x; y; t) be smooth real-valued
functions on an open set W » R3, which satisfyy

Hyy Hxt + HxHxx = 0; (5.8)

Wyy Wxt + (HxWx)x = 0: (5.9)

Then

g = Wx(dy2 4 dxdt 4Hx dt2) W ¡1
x (dz Wx dy 2Wy dt)2 (5.10)

is an ASD null-K�ahler metric on a circle bundle M ! W . All real analytic ASD
null-K�ahler metrics with symmetry arise from this construction.

Proof . Let (h; ¸ ) be a three-dimensional EW structure given by (5.6) (with
u = Hx) and let (V; ¬ ) be a pair consisting of a function and a one-form that satisfy
the generalized monopole equation (5.4). The ultra-hyperbolic metric

g = V (dy2 4 dxdt 4Hx dt2) V ¡1(dz + ¬ )2 (5.11)

is therefore ASD. It satis­ es L Kg = 0, where K = @z . Using the relations

¤h dt = dt ^ dy; ¤h dy = 2 dt ^ dx; ¤h dx = dy ^ dx + 2Hx dy ^ dt;

we verify that equation (5.9) is equivalent to d ¤h (d + ¸ =2)(Wx) = 0. Therefore,

Wxx dy ^ dx + (2(HxWx)x Wtx) dy ^ dt + 2Wxy dt ^ dx = d ¬ ;

and we deduce that V = Wx is a solution to the monopole equation (5.4) on the EW
background given by (5.6). We choose a gauge in which ¬ = Q dy + P dt. This yields

Qx = Wxx; Px = 2Wxy; Py Qt = 2(HxWx)x Wxt; (5.12)

so

Q = Wx+A(y; t); P = 2Wy+B(y; t); ¬ = Wx dy 2Wy dt+A dy+B dt:

The integrability conditions Pxy = Pyx are given by (5.9) and At = By . Therefore,
there exists C(y; t) such that A = Cy , B = Ct. We now replace z by z C and the

y With de¯nition u = Hx , the x derivative of equation (5.8) becomes the dispersionless Kadomtsev{
Petviashvili equation (5.7) originally used by Dunajski et al . (2001). There are some computational
advantages in working with the p̀otential’ form (5.8).
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metric (5.11) becomes (5.10). This proves that (5.10) is ASD. It is also scalar-®at,
because, as a consequence of (5.9),

R = 8(Wxyy Wxxt + (HxWx)xx)Wx = 0: (5.13)

We now choose the null tetrad

e000
= 2Wx dt; e10 0

=
dz 2Wy dt

2Wx

;

e01 0
= dz 2Wx dy 2Wy dx + ze00 0

; e11 0
= dx + Hx dy + ze100

such that g = 2(e00 0
e11 0

e10 0
e010

). The basis of SD two-forms § A 0 B 0
is given by

§ 00 00
= ´ A 0 ´ B 0 § A 0 B 0

= e000 ^ e100

= dz ^ dt;

§ 00 10
= ´ A 0 oB 0 § A 0 B 0

= e100 ^ e010
e000 ^ e11 0

= dt ^ d(z2) + 2 dt ^ dW + dy ^ dz;

§ 10 10
= oA 0 oB 0 § A 0 B 0

= e010 ^ e110

= 2Wx dx ^ dy + 2(zWx + Wy) dx ^ dt dx ^ dz

+ (2HxWx 2zWy) dt ^ dy + z dz ^ dy + (Hx + z2) dz ^ dt:

These two-forms satisfy

2§ 00 00 ^ § 10 10
= § 00 10 ^ § 00 10

; d § 0 0 0 0
= 0; d § 00 10

= 0

and

d § 1 0 10
= d(Hx 2W ) ^ dt ^ dz + (Wxt Wyy (HxWx)x) dx ^ dy ^ dt: (5.14)

Therefore, proposition 2.3 implies that the metric (5.10) admits a constant spinor
that is preserved by K = @z .

Converse. Let g be a real analytic ASD metric with a covariantly constant spinor
´ A 0 , which is Lie derived along a Killing vector K. Theorem 4.3 implies that the
corresponding twistor space PT is equipped with l 2 ¡ (µ¡1=4). The Killing vector
K gives rise to a holomorphic vector ­ eld on PT that preserves l. Therefore, the mini-
twistor space Z (the space of trajectories of K in PT ) also admits a preferred real
section of the 1

4
power of its canonical bundle. The mini-twistor space Z satis­ es

the assumptions of theorem 5.2 and the corresponding EW metric is of the form
ĝ = « 2g, where g is given by (5.10). Both ĝ and g are scalar ®at (this follows from
the spinor Ricci identities and from equation (5.13), respectively). As a consequence,
we deduce that « = « (t). Now we can use the coordinate freedom (Dunajski et al .
2001) to absorb « in the solution to the equation (5.8). ¥

Corollary 5.4. Let (M; g) be an ASD null-K�ahler manifold with symmetry. Then
the EW structure induced by (5.3) on the space of orbits of this symmetry is locally
of the form (5.6).
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Remark 5.5. Theorem 5.3 is analogous to a result of LeBrun (1991), who con-
structs all scalar-®at K�ahler metrics with symmetry in Euclidean signature from
solutions to the SU(1) Toda equation and its linearization.

Remark 5.6. A class of solutions to the monopole (5.9) can be obtained from
vectors tangent to a space of solutions to (5.8) generated by

x! a( ° )x + b( ° ); t! a( ° )t + c( ° ); y ! a( ° )y + e( ° );

where a(0) = a, b(0) = b, c(0) = c, e(0) = e. The corresponding linearized solution
is given by

W (x; y; t) =
dH

d °

¯̄
¯̄
° = 0

= a(xHx + yHy + tHt) + bHx + cHt + eHy:

Remark 5.7. If H = const:, then (5.9) reduces to the wave equation in 2 + 1
dimensions and, consequently, the metric (5.10) is the (+ + ) Gibbons{Hawking
solution (Gibbons & Hawking 1978).

Remark 5.8. Note that d § 1 0 1 0 6= 0 unless W = Hx=2 + f(t), in which case

d § 1 0 10
= d(Hxt HxHxx Hyy) ^ dy ^ dt = 0;

and we are working in a covariantly constant real spin frame. The metric

g = 1
2
Hxx(dy2 4 dxdt 4Hx dt2)

2

Hxx
(dz 1

2
Hxx dy Hxy dt)2 (5.15)

is therefore pseudo-hyper-K�ahler. Dunajski et al . (2001) showed that all pseudo-
hyper-K�ahler metrics with a symmetry satisfying dK + ^ dK + = 0 are locally given
by (5.15). Here, dK + is a self-dual part of dK.

Remark 5.9. If Wx 6= 1
2
Hxx, then (5.10) is not Ricci ®at. This can be ver-

i­ ed by a direct calculation. It also follows from more geometric reasoning. The
Killing vector K = @z acts on SD two-forms by a Lie derivative. One can choose
a basis § A 0 B 0

such that one element of this basis is ­ xed, and the Killing vector
rotates the other two. The components of the SD derivative of K are coe¯ cients
of these rotations. Therefore, (dK) + = const: if g is pseudo-hyper-K�ahler. In our
case, dK + = (Hxx=Wx) dz ^ dt. Therefore, Hxx=Wx must be constant for (5.10) to
be Ricci ®at. An example of a non-vacuum metric is given by W = 1

2
Hy .

(c) Pseudo-hyper-K�ahler metrics with symmetry

In this subsection I shall assume that an ASD null-K�ahler structure (M; g) admits
an additional parallel spinor oA 0 such that oA 0 ´ A 0

= 1. Now there exists a covariantly
constant basis of the spin space SA 0

, and (M; g) is pseudo-hyper-K�ahler. In the split
signature we can arrange for one of the complex structures to be real and for the
other two to be purely imaginary,

I2 = S2 = T 2 = 1; IST = 1;

and S and T determine a pair of transverse null foliations. Now

g(X; Y ) = g(IX; IY ) = g(SX; SY ) = g(T X; T Y )
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for any pair of real vectors X, Y . The endomorphism I endowsM with the structure
of a two-dimensional complex K�ahler manifold, as does every other complex structure
aI + bS + cT parametrized by the points of the hyperboloid a2 b2 c2 = 1. Using
the identi­ cation between the two-forms, and endomorphisms given by g, we can
write

S = § 0 0 0 0
§ 1 0 1 0

; I = § 00 0 0
+ § 10 1 0

; T = § 00 10
:

Killing vectors on pseudo-hyper-K�ahler spaces give rise to a homomorphism

S1 ! SO(2; 1):

Therefore, K induces an S1 action on the hyperboloid. Assume that g(K; K) 6= 0.
If the action is trivial, then we are dealing with the (+ + ) Gibbons{Hawking
ansatz (Gibbons & Hawking 1978). Otherwise, there always exists a ­ xed point of the
S1 action. If the two-form corresponding to this ­ xed point is non-degenerate, then
g is given in terms of solutions to the SU(1) equation (Finley & Plebański 1979;
LeBrun 1991; Ward 1990). Finally, if the ­ xed point corresponds to a degenerate
two-form, then g is given by (5.15). Pseudo-hyper-K�ahler metrics that admit K such
that g(K; K) = 0 and L K g = L KI = L KS = L K T = 0 have been found by Barrett
et al . (1994). Conformal symmetries of pseudo-hyper-K�ahler metrics with non-null
self-dual derivative have been classi­ ed by Dunajski & Tod (2001)

I am grateful to David Calderbank, Nigel Hitchin, Lionel Mason, Maciej Przanowski, David
Robinson and Paul Tod for useful discussions. I thank Centro de Investigacion y de Estudios
Avanzados in Mexico, where part of this work was done, for the hospitality. My visit to Mexico
was partly supported by grants 32427-E Proyecto de CONACYT and LMS 5619.

Appendix A. Spinor notation

Let M be a real four-manifold equipped with a (+ + ) metric g and compatible
volume form ¸ . We use the conventions of Penrose & Rindler (1986). a; b; : : : are
four-dimensional vector indices and A; B; : : : ; A0; B0; : : : are two-dimensional spinor
indices. They have ranges 0, 1 and 00, 10, respectively. The tangent space at each
point of M is isomorphic to a tensor product of the two real spin spaces

TM = SA « SA 0
: (A 1)

This isomorphism is given by

V a ! V AA 0
=

µ
V 0 + V 3 V 1 + V 2

V 1 V 2 V 0 V 3

¶
:

Orthogonal transformations decompose into products of ASD and SD rotations,

SO(2; 2) = (SL(2; R) £ fSL(2; R))=Z2: (A 2)

The Lorentz transformation V a ! ¤ a
bV

b is equivalent to

V AA 0 ! ¶ A
BV BB 0

¶ A 0

B 0 ;

where ¶ A
B and ¶ A 0

B 0 are elements of SL(2; R) and fSL(2; R).
Spin dyads (oA; ´ A) and (oA 0

; ´ A 0
) span SA and SA 0

, respectively. The spin spaces
SA and SA 0

are equipped with parallel symplectic forms "AB and "A 0 B 0 such that
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"01 = "00 10 = 1. These antisymmetric objects are used to raise and lower the spinor
indices via ´ A = ´ B"BA, ´ A = "AB ´ B. We shall use normalized spin frames, so that

oB ´ C ´ BoC = "BC ; oB 0
´ C 0

´ B 0
oC 0

= "B 0 C 0
:

Let eAA 0
be a null tetrad of one-forms on M, i.e.

g = "AB"A 0 B 0 eAA 0
eBB 0

= 2(e000
e110

e100
e010

);

and let rAA 0 be the frame of vector ­ elds dual to eAA 0
. The orientation is given by

­ xing the volume form

¸ = e010 ^ e100 ^ e11 0 ^ e00 0
:

Apart from orientability, M must satisfy some other topological restrictions for the
(+ + ) metric, and a global spinor ­ elds to exist. We shall not take them into
account, as we work locally in M.

Any two-form « ab can be written as

« ABA 0 B 0 = « AB"A 0 B 0 + ~« A 0 B 0 "AB ;

where « AB are ~« A 0 B 0 symmetric in their indices since « ab is skew. This is the
decomposition of a two-form into its ASD and SD parts. The space of SD two-forms
is therefore isomorphic to a symmetric tensor product of two primed spin spaces.

The local basis § AB and § A 0 B 0
of spaces of ASD and SD two-forms are de­ ned

by

eAA 0 ^ eBB 0
= "AB § A 0 B 0

+ "A 0 B 0
§ AB: (A 3)

The ­ rst Cartan structure equations are

deAA 0
= eBA 0 ^ ¡ A

B + eAB 0 ^ ¡ A 0

B 0 ;

where ¡ AB and ¡ A 0 B 0 are the SL(2; R) and ~SL(2; R) spin connection one-forms.
They are symmetric in their indices and

¡ AB = ¡ CC 0 ABeCC 0
; ¡ A 0 B 0 = ¡ CC 0 A 0 B 0 eCC 0

;

¡ CC 0 A 0 B 0 = oA 0 rCC 0 ´ B 0 ´ A 0 rCC 0 oB 0 :

The curvature of the spin connection,

RA
B = d ¡ A

B + ¡ A
C ^ ¡ C

B ;

decomposes as

RA
B = CA

BCD § CD + 1
12

R§ A
B + © A

BC 0 D 0 § C 0 D 0
;

and similarly for RA 0
B 0 . Here, R is the Ricci scalar, © ABA 0 B 0 is the trace-free part

of the Ricci tensor Rab,

2 © ABA 0 B 0 = Rab
1
4
Rgab;

and CABCD is the ASD part of the Weyl tensor,

Cabcd = "A 0 B 0 "C 0 D 0 CABCD + "AB"CDCA 0 B 0 C 0 D 0 :
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A conformal structure is called ASD if and only if CA 0 B 0 C 0 D 0 = 0. De­ ne the operators
4AB and 4A 0 B 0 by

[ra;rb] = "AB4A 0 B 0 + "A 0 B 0 4AB:

The spinor Ricci identities are

4AB ´ A 0 = © ABA 0 B 0 ´ B 0
; (A 4)

4A 0 B 0 ´ C 0 = [CA 0 B 0 C 0 D 0
1

12
R"D 0 (A 0 "B 0 )C 0 ] ´ D 0

(A 5)

(and analogous equations for unprimed spinors). Bianchi identities translate to

rA 0

ACA 0 B 0 C 0 D 0 = rB
(B 0 © C 0 D 0 )AB ; rAA 0

© ABA 0 B 0 + 1
8
rBB 0 R = 0: (A 6)

Let K be a pure Killing vector. Then r(A 0

(A
K

B 0 )

B)
= 0, raKa = 0. This implies

raKb = ¿ AB"A 0 B 0 + ÁA 0 B 0 "AB;

where ÁA 0 B 0 and ¿ AB are symmetric spinors. The well-known identity rarbKc =
RbcadKd implies

rA
A 0 ÁB 0 C 0 = 2CD 0

A 0 B 0 C 0 KA
D 0 2KB

(A 0 © A
B 0 C 0 )B

+ 1
6
R"A 0 (B 0 KA

C 0 )
4
3
"A 0 (B 0 © D 0 DA

C 0 ) KDD 0 : (A 7)

Therefore, in an ASD vacuum, ÁA 0 B 0 = const: A Lie derivative of a spinor along a
Killing vector K is given by

L K ´ A 0
= Kbrb ´

A 0
ÁA 0

B 0 ´ B 0
:

Note that if ´ A 0 is covariantly constant and the Killing vector K preserves the ´ A 0 ,
we deduce that ÁA 0 B 0 = Á ´ A 0 ´ B 0 for some function Á. The identity (A 7) yields

rAA 0 Á = 1
2
FABKB

A 0 ;

so Á 6= const: unless g is hyper-K�ahler.
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