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Anti–Self–Duality

(M, g) oriented 4-manifold with (2, 2) metric. ∗ : Λ2 → Λ2 Hodge
operator.

Λ2 = Λ2
+ ⊕ Λ2

−

Rabcd = R[ab][cd], R : Λ2 → Λ2.

Curvature decomposition

R =


C+ + s

12 φ

φ C− + s
12


C± are the self-dual (SD) and anti-self-dual (ASD) parts of the Weyl
tensor, φ is the tracefree Ricci curvature, and s is the scalar curvature.

Dunajski (DAMTP, Cambridge) ASD in (+ + −−) 27 March 2007 3 / 26



Anti–Self–Duality

Conformally invariant ASD equations

C+ = 0.

In (2, 2) the equations are ultrahyperbolic, whereas in the Riemannian
case they are elliptic.

Neutral case is far less rigid than the Riemannian case. There exist
‘null’ vectors, wave–like solutions, non–analytic ASD structures.

Example. The ASD Ricci flat metric

g = dwdx + dzdy + F (w, y)dw2

is non-trivial and well defined on a compact manifold (e.g T 4). There
are no known examples of such metrics in the Riemannian case
(althrough it is known that the metric on K3 must exists).
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Motivation: Integrable Systems

ASD conformal equations are integrable by twistor transform.

Symmetries in the form of Killing vectors the equations reduce to
lower dimensional integrable systems.

Most lower dimensional integrable systems arise from ASD Yang
Mills, or ASD conformal equations in (2, 2) or (4, 0) signature.

Different integrable systems can be obtained by combining symmetries
with geometric conditions for a metric in a conformal class. Evolution
equations in 2 + 1 and 1 + 1 dimensions are reductions from (2, 2).
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Motivation: Integral Geometry

Fritz John (1938). f : R3 −→ R with decay conditions at infinity. For
any oriented line L ⊂ R3 define θ(L) =

∫
L f , or

θ(x, y, w, z) =
∫ ∞

−∞
f(xs + z, ys− w, s)ds,

The space of oriented lines is 4 dimensional, and 4 > 3 so expect one
condition on θ.

Ultrahyperbolic wave equation for the flat (2, 2) conformal structure

∂2θ

∂x∂w
+

∂2θ

∂y∂z
= 0.
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Conformal Compactification of R2,2

Projective quadric in RP5

|x|2 − |y|2 = 0

where [x,y] ∈ R3 × R3 are homogeneous coordinates on RP5.

The freedom (x,y) ∼ (cx, cy) is fixed by |x| = |y| = 1 which is
S2 × S2. Quotient this by the antipodal map (x,y)→ (−x,−y) to
obtain the conformal compactification

R2,2 = (S2 × S2)/Z2.

Use stereographic coordinates on the double cover. The flat metric
|dx|2 − |dy|2 on R3,3 is the (2, 2) metric on S2 × S2

g0 = 4
dζdζ̄

(1 + ζζ̄)2
− 4

dχdχ̄

(1 + χχ̄)2
.

ASD, Scalar–flat, Kähler.
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Spinors in split signature

SO(2, 2) ∼= (SL(2, R)×SL(2, R))/Z2.

TM ∼= S ⊗ S′

S and S′ are real rank two vector bundles over M with parallel
symplectic structures ε and ε′.

v1, v2 ∈ Γ(S) unprimed spinors, w1, w2 ∈ Γ(S′) primed spinors

g(v1 ⊗ w1, v2 ⊗ w2) = ε(v1, v2)ε′(w1, w2)

Λ2
+
∼= S′∗ � S′∗, Λ2

−
∼= S∗ � S∗.

u ∈ Γ(S′)↔ simple SD two–form Ωu ↔ rank 2 distribution Ker (Ωu).

Ωu(v1 ⊗ w1, v2 ⊗ w2) = ε′(u, w1)ε′(u, w2)ε(v1, v2).
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Spinors in split signature. α–surfaces

x ∈M,u ∈ Γ(S′x). 2 dimensional α-plane Ux = span(Ker(Ωu)).
Totally null and SD

[g]Ux = 0, ∗Ωu = Ωu.

Totally null ASD 2-planes are β-planes.

(2, 2) version of Penrose’s Theorem:

Each α plane is tangent to a surface iff C+ = 0.
The space of α–surfaces in M is three dimensional.
There is a circle worth of α–surfaces through each x ∈M .
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Lax pair

(e00′ , e01′ , e10′ , e11′) real frame of vector fields on M (a Lax frame).

Horizontal lift of an α–plane distribution to P(S′) = M × RP1

L0 = e00′ + λe01′ + f0
∂

∂λ
, L1 = e10′ + λe11′ + f1

∂

∂λ
, λ ∈ RP1

(f0, f1) : M × RP1 −→ R are cubic polynomials in λ.

Frobenius integrability [L0, L1] = 0 (modL0, L1) implies the
anti–self–duality of the conformal structure

g = 2(e00′ ⊗ e11′ − e10′ ⊗ e01′).

Any ASD conformal structure admits a Lax frame eAA′ .
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Curvature restrictions

Pseudo hypercomplex

Scalar–flat (pseudo) Kähler

Null Kähler

Ricci flat (pseudo hyper Kähler)

Einstein

Pseudo hypercomplex is conformally invariant. Other conditions are not.
Null Kähler does not have a Riemannian analogue.
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Curvature restrictions: Pseudo hypercomplex

I, S, T : TM −→ TM ,

S2 = T 2 = 1, I2 = −1, ST = −TS = 1.

Hyperboloid of almost complex structures aI + bS + cT integrable for
any (a, b, c) satisfying a2 − b2 − c2 = 1.

Hyperhermitian conformal structure: (X, SX, TX, IX) has signature
(2, 2) and is automatically ASD.

Lax pair does not contain the vertical term, i.e. f0 = f1 = 0.
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Curvature restrictions: Scalar–flat Kähler

(Pseudo) Kähler J : TM −→ TM, g ∈ [g]

J2 = ±1, g(X, Y ) = ∓g(JX, JY ), ∇J = 0

(Pseudo) Kähler+scalar–flat implies ASD.
(Pseudo) Kähler+ASD implies scalar–flat
... but scalar flat+ASD does not imply Kähler!

Lax pair: eAA′ are volume preserving, and the polynomials f0, f1 have
double zero at λ = 0 and no other zeroes.
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Curvature restrictions: Null Kähler

Null Kähler: N : TM −→ TM ,

N2 = 0, g(NX,Y ) + g(X, NY ) = 0, ∇N = 0, forX, Y ∈ TM.

Ω(X, Y ) := g(X, NY ), so Λ2
+(M) ∼= Sym2(S′∗) implies the

existence of parallel real spinor.

There exist coordinates (x, y, w, z) and Θ : M −→ R s.t. locally

g = dwdx + dzdy −Θxxdz2 −Θyydw2 + 2Θxydwdz,

N = dw ⊗ ∂/∂y − dz ⊗ ∂/∂x.

Now impose ASD on g

�gH = 0, where H := Θwx + Θzy + ΘxxΘyy −Θ2
xy.

ASD Null Kähler → 4th order integrable PDE with Lax pair.
(Linearizes to �2θ = 0).
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Curvature restrictions: Ricci flat

This is the special case of any of the previous there.

Pseudo hypercomplex s.t.

ωI(., .) = g(., I.), ωS(., .) = g(., S.), ωT (., .) = g(., T.)

are closed,

or ASD Null Kähler such that H = 0. 4th order PDE → Plebański’s
Second Heavenly Equation

Θwx + Θzy + ΘxxΘyy −Θ2
xy = 0.

(2, 2) analog of the Riemannian hyper-Kähler structures.

Lax pair has no vertical terms, and consists of volume preserving
vector fields on M . ASDYM in 0 dimensions with G=SDiff(M). The
heavenly equation is a gauge choice M = TΣ. This selects a parallel
frame on the primed spin bundle S′ →M .
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Twistor Theory (Real analytic case)

Complexify: (MC, [gC]) complex four-manifold with a holomorphic
ASD conformal structure. P(S′) = MC × CP1 The Twistor space

PT = P(S′)/{L0, L1},

is the three complex dimensional manifold of α–surfaces in MC.

x ∈MC ←→ lx ∼= CP1 ⊂ PT , N(lx) = O(1)⊕O(1)
x, y ∈MC are null separated iff lx, ly ⊂ PT intersect at a point.

Real structure ρ : MC −→MC, ρ(x) = x.

Maps α–surfaces to α–surfaces.
Antiholomorphic involution ρ : PT −→ PT . Fixed points on 3D real
mfd PT R
ρ fixes real equators of RP1 ⊂ lx.

Dunajski (DAMTP, Cambridge) ASD in (+ + −−) 27 March 2007 16 / 26



Twistor Theory – curvature restrictions

Holomorphic fibration θ : PT → CP1 corresponds to pseudo
hypercomplex conformal structures.

Preferred section of κ−1/2 which vanishes at exactly two points on
each twistor line corresponds to scalar–flat Kähler gC ∈ [gC].
Preferred section of κ−1/4 corresponds to ASD null Kähler gC ∈ [gC].
Holomorphic fibration θ : PT → CP1 and holomorphic isomorphism
θ∗O(−4) ∼= κ correspond to Ricci–flat gC ∈ [gC].
These structure need to be ρ invariant for real (2, 2) conformal
structures.

(κ −→ PT is the holomorphic canonical line bundle.)
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Symmetries

Conformal Killing vector K

LKg = cg, g → e2fg, c→ c + 2K(f).

Maps α surfaces to α surfaces.

Non-null g(K, K) 6= 0. The three–dimensional space of orbits of K
inherits an Einstein–Weyl structure. The resulting equations are
integrable but not solvable. Leads to many known and new
dispersionless integrable systems, e.g. SU(∞) Toda, dispersionless
KP, ... .

Null g(K, K) = 0. Killing equations imply the existence of a two
parameter family of β surfaces (ASD null surfaces). The ASD
conformal structure in 4D gives rise to a projective structure on the
2D space of β surfaces. The problem is completely solvable. The
general solution depends on wether K is twisting or not.
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Non–null Symmetries

M −→W = M/U(1). Weyl structure (W, [h], D) in (2, 1) signature:

Dh = ω ⊗ h, h −→ e2fh, ω −→ ω + df.

h = |K|−2g − |K|−4K ⊗K, ω = 2|K|−2 ∗g (K ∧ dK).
α surfaces in M −→ totally geodesic null surfaces in W .

Conformally invatiant Einstein-Weyl equations:
Traceless symmetrised Ricci tensor of D is proportional to h.

Example – dispersionless Kadomtsev–Petviashvili equation.
ASD Null Kähler with symmetry, LKN = 0 s.t.

h = dy2 − 4dxdt− 4udt2, ω = −4uxdt

where u = u(x, y, t) satisfies the dKP equaton

(ut − uux)x = uyy.

This EW structure admits a parallel weighted vector.
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Null Symmetries. Projective Structures

2D Projective structure (U, [Γ]). Equivalence class of torsion free
connections with the same unparametrised geodesics.

(x, y) ∈ U . The geodesic equation

d2y

dx2
= A3(x, y)

(dy

dx

)3
+ A2(x, y)

(dy

dx

)2
+ A1(x, y)

(dy

dx

)
+ A0(x, y),

Integral curves lift to integral curves of the spray Θ on P(TU)

Θ = ∂x + z∂y + (A0 + zA1 + z2A2 + z3A3)∂z.

Nonlinear Penrose–Radon Transform

U ←− P(TU) Θ−→ Z
point ←→ O(1) real line

geodesic ←→ point.
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Null Symmetries

K = ι⊗ o where ι ∈ Γ(S), o ∈ Γ(S′).
2D Frobenius integrable distribution Dι = KerΩι

2D space of special β surfaces U = M/Dι

U admits a projective structure

Projective spray distribution Θ = {L0, L1,K}/Dι defined on
P(TU) = (P(S′) = M × RP1)/Dι.

M ←− M × RP1

Dι ↓ ↓ {L0, L1,K}
U ←− P(TU)

Reconstruction of the ASD conformal structure with null symmetry:
Extend the spray on P(TU) to a Lax pair on P(S′).
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Null Symmetries. Twistor Correspondence
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Null Symmetries. Examples

U = T 2, K ∧ dK = 0. Kodaira surface M = C2/Γ→ U .

g = dφdy − dzdx−Q(x, y)dy2. Ricci–flat Kähler.

(U, [Γ]) Flat, K ∧ dK 6= 0.

g = (dφ + Q(x, y)dx)(dy − zdx)− dzdx. Pseudo hypercomplex.

General (U, [Γ]) (given by Ai(x, y)). General K ∧ dK 6= 0.

g = ∂2
zG(dz − (A0 + zA1 + z2A2 + z3A3)dx)dx

− (dφ + A3∂zGdy + (A2∂zG + 2A3(z∂zG−G)(dy − zdx)

where G = G(x, y, z) satisfies a linear P.D.E Θ(∂zG) = 0.
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Applications: Time dependent 3+1 space–times

Lift a (2, 2) ASD vacuum metric with non–null S1 symmetry ∂/∂φ to
3 + 2 dimensions with two commuting Killing vectors

g(3,2) = g(2,2) + dz2.

Perform a Kaluza–Klein reduction along the time like symmetry ∂/∂φ.

This yields a 3 + 1 dimensional solution to Einstein–Maxwell–Dilaton
equations

... but the Maxwell field has negative energy, and both gravity and
electromagnetism are attractive forces. Peculiar physical
consequences: e.g. black holes can increase their mass by radiating
photons out!

Could generalise to F theory with ds2 = g(2,2) + dx8
2.
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Applications: Time dependent 3+1 space–times

g(2,2) = V h(2,1) − V −1(dθ + A)2, ASD+Ricci flat.

g(3,2) = exp (−2Φ/
√

3)G(3,1) − exp (4Φ/
√

3)(dθ + A)2.
In (3 + 1) dimensions: metric G(3,1), dilaton Φ, Maxwell potential A.

Example. g(2,2) = (2, 2) Taub-Nut

G(3,1) = V −1/2dz2 + V 1/2(dρ2 + ρ2dθ2 − dt2),

Φ = −
√

3
4

log V, A = V −1dz, V =
(
1 +

m√
ρ2 − t2

)−1/2

θ ∼= θ + 4π for regular initial data. This solution represents a charged
particle moving with the along the z axis. Unstable and invariant
under R× SO(2, 1) (Tachyon).
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Outlook

Conformal anti-self-duality in 2 + 2 dimensions.

Richer than the Riemannian case.

Null structures, wave–like solutions, non-analyticity.
Plenty of non–trivial compact and complete examples.

Unifying framework for dispersionless integrable systems in 2 + 1
dimensions.

Reductions to (2 + 1) dimensional Einstein–Weyl structures, and 2
dimensional projective structures.

Connections with physics (??): N = 2 superstring, timelike
Kaluza–Klein reductions, F–theory.
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